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SI Methods 

 

Real-time fMRI 

Physiological Noise. To remove physiological noise arising from breathing and pulsatile 

artifacts, subjects were fitted with a pneumatic respiratory belt and a pulse oximeter. 

Physiological measurements from these devices were modeled using a Fourier expansion of 

physiological phases based on the RETROICOR model1 and respiratory volume2. These were 

incrementally regressed out in real time from the exported time courses using a custom-made 

MATLAB (MathWorks, Natick, USA) toolbox. The ensuing filtered time courses were then 

used in the main experiment.  

 

fMRI Image Acquisition 

MRI was acquired at the Wellcome Centre for Human Neuroimaging, UCL, using a Siemens 

Trio 3-Tesla scanner equipped with a 32-channel head coil. A partial-volume 2D echo-planar 

imaging (EPI) sequence that was optimized for striatal, medial prefrontal, and brainstem 

regions was selected for the functional images. Each volume consisted of 25 slices with 

2.5mm isotropic voxels (repetition time (TR): 1.75s; echo time (TE): 30ms; slice tilt: -30°). 

At the beginning of each functional session, 10 EPI volumes were acquired with the 10th 

volume selected as the template used to co-register the ROI. In addition, field maps with 

3mm isotropic voxels (whole brain coverage) were also acquired to correct the EPIs for any 

inhomogeneity in magnetic field strength. Subsequently, the first 6 volumes of each run were 

discarded to allow for T1 saturation effects. Structural images consisted of 3 spoiled multi-

echo 3D fast low angle shot (FLASH) acquisitions at 0.8mm isotropic resolution with T1 

(TR: 18.7ms; flip angle: 20°), proton density (PD) (TR: 23.7ms; flip angle: 6°), and 

magnetization transfer (MT) (TR: 23.7ms; flip angle: 6°; excitation preceded by a 2kHz off-

resonance Gaussian radiofrequency (RF) pulse with 4ms duration and 200° nominal flip 

angle) weightings. Additional B1 mapping and field maps were acquired to get calibration 

data measuring the spatial distribution of the B1+ transmit field in order to detect the spatial 

variation in flip angle. Sequence settings were identical across subjects (e.g., no variation in 

tilt angle) and no slices were discarded. Overlapping coverage across all subjects is indicated 

in Figure 1. 

 

fMRI Offline Analyses 

Images were preprocessed using standard procedures in SPM 12 (Wellcome Centre for 

Human Neuroimaging, UCL). This consisted of unwarping EPIs using field maps, motion 

correction, spatial transformation to the MNI template, and spatial smoothing with a 6-mm 

full-width at half-maximum Gaussian kernel. 

Multilevel mediation analysis was carried out using the Mediation Toolbox 

(http://wagerlab.colorado.edu/tools)3. For the mediation analysis, evoked responses in the 

SN/VTA, VS, and vmPFC were determined as the maximum percentage change in BOLD 

signal within a 10s epoch following trial onset, while baseline SN/VTA was determined as 
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the percentile that each trial was triggered off (see previous section). Distribution of path 

coefficients were estimated by drawing 10,000 random samples and significance estimates 

were computed through bootstrapping.  

 

Computational Modeling 

Parametric Approach-Avoidance Decision Model. A recent model4 that was developed to 

account for value-independent tendencies to choose gambles is the approach-avoidance 

model, which allows choice probabilities to differ from 0 or 1 in the limit when a softmax 

rule is used. Expected utilities were determined using equations in the prospect theory model 

described earlier. 

The main difference lies in the softmax rule where the probability of gambling depended on a 

new parameter, β, determined by the following equations: 

 

Pgamble = 
1− 𝛽

1+𝑒−µ(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛) + β if β ≥ 0 

Pgamble = 
1+ 𝛽

1+𝑒−µ(𝑈𝑔𝑎𝑚𝑏𝑙𝑒−𝑈𝑐𝑒𝑟𝑡𝑎𝑖𝑛)  if β < 0 

 

If β is positive, choice probabilities are mapped from (β, 1). If β is negative, choice 

probabilities are mapped from (0, 1+β). This model provided a good fit of behavior with an 

average pseudo-R2 of 0.47 (SD: 0.14). 

Parametric Decision Model Using Expected Values. The final model tested was one that used 

the expected values of the gamble (Egamble) and certain gain (Ecertain) and passed through the 

following softmax with the same gambling bias term β as before: 

 

Pgamble = 
1

1+𝑒−µ(𝐸𝑔𝑎𝑚𝑏𝑙𝑒−𝐸𝑐𝑒𝑟𝑡𝑎𝑖𝑛+𝜅) 

 

This model had the lowest fit with a pseudo-R2 of 0.36 (SD: 0.17), which suggests that more 

of the variance could be accounted for by the inclusion of a risk aversion parameter to 

convert objective values into subjective values. 

 

Control Analysis 

To validate the results obtained from our online procedure and to examine whether the effect 

of endogenous BOLD activity on risky choice behavior was a general property across the 

brain, we sampled activity from multiple regions. The ROI for vmPFC was derived from 

www.neurosynth.org, the VS ROI was bilateral 8-mm spheres at MNI coordinates derived 

from a previous study5, a group anatomical mask from a previous study6 was used for 

SN/VTA ROI, and the primary auditory cortex (A1) was Brodmann Areas 41 from the Wake 

Forest University PickAtlas toolbox for SPM7. 
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BOLD time courses for these ROIs were extracted and filtered using an incremental GLM 

with the same motion and physiological regressors as in the real-time fMRI experiment. 

Based on our real-time procedure, BOLD activity for each region was averaged for the 2 

most recent TRs prior to trial presentation and compared against each preceding baseline 

window of 2 minutes. As our design was optimized to detect activity fluctuations in the 

SN/VTA, the threshold used to categorize trials as low or high activity in the SN/VTA would 

be overly conservative when applied to other brain regions. This would lead to many trials 

being left uncategorized. To ensure that all trials were categorized, we relaxed the threshold 

and categorized each trial as low or high depending on whether pre-trial BOLD activity for 

each of these regions was lower or higher than the mean of the preceding baseline period. 

To test whether our main effect of risk preference change is specific to SN/VTA BOLD 

activity, we investigated the relationship between endogenous fluctuations of BOLD activity 

in other brain regions and risky choice. We conducted offline analyses on A1 as a control 

area, as well as VS and vmPFC, which are regions strongly implicated in value-based 

decision making8. We used independent ROIs for all areas including SN/VTA and re-

categorized trials based on endogenous activity in each of these ROIs.  

Risky choice behavior was significantly greater for low compared to high baseline activity in 

the independent SN/VTA ROI (low baseline activity: 59.7 ± 1.5% (mean ± SEM), high 

baseline activity: 56.0 ± 1.9%, t42 =2.92, P = 0.003). There was no significant relationship 

between risk taking and endogenous activity in any of the control and decision-related areas 

tested (Fig. S2A). Risk taking was similar for low and high baseline activity in VS (low: 58.6 

± 1.7%, high: 57.0 ± 1.8%, t42 = 0.95, P = 0.35), vmPFC (low: 58.6 ± 1.6%, high: 57.1 ± 

1.9%, t42 = 1.01, P = 0.32), and A1 (low: 58.9 ± 1.6%, high: 57.0 ± 1.8%, t42 =1.43, P = 0.16). 

To further verify that the effects we observe are driven by local rather than global 

fluctuations, we tested whether SN/VTA activity was still predictive of risk taking even after 

controlling for activity in control area A1 (t42 = 2.34, P = 0.02). These findings suggest that 

the effect is not a general effect of low and high BOLD activity modes across the brain, but 

specific to local fluctuations in the dopaminergic midbrain that explain variability in risk 

taking. 

A caveat of the above analysis is that the absence of any effect in a control area could be due 

to reduced endogenous signal variability. To rule out this alternative explanation, we 

calculated the signal change of epochs used to trigger each trial relative to their preceding 

baselines. Differences in signal change between low and high activity conditions were largest 

in vmPFC and smallest in VS, suggesting that activity used to trigger trials in SN/VTA was 

no more extreme than that observed in other regions, supporting our finding of a specific 

effect of SN/VTA endogenous fluctuations on risk taking (Fig. S2B). 

As the VS results may be affected by partial volume effects due to its location and the image 

acquisition parameters, we re-ran the preprocessing steps and re-analyzed the data after 

discarding the top and bottom slices of the partial volumes. We found that risk taking was 

still similar for low and high baseline activity in VS (low: 58.7 ± 1.7%, high: 57.0 ± 1.9%, t42 

= 1.02, P = 0.32), suggesting that the absence of an association between VS BOLD activity 

and risk taking was not due to partial volume effects. 

As SN/VTA BOLD signals recorded in real-time may be contaminated by signals from 

surrounding structures due to smoothing, we also performed offline analyses on unsmoothed 
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functional images using the same algorithm to reclassify pre-stimulus activity and found 

consistent results in unsmoothed data. Risk taking was higher for trials presented against a 

background of low compared to high SN/VTA BOLD activity (low activity: 59.9 ± 1.8%, 

high activity: 55.6 ± 2.1%, t42 = 3.2, P = 0.003). 

To test how sensitive the effect we observe is to the timing of pre-stimulus activity, we 

reanalysed the data, reclassifying activity levels as high or low based on volumes t-2 and t-3 

before trial onset (instead of t-1 and t-2). Discarding the final volume of SN/VTA signal 

before trial onset did not affect the relationship between pre-stimulus activity and risk taking 

(t42 = 2.95, P = 0.005), suggesting that the effect we observe does not depend on the precise 

timing of option presentation. 

 

Statistical Analysis 

Descriptive and inferential statistics were carried out in MATLAB (MathWorks) with in-

house scripts and functions in SPSS Statistics (IBM Corp). All behavioral analyses were 

conducted on trials that were matched for value between low and high activity modes. In 

other words, if a participant missed a trial in the low or high baseline activity condition, the 

corresponding trial in the other baseline condition was excluded from analyses to match the 

number of trials in each condition (final number of matched trials: 95 ± 6%, mean ± SD).  

Precision measures (e.g., SD, SEM) are indicated in brackets where appropriate. Paired 

sample t-tests were used to compare reaction times and the number of risky choices between 

low and high activity conditions across the different brain regions tested. The main effect of 

gamble value bins and risk, as well as possible interactions between gamble value and 

endogenous activity were assessed using a repeated-measures ANOVA with Greenhouse-

Geisser correction (5 gamble value bins x 2 activity conditions). Parameters in the 

computational models were fit separately for each condition using the fmincon function in 

MATLAB to minimize their negative log-likelihoods. 
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Fig S1. Task design. Endogenous activity reflecting a low/high background BOLD activity state 

(exceeding a 15th/85th percentile cut-off based on an incremental sliding window of 2 minutes) triggered 

presentation of a trial involving a choice between a safe option and a risky option. Trials presented in 

both low/high background activity states were matched and thus any difference in behavior can be 

attributed to distinct levels of endogenous SN/VTA BOLD activity. 

 

  



 

 
7 

 

Fig S2. Control analyses. A, Offline re-classification of endogenous activity using independent ROIs 

(see Methods) revealed that only endogenous dopaminergic midbrain fluctuations were significantly 

associated with choice variability. B, Differences in signal change between low and high activity 

conditions were largest in vmPFC and smallest in VS (yellow: trials categorised as high activity, 

orange: signals categorised as low activity). This suggests that endogenous fluctuations in SN/VTA 

were not more extreme than other regions. * P < 0.05, ** P < 0.01, *** P < 0.001. Data are mean ± 

SEM. 
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Fig. S3. Endogenous fluctuations in dopaminergic midbrain modulate vigor. A, Endogenous 

activity in dopaminergic midbrain modulated vigor as captured by response speed. Subjects (n = 43) 

were faster (P < 0.01) to make choices for options presented on a background of high compared to 

low endogenous activity. B, This effect of faster response speeds for high than low activity was 

consistent across subjects. ** P < 0.01. 
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Fig. S4. Intrinsic fluctuations in dopaminergic midbrain co-activate a decision network. To 

identify a network of brain areas that the SN/VTA was embedded in and whose activity co-varied 

with endogenous fluctuations in the SN/VTA, we first extracted the BOLD time course from each 

subject’s SN/VTA using the same independent ROI as in the offline analyses. This was then included 

as an additional regressor in a GLM at the 1st level analysis in SPM. T-Contrasts on this SN/VTA 

regressor were used in the 2nd level group analysis, revealing that activity in dopaminergic midbrain 

co-activates a decision-related network of areas including VS and vmPFC (both P<0.05, FWE-

corrected). 
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Fig. S5. Endogenous SN/VTA activity modulates task-evoked responses in a decision network. 

A, Similar to the task-evoked responses in SN/VTA and VS, vmPFC shows increased task-evoked 

responses on a background of low endogenous SN/VTA activity (P < 0.01). Multilevel mediation 

analyses reveal dynamic interactions in a decision network. B, Endogenous SN/VTA activity 

influences task-evoked responses in SN/VTA, which in turn modulate decision making. C, D, 

Endogenous SN/VTA activity also influences task-evoked responses in VS in C and vmPFC in D. VS 

thereby mediates the effect of endogenous SN/VTA activity on risk taking. E, F, Further analysis 

revealed that task-evoked responses in VS and SN/VTA dynamically interact with each other. Of 

these three decision areas, only SN/VTA directly influences risk taking, with task-evoked VS 

responses indirectly influencing behavior through their influence on task-evoked SN/VTA responses. 

This result indicates that endogenous SN/VTA activity induces differential phasic responses in 

SN/VTA and VS, which in turn interact with and dynamically influence risk taking. 
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Fig. S6. Subjective value representations in VS and vmPFC. We performed a timepoint-by-

timepoint analysis within VS and vmPFC ROIs derived from a meta-analysis of subjective value fMRI 

studies8 and identified significant correlations between z-scored BOLD activity in both VS (A) and 

vmPFC (B) and the z-scored average subjective value of the two options. Choices were made at time 0. 

The strongest association for any timepoint was P = 0.005 for VS and P = 0.026 for vmPFC. Data are 

mean ± SEM. * P < 0.05. 
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Table S1. Model Comparison Results. 

 

BIC measures are summed across 31 subjects. The winning model (lowest BIC) here was the 

parametric decision model based on prospect theory with the addition of a gambling bias. ∆BIC refers 

to the difference in BIC scores between each model and the winning model. 

 

 
  

Model Parameters Mean R2 BIC ∆BIC 

Prospect Theory 4 0.44 2636 130 

Approach-Avoidance 6 0.47 2804 298 

Prospect Theory with Gambling Bias 6 0.55 2506 0 

Expected Values with Gambling Bias 4 0.36 2927 421 
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Table S2. ROI-based Mediation Results. 

 

 
 SN/VTA VS VMPFC  

 

Mediation of endogenous 

SN/VTA fluctuations on 

choice 

 

Path a 

 

-0.16*** 

 

-0.21*** 

 

-0.19*** 

(0.03) (0.04) (0.05) 

P < 0.001 P < 0.001 P < 0.001 

     

 Path b -0.16* -0.0011 -0.04 

 (0.08) (0.05) (0.05) 

 P = 0.03 P = 0.98 P = 0.31 

     

 Direct c’ -0.14* -0.10* -0.12* 

 (0.06) (0.05) (0.05) 

 P = 0.01 P = 0.04 P = 0.02 

     

 Mediation 

a x b 

-0.13 -0.26* 0.01 

 (0.15) (0.10) (0.09) 

 P = 0.40 P = 0.02 P = 0.96 

 

 

Mediation of task-evoked 

VS responses on choice 

 

Path a 

 

0.52*** 

  

(0.03)   

P < 0.001   

     

 Path b -0.24**   

 (0.09)   

 P = 0.006   

     

 Direct c’ 0.13   

 (0.07)   

 P = 0.08   

     

 Mediation 

a x b 

-2.41**   

 (0.89)   

 P = 0.005  
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 SN/VTA VS VMPFC  

 

Mediation of task-evoked 

SN/VTA responses on 

choice 

 

Path a 

  

0.63*** 

 

 (0.04)  
 P < 0.001  

     

 Path b  0.13  

  (0.07)  

  P = 0.07  

     

 Direct c’  -0.24**  

  (0.09)  

  P = 0.006  

     

 Mediation 

a x b 

 1.58*  

  (0.78)  

  P = 0.04  

 

 

Coefficients, standard errors, and p-values for the different paths in the mediation analyses 

(n=43). *P < 0.05, **P < 0.01, ***P < 0.001 
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