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SI Materials and Methods 

 

 

qPCR 

Cells were harvested, and RNA was isolated using TRIzol reagent (Invitrogen). cDNA was synthesized using a 

ReverTra Ace kit (Toyobo). Viral genomic DNA was isolated using a QIAamp DNA blood mini kit (Qiagen). Real-

time PCR was performed using a TOPreal SYBR Green PCR kit (Enzynomics) with primers listed in Table S1. 

mRNA levels were normalized against GAPDH mRNA. 

 

Immunoblotting 

Cells were lysed using RIPA buffer [50 mM Tris (pH 7.4), 150 mM sodium chloride, 0.5 % sodium deoxycholate, 

0.1% SDS, and 1.0% NP-40] supplemented with 10 uM Leupeptin (Sigma-Aldrich) and 1 mM 

phenylmethanesulfonyl fluoride (PMSF; Sigma-Aldrich) and boiled with SDS sample buffer, and protein samples 

were subjected to SDS-PAGE. The following antibodies were used: IE1/2 (MAB810R; Millipore), IE2 (sc-69835; 

Santa Cruz Biotechnology), UL44 (CA006-1; Virusys), pp28 (CA004-1; Virusys), pp65 (P1205; Virusys), Roquin 

(A300-514a and A300-515a; Bethyl Laboratories), IRF1 (D5E4; Cell Signaling Technology), Regnase-1 

(MAB7875-SP; R&D Systems), phospho-TBK1 (#5483; Cell Signaling Technology), phospho-IRF3 S386 

(ab76493; Abcam), phospho-STAT1 (#9167; Cell Signaling Technology), GAPDH (AbFrontier), peroxidase-

conjugated anti-mouse IgG (115-035-062) and anti-rabbit IgG (111-035-003; Jackson Laboratories). Signals were 

detected using a SuperSignal West Pico chemiluminescence kit (Thermo Fisher Scientific). 

 

RNA-seq library generation 

RNA-seq and CLIP-seq were performed,as previously described, with some modifications (1). For RNA-seq, 

primary HFFs were infected with HCMV Toledo at an MOI of 3, and sequencing was performed in biological 

duplicates at four time points of infection (0, 6, 24, and 72 hpi) for sequencing in Roquin-knockdown cells and at 

three time points of infection (0, 24, and 72 hpi) for reference for CLIP-seq. Total RNA was extracted using TRIzol 

reagent (Invitrogen) according to manufacturer instructions. For RNA-seq in Roquin-knockdown cells, 

polyadenylated RNAs were enriched using Dynabeads mRNA direct purification kit (Ambion). For CLIP reference 

sequencing, ribosomal RNAs were removed using a Ribo-Zero rRNA removal kit (Epicentre). After RNA 

fragmentation in RNA fragmentation buffer (New England Biolabs), RNAs of 30 to 60 nucleotides in length were 

purified and ligated with 3′ adaptors (5′-rApp-TGGAATTCTCGGGTGCCAAGG-ddC-3′; Integrated DNA 

Technologies) using T4 RNA ligase 2 and truncated K227Q (New England Biolabs), and 5′ adaptors (5′-

GrGrUrUrCrArGrArGrUrUrCrUrArCrArGrUrCrCrGrArCrGrArUrC-3′; Integrated DNA Technologies) using T4 

RNA ligase (Takara).  

CLIP-seq was performed at three time points of infection (0, 24, and 72 hpi). Primary HFFs (1 × 108 cells) were 

irradiated for RNA-protein cross-liking with 254 nm UV at 300 mJ/cm2 using a Spectrolinker (Spectroline) for 

Roquin CLIP. The RNAs bound to Roquin were immunoprecipitated with beads conjugated with two different anti-

Roquin antibodies (A300-514a and A300-515a; Bethyl Laboratories). After ligation with the 3′ adaptors described 

for the RNA-seq library, RNAs were labeled with [γ-32P]ATP using the T4 polynucleotide kinase (Takara). The 

RNA–protein complex was separated by SDS-PAGE and transferred to a nitrocellulose membrane (Whatman), after 

which the RNA was extracted with phenol/chloroform (Ambion), followed by ethanol precipitation for RNA 

isolation. The 5′ adaptors described for use in the RNA-seq library were subsequently ligated. 

RNAs harboring the ligated 5′ and 3′ adaptors were reverse transcribed using the RNA RT primer (5′-

GCCTTGGCACCCGAGAATTCCA-3′; Integrated DNA Technologies). PCR was performed to generate libraries 

for high-throughput sequencing with the 5′-end Illumina RNA PCR Primer (RP1) and the 3′-end Illumina RNA 

PCR Primer with index sequences (Indexes 1–9). Sequencing was performed on a HiSeq2500 system (Illumina). 

 



 

 

 

 

RNA-seq analysis 

Analysis of the sequencing data was performed as previously described, with slight modifications (2). For 

preprocessing, we removed the adapter sequences and low-quality ends from RNA-seq and CLIP-seq reads using 

Cutadapt version 1.10 (command-line parameters: -m 17 --match-read-wildcards -O 10 -e 0.1 -q 30,30 -g 

AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGACGATC -a 

TGGAATTCTCGGGTGCCAAGGAACTCCAGTCAC). Artifact reads were eliminated by the 

fastx_artifacts_filter command in the FASTX-Toolkit (v0.0.13.2; http://hannonlab.cshl.edu/fastx_toolkit/). 

Additionally, we discarded reads mapped to human rRNA or tRNA by Bowtie2 version 2.2.7 (command-line 

parameters: -t - k 2–very-sensitive). Tophat version 2.1.1 [command-line parameters: with–no-coverage-search–

b2-very-sensitive (−b2- score-min L, −0.6, −0.9 only for CLIP-seq due to the high error rate)] was used to align 

these preprocessed sequencing reads against the human reference genome (GRCh37.p13) and the HCMV Toledo 

genome (GU937742.2). We applied Fisher’s exact test to detect significant peaks (CLIP-seq enriched regions over 

reference seq), as previously described (1), except that we calculated p-values for every genomic position in the 

whole genome background. The p-values were adjusted using the qvalue package in R (https://www.r-project.org/). 

RSEM (3) version 1.2.30 was used to align sequencing reads against all transcripts of the human reference genome 

(GRCh37.p13) and estimate gene-level transcript abundance. Differentially expressed genes were assessed using 

the limma package in R (4). We first filtered genes with total read counts <12 for each sample. We applied trimmed 

mean of M values (TMM) normalization to read counts for the estimation of scale factors among samples. The 

voom transformation was applied to the filtered and normalized counts, and the usual limma procedure for 

differential-expression analysis was followed. We estimated the fold changes and standard errors by fitting a linear 

model for each gene, and applied empirical Bayes smoothing to the standard errors. Moderated t statistics and 

corresponding p-values were computed, with the Benjamini–Hochberg method used to adjust p-values for multiple 

testing. 

CLIP reads mapped on the genome were visualized using Integrative Genomics Viewer (5). Heatmaps and 

cumulative-distribution plots were created using the ggplot2 R package (6), and p-values for cumulative 

distributions were determined by two-sided Mann–Whitney U test. 

 

GSEA 

Based on the fold changes in expression of target genes between Roquin-knockdown and control cells, we generated 

a ranked list for GSEA (7), which was performed using REACTOME pathways or GO terms. The top 10 significant 

terms were selected and demonstrated with p-value and the number of genes included. 

 

Stem-loop enrichment analysis 

To predict the secondary structure associated with each peak from Roquin CLIP-seq and CLIP-seq analyses from a 

previous study (1), we used RNAfold from the Vienna RNA package (8). According to the predicted folding results, 

the number of each stem-loop-stem motifs were counted for the indicated datasets and compared with the number 

of the same motifs retrieved from 100 dinucleotide shuffles of the peak sequences using Dishuffle (9) in order to 

determine fold enrichment. The nucleotide composition of each stem-loop was determined using WebLogo (10). 

 

Multiplex cytokine assay 

To measure the protein levels of secreted cytokines, HFFs were transfected with siCon or siRoq and infected with 

HCMV at 2 MOI. Cell-culture supernatants harvested at 0, 24, or 72 hpi were centrifuged to remove cell debris and 

analyzed with the Bio-Plex 200 system (Bio-Rad) at the Seoul National University Hospital Biomedical Research 

Institute (Seoul, Korea) using a customized assay panel. 

 

Conditioned media experiment 

HFF cells (donor cells) were treated with siCon or siRoq and infected with HCMV at 2 MOI. Cell culture 

supernatant (conditioned media; CM) was harvested at 72 hpi, centrifuged to remove cell debris, and UV-irradiated 

to inactivate the virus in the media. Naïve HFF cells (recipient cells) were incubated with CM for 12 h, infected 

with HCMV (MOI = 0.5 or 2), and incubated again with CM until harvested at 72 hpi. UL99 mRNA level was 

measured by qRT-PCR and normalized to GAPDH mRNA level. 



 

 

 

 

 

RNA IP 

HFFs were infected with HCMV Toledo at 2 MOI and harvested at 0, 24, and 72 hpi. Cells were added along with 

400 µL of RNA IP lysis buffer [20 mM Tris (pH 7.4), 150 mM NaCl, 1.5 mM MgCl2, and 1 mM DTT supplemented 

with 10 uM Leupeptin, 1 mM PMSF, and RNase inhibitor (Enzynomics)]. Lysate was incubated with Dynabeads 

Protein A (40 µL; Invitrogen) conjugated with IgG control or Roquin antibodies at 4°C. After washing with RNA 

IP lysis buffer, Roquin-bound RNAs were isolated using TRIzol reagent (Invitrogen) and used for qRT-PCR. 

 

ASO transfection 

ASOs complementary to the IRF1 5′ UTR were synthesized with 2′-O-methyl RNA harboring three 

phosphorothioate linkages on the 5′ and 3′ ends (Integrated DNA Technologies). HFF cells were seeded 1 day 

before transfection of ASOs at a final concentration of between ~0.1 µM and 2 μM using Dharmafect-1 reagent 

(Dharmacon). The following sequences were used for each ASO: ASO-5’UTR, 5’-GUUGCCGGGUUCUUAAG-

3’; ASO-Stem-loop, 5’-GGGCUGCAGUGAGGGCG-3’. 

 

Statistical analysis 

All analyses except for RNA-seq data and cumulative-distribution plot were performed using Graphpad Prism v.7. 

An unpaired two-tailed t-test or Analysis of variance (ANOVA) test was used to evaluate differences between two 

groups. 
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Figure S1. HCMV Requires Multiple RNA-binding Proteins for Efficient Lytic Replication



(A) HFF cells were treated with siCon or siIE1, then infected with HCMV Toledo (MOI = 2) and harvested at the indicated 
time points for immunoblot. (B) HFF cells were infectd with HCMV (MOI = 2), administered with 5 µM ganciclovir at 1 
hpi, and incubated until harvested at indicated time points. (C) HFF cells were transfected with poly(dA:dT) or poly(I:C) 
and harvested at 12 or 24 h post-transfection for immunoblot. (D) HFF cells were treated with siCon or siRoq, infected with 
HCMV (MOI = 2), and harvested at the indicated time points. mRNA levels of viral genes UL32, UL75, and UL94 were 
measured by qRT-PCR. mean ± SEM, n = 3; *P < 0.05; **P < 0.01; ***P < 0.001 according to two-tailed Student’s -- test; 
NS, not significant.  (E) HFF cells were treated with siCon, siRoq, or siRegnase-1, infected with HCMV Toledo (MOI = 2), 
and harvested at indicated time points for immunoblot. (F) HFF cells were treated with siCon or siRoq and infected with 
the HCMV AD169 or HCMV Towne strain (MOI = 2). At 72 hpi, viral protein level was measured by immunoblot.
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Figure S2. Roquin expression is increased during viral infection and is required for viral gene expression
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Figure S4. Analysis of Roquin CLIP-seq Data
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Figure S5. Identification of Roquin Target Genes Involved in  HCMV Control



 

 

 

 

Table S1. List of Primer Sequences Used for Quantitative PCR.   

 

 

 Forward Reverse 

IE1 CACGACGTTCCTGCAGACTA TTTTCAGCATGTGCTCCTTG 

IE2 AACCCCGAGAAAGATGTCCT CCGGGGAGAGGAGTGTTAGT 

UL44 CGTGTCGTGCTCCGTAACTA AGCTGGAATTCACGGCCAAT 

UL99 CGGGGGAAACGACAGTAGTA CTGATGGTGGTGACGTTTTG 

UL146 GGCCCGGATGCGATAAAAATG TCGTCTCGGTCCTGGTGATT 

RC3H1 ACACGGGAACTGAGTATGGAAA   GTAAGGTCCTCAGCCGGAAC   

IRF1 TTTGTATCGGCCTGTGTGAATG AAGCATGGCTGGGACATCA 

IL6 CAAATTCGGTACATCCTCGACGGC GGTTCAGGTTGTTTTCTGCCAGTGC 

CSF3 GCTGTGCCACCCCGAGG TGCAGGAGCCCCTGGTAGAGG 

IL1B TGCGAATCTCCGACCACCACTACA TGGAGGTGGAGAGCTTTCAGTTCATAT 

CXCL2 GGGCAGAAAGCTTGTCTCAA GCTTCCTCCTTCCTTCTGGT 

CCL2 AGGTGACTGGGGCATTGAT GCCTCCAGCATGAAAGTCTC 

IFNA1 ACCTGGTTCAACATGGAAATG ACCAAGCTTCTTCACACTGCT 

IFNB AGTAGGCGACACTGTTCGTG GCCTCCCATTCAATTGCCAC 

MXA AGGTCAGTTACCAGGACTAC ATGGCATTCTGGGCTTTATT 

RSAD2 AGGTTCTGCAAAGTAGAGTTGC GATCAGGCTTCCATTGCTC 

DKK1 CTCGGTTCTCAATTCCAACG GCACTCCTCGTCCTCTG 

IRF2BPL CCCCAAAACATTCCGGATTC AAGGGCACTGAACGAAATGC 

MMP2 CTTCCAAGTCTGGAGCGATGT TACCGTCAAAGGGGTATCCAT 

GAPDH ATCATCCCTGCCTCTACTGG GTCAGGTCCACCACTGACAC 

 

  



 

 

 

 

Additional data 

 

Dataset S1. List of Genes in the siRNA Library (Separate file). 

Genes screened for their effect on viral replication are listed. Genes from three categories are shown in separate 

worksheets. 

 

Dataset S2. Differentially Expressed Genes Following Roquin Knockdown According to RNA-seq Data 

(Separate file). 

Genes exhibiting a >2-fold increase or decrease in expression at any time point were defined as differentially 

expressed genes. Fold changes on a logarithmic scale are shown. 

 

Dataset S3. Roquin Target Sites According to CLIP-seq Data (Separate file). 

Roquin-related CLIP peak clusters from each time point are shown in separate worksheets. 
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