1 Supplementary Information

2	A Rubisco-binding protein is required for normal pyrenoid number and starch sheath
3	morphology in <i>Chlamydomonas reinhardtii</i>
4	
5	Alan K. Itakura ^{a,b1} , Kher Xing Chan ^{c,1} , Nicky Atkinson ^d , Leif Pallesen ^a , Gregory Reeves ^a ,
6	Weronika Patena ^{a,f} , Oliver Caspari ^c , Robyn Roth ^f , Ursula Goodenough ^f , Alistair J.
7	McCormick ^d , Howard Griffiths ^{c,2} , Martin C. Jonikas ^{a,2}
8	
9	¹ A.K.I. and K.X.C. contributed equally to this work.
10	
11	² To whom correspondence should be addressed.
12	Martin Jonikas (mjonikas@princeton.edu) or Howard Griffiths (hg230@cam.ac.uk)
13	
14	This PDF file includes:
15	Figs S1 to S13
16	Tables S1 to S6
17	SI Materials and Methods
18	SI References
19	

20 SI Figures

			10		20		30		40		50		60		70	80	
		*		*.		*		*		*		*.		*.		*	
Feature 1							#									#	
query	200	hpsss	taaaaa	aat <mark>DV</mark>	LFLVGS	CPELGE	<mark>W</mark> Dp ₃	gRALK-I	LAAva		-gg <mark>G</mark> W	AAEA	rle	1	eSEVAA	KLLIMrdg	266
1CYG_A	581	SVRFV	VNnatT	NLG <mark>Q</mark> N	IYIVGN	IVYELGN	WDt:	sKAIGpl	MFNqv	v-ysy	PTWYI	DVSV	pe		gKTIEF	<pre>KFIKKdsq</pre>	651
1DTU_A	588	SVRFV	VNnatT	ALG <mark>Q</mark> N	VYLTGS	VSELGN	<mark>W</mark> Dpa	aKAIGpl	MYNqv	v-yqy	PNWYY	DVSV	pa		gKTIEF	KFLKKqgs	658
1ACZ_A	8	AVTFD	LTa-tT	TYGEN	IYLVGS	ISQLGD	WEt:	SDGIA-	LSAdk	ytsso	IPLWYV	TVTL	pa		gESFEY	<pre>KFIRIesd</pre>	77
gi 23127960	1	MYRFQ	ISa-yT	QTGEF	IGLVGS	TPELGL	WEil	kKCIH-	LRTsg	dry	PLWWT	DIEI	qes	gg	qHRVEY	KYIRFdan	71
gi 67926159	1	MYRFQ	IIa-hT	QMGES	IGLVGS	TPELGE	WDv:	sKCLH-	LQTne	dq)	PVWWV	ETDI	dltpf	lnssn	QRIEY	KYVRFysd	76
gi 17227665	541	IVRVQ	LNgvhT	QPGET	IVVVG	CPELGN	WDi:	sKAYP-	LEYin	5	NTWFA	EIPF	des	a	gKLISY	KYAMWreg	609
gi 87123854	513	IVKFQ	INnffT	RPGER	IAVTG	VPELGC	WD1	hKSAA-	LEYin	8	gDTW FN	EIPF	des	v	gQPICF	KFVVLkeg	581
gi 118364918	7	EVKFE	IIc-kT	AFG <mark>EQ</mark>	LIIVGN	ITPQLGN	WNpy	yKGIV-	MKTdd	dny	PNWYT	ENPL	mlq	k	gSKFQF	KFVKLrqg	76
gi 145502819	4	QVLFR	VVc-pT	QLSQT	VIIVGN	INSALGN	WNp.	INGFK-	LSTsp	dty	PVWMN	EDAL	eve	p	nEILEF	<pre>KIVISdgi</pre>	73
			90		100	1	10										
		*		*		*	.ī.	*									
Feature 1			##	#													
query	267	-trmE	WELGp-	N	RVLrga	ltaaaa	apg	tgappp	297								
1CYG A	652	-gnvT	WESGs-	<mark>N</mark>	HVYt-1	PTn	tTG	KIIVDW	678								
1DTU A	659	tvT	WE <mark>GGs-</mark>	<mark>N</mark>	HTFt-A	PSs	gTA ⁻	TINVNW	684								
1ACZ A	78	-dsvE	WESDp-	<mark>N</mark>	REYt-\	/PQacgt	STA	TVTDTW	107								
gi 23127960	72	-gnaR	WENL1d	t <mark>N</mark>	RWI1-1	DSkd-h	sST:	IIVDDG	102								
gi 67926159	77	-ggvE	WETVg-	p <mark>N</mark>	RWLpcF	PDpg	sDTI	LTVDDG	106								
gi 17227665	610	-rspL	RENIÌ-	N	RRW\	/VAke	gTV	KWRDTW	636								
gi 87123854	582	aedpA	WEARye	nvlh <mark>R</mark>	RFLL	PAs	gRVI	KLEFDW	613								
gi 118364918	77	nqE	WEVFpn	n1 <mark>N</mark>	RKYr-1	RYq	-SV	TLKAVW	104								
gi 145502819	74	nfQ	WEIGa-	<mark>N</mark>	RLIq-1	LSq	-KM	VVILTF	98								

21

22 Fig. S1. SAGA1 contains a predicted starch binding domain. SAGA1 (query) was aligned to 23 the conserved starch-binding site 1 of a range of proteins from several species (CDD, NCBI (52, 53); CBM20; E-value = $1.48e^{-08}$). This site is suggested to act as an initial starch 24 recognition site. 1CYG A: Chain A, cyclodextrin glucanotransferase (E.C.2.4.1.19); 25 26 1DTU A: Chain A, Bacillus circulans strain 251 cyclodextrin glycosyltransferase; 1ACZ A: Chain A, glucoamylase; gi 23127960: Lysophospholipase L1 and related esterases [Nostoc 27 28 punctiforme PCC73102]; gi 67926159 Glycoside hydrolase, starch-binding [Crocosphaera 29 watsonii WH 8501]; gi 17227665: cyclomaltodextrin glucanotransferase [Nostoc sp. PCC 30 7120]; gi 87123854: Glycoside hydrolase, starch-binding [Synechococcus sp. RS9917]; gi 118364918 trehalose-6-phosphate synthase, putative [Tetrahymena thermophila SB210]; gi 31 32 145502819: hypothetical protein (macronuclear) [Paramecium tetraurelia strain d4-2]. Hash 33 mark (#) with yellow highlights: amino acids involved in the starch recognition feature (Feature 34 1); Grey lower case: unaligned residues; Upper case: aligned residues used to generate PSSM 35 (position-specific scoring matrix); Red to blue color scale: degree of conservation, with red 36 designating highly conserved.

В

С								
U	Panel	PDB Template	PDB Header	PDB Molecule	PDB Title	Confidence (%)	ldentity (%)	Query range(aa)
	1	c1jchC_	ribosome inhibitor, hydrolase	colicin e3	crystal structure of colicin e3 in complex with its immunity protein	98.6	18	36-450
	2	c2oevA_	protein transport	programmed cell death 6-interacting protein	crystal structure of alix/aip1	98.4	10	893-1228
	3	c4cgkA_	cell cycle	secreted 45 kda protein	crystal structure of the essential protein pcsb from streptococcus2 pneumoniae	98.3	11	950-1157
	4	c3ojaB_	protein binding	anopheles plasmodium- responsive leucine- rich repeat protein	crystal structure of lrim1/apl1c complex	98.3	10	1024- 1167
	5	c1c1gA_	contractile protein	tropomyosin	crystal structure of tropomyosin at 7 angstroms resolution2 in the spermine- induced crystal form	98.2	16	920-1198
	6	c1yvIB_	signalling protein	signal transducer and activator of transcription	structure of unphosphorylated stat1	98	9	875-1170

37

Fig. S2. SAGA1 is predicted to have structural homology to proteins with long alpha helical regions. (*A*) Using Phyre2, the last 1500 amino acids of SAGA1 (due to sequence length

- submission limitation) were run in intensive mode. Shown is a schema of the top 6 structural homology results. In blue are the regions of SAGA1 that showed homology to PDB (Protein DataBase) templates. (*B*) The tertiary structure of the top 6 structural homology results are displayed. (*C*) Details of the top 6 structural homology results. PDB template refers to the template that SAGA1 was found to have structural homology with. Provided for each result is the PDB header, the PDB molecule, PDB title, the confidence (the probability that the match between SAGA1 and the PDB template is a true homology) and identity (coverage)
- 47 of the query sequence that has this particular homology.

49 Fig. S3. SAGA1 has an unusual amino acid composition. The relative abundances of each

51 total number residues in each. Amino acids are ordered from highest to lowest abundance in

amino acid of SAGA1 and the Chlamydomonas proteome were calculated as a fraction of the

52 the *Chlamydomonas* proteome.

54 Fig. S4. Other mutant alleles of *saga1* also exhibit a growth defect in low CO₂. Serial 1:10

- dilutions of wild type and 3 independent mutant alleles of *saga1* were spotted on TP minimal
- 56 medium and grown at high and low CO₂ under 500 μ mol photos m⁻²s⁻¹ illumination.

58 Fig. S5. The complemented saga1 mutant contains both the insertion cassette and the SAGA1-59 Venus construct. (A) Schema depicting the PCR confirmation strategy of the saga1 mutant and 60 saga1; SAGA1-Venus complement. (B) The Fprimer and Rprimer_{exon} yielded a 900 bp product in the wild type but did not produce a product in the sagal mutant due to the presence of the 61 62 insertion cassette. Fprimer and Rprimer_{cassette} yielded a 500 bp product in the saga1 mutant and 63 the sagal; SAGA1-Venus strain due to the presence of the insertion cassette. In the 64 saga1;SAGA1-Venus strain, Fprimer and Rprimerexon yielded a 250 bp product, smaller than in 65 the wild type because the complementation cassette lacks intron 28 (Fig. S13). (C) PCR 66 confirming the presence and location of the insertion cassette in the saga1-2 mutant. Fprimer_{saga1-2} is upstream of the insertion cassette. The double bands indicate the presence of 67 68 tandem cassette. The saga1-2 insertion was mapped to intron 28. (D) PCR confirming the presence and location of the insertion cassette in the saga1-3 mutant. Rprimer_{saga1-3} is 69 downstream of the insertion cassette. Fprimercassette lies at the 3' end of the cassette. The 70 71 insertion was mapped to intron 25. Primer sequences can be found in Table S6.

Fig. S6. The pRAM118-SAGA1 construct. The *SAGA1* gene includes the first 20 introns; the remaining introns were omitted during gene synthesis. *SAGA1* is driven by a *PSAD* promoter and is followed by a *CrVenus* tag and a *3xFLAG* tag. The construct contains *AmpR* cassette for ampicillin resistance in *E. coli* and an *AphVII* cassette for hygromycin selection in *C. reinhardtii*. The construct is derived from pLM005, but with an *AphVII* for hygromycin resistance instead of *AphIII* for paromomycin resistance. The construct and sequence can be found at the Chlamydomonas Resource Center as pRAM118 SAGA1 Venus 3xFLAG.

81 Fig. S7. Full membranes from Fig. 1D. SAGA1 protein levels in wild-type, saga1, and

82 saga1;SAGA1-Venus cells grown at low and high CO₂ were probed with an anti-SAGA1

83 polyclonal antibody and with an anti-FLAG antibody. Arrow indicates the SAGA1 protein

84 product. The asterisks indicate non-specific bands. Anti-tubulin is shown as a loading control.

85

Fig. S8. Quick-freeze deep-etch cryo-electron microscopy reveals abnormal pyrenoid structure in the *saga1* mutant. Representative quick-freeze deep-etch cryo-electron microscopy images of cells grown in high and low CO₂ highlighting multiple pyrenoids, abnormal starch sheaths, and a decreased number of thylakoid tubules in the *saga1* mutant. Samples were fixed with glutaraldehyde prior to electron microscopy. Scale bar = 500nm.

92 **Fig. S9.** Rubisco is localized to the pyrenoids of wild-type and *saga1* mutant *Chlamydomonas*

93 reinhardtii cells grown in low CO₂. Subcellular localization of Rubisco in wild-type and saga1

94 mutant cells shown by indirect immunofluorescence assay using an anti-Rubisco antibody.

95 Multiple Rubisco localization sites could be observed in each *saga1* mutant cell, in contrast to

96 a single site in each wild-type cell. Scale bar = 5 μ m.

98 Fig. S10. saga1 mutant cells are of similar size to wild-type cells. The areas of wild-type,

- 99 saga1, and saga1;SAGA1-Venus cells imaged using TEM were quantified (N=10 cells; Mann
- 100 Whitney *U* test; n.s., not significant). Error bars: SEM.

Fig. S11. The *saga1* mutant has multiple stable pyrenoids. (*A*) Representative summed z-stacks of a field of *saga1* and wild-type cells constitutively expressing RBCS1-mCherry grown in low CO₂. One cell from each field view is also shown in Fig. 3. (*B*) A 1-hour time course of *saga1* and wild-type cells expressing RBCS1-mCherry. Green is RBCS1-mCherry fluorescence and magenta is chlorophyll autofluorescence. Scale bar = 1 μ m.

107

Fig. S12. Pyrenoids in the *saga1* mutant occasionally contain thylakoid tubules. (A) TEM
images of wild-type pyrenoids. (B) TEM images of *saga1* mutant pyrenoids with thylakoid

inages of this type pyrenolas. (b) 12111 inages of sugar induate pyrenolas that diffusion

110 tubules. (C) TEM images of saga1 mutant pyrenoids without visible thylakoid tubules. Scale

111 bar = 500nm.

Fig. S13. SAGA1 partially colocalizes with chlorophyll autofluorescence in the pyrenoid. Representative confocal fluorescent microscopy images of SAGA1-Venus (green) constitutively expressed in *saga1* mutant cells grown in low CO₂. Magenta is chlorophyll autofluorescence. White arrows indicate white coloration arising from overlap of SAGA1-Venus and chlorophyll autofluorescence. Spearman rank rho values calculated from pixel intensities of the SAGA1-Venus fluorescence and the chlorophyll autofluorescence are listed in Table S5. Left: scale bar = 1 μ m. Right: scale bar = 500nm.

Fig. S14. *Chlamydomonas reinhardtii* proteins with putative starch binding domains. A cartoon depiction of the 18 *C. reinhardtii* proteins that have the CBM_20 motif (PFAM00686; Phytozome). Length of the protein is relative to Cre09.g394621. Included is the gene name and the description of the gene. The asterisks indicate proteins that interacted with components of the pyrenoid matrix by immunoprecipitation-mass spectrometry (26)

126 SI Tables

127 **Table S1.** Protein BLAST results using the SAGA1 starch binding domain (residues 212-280) as a query sequence.

Species	Description	Uniprot ID	Gene ID	Starch binding domain	Coiled-coil	Length	Query sequence	Identity	E-value	Score
Chlamydomonas reinhardtii	Uncharacterized protein	A0A2K3D7T6	CHLRE_11g467712v5	178-308	678	1626	SAGA1 SBD	100.00%	9.60E-47	389
Tetrabaena socialis	Uncharacterized protein	A0A2J7ZZR0	TSOC_007957	65-171	562	1462	SAGA1 SBD	59.40%	1.40E-19	207
Volvox carteri f. nagariensis	Uncharacterized protein	D8TYS9	VOLCADRAFT_105158	98-206, 232-354	403	1552	SAGA1 SBD	41.30%	2.90E-09	138
Gonium pectorale	Uncharacterized protein	A0A150GJ96	GPECTOR_19g330	78-203, 226-334	974	3,273	SAGA1 SBD	45.50%	6.40E-08	129
Gonium pectorale	Uncharacterized protein	A0A150G832	GPECTOR_49g527	14-117	167	672	SAGA1 SBD	39.10%	1.20E-07	127
Volvox carteri f. nagariensis	Uncharacterized protein	D8TPI1	VOLCADRAFT_88626	186-296, 325-432, 509-617	694	2801	SAGA1 SBD	41.50%	5.00E-07	123
Raphidocelis subcapitata	Uncharacterized protein	A0A2V0PDF5	Rsub_08056	42-143	449	1201	SAGA1 SBD	46.20%	7.00E-07	122
Chlamydomonas reinhardtii	alpha amylase?	A0A2K3D1W5	CHLRE_12g492750v5	210-323, 344-468, 491-599	1306	3466	SAGA1 SBD	42.20%	7.10E-07	122
Chlamydomonas reinhardtii	Uncharacterized protein	A0A2K3DEF8	CHLRE_09g394621v5	96-206, 221-343	410	1748	SAGA1 SBD	43.10%	9.9E-7	121
Gracilariopsis chorda	Kinesin-like protein KIN-14R	A0A2V3IYN9	BWQ96_03906	204-325, 669-996	99	1357	SAGA1 SBD	56.40%	2.8E-6	118
Chlorella variabilis	Uncharacterized protein	E1ZG60	CHLNCDRAFT_52636	119-233	49	541	SAGA1 SBD	45.30%	3.70E-06	117

Top 10 results from a Protein BLAST using the Uniprot BLAST portal (unitprot.org). Target database was Eukaryota. Predicted starch binding domains (CBM20) were identified using Interpro; listed are the corresponding a.a. residues. The total length of coiled-coil secondary structures was determined using UniProt's Automatic Annotation pipeline. Identity is a measurement of how similar the query sequence is to the target sequence. E-value is a statistical measure to estimate the number of expected matches in a random database. Score is a normalized metric for how similar the sequences are, independent of sequence length and database size. E-Threshold was set at 10. BLOSUM62 matrix was used for
alignment. No filtering was used. Gaps were permitted.

Species	Description	Uniprot ID	Gene ID	Starch binding domain	Coiled-coil (total a.a.)	Length (a.a.)	Query sequence	Identity	E-value	Score
Chlamydomonas reinhardtii	Uncharacterized protein	A0A2K3D7T6	CHLRE_11g467712v5	178-308	678	1,626	SAGA1	100.00%	0	7,807
Tetrabaena socialis	Uncharacterized protein	A0A2J7ZZR0	TSOC_007957	65-171	562	1,462	SAGA1	54.50%	0	3,603
Chlamydomonas reinhardtii	Uncharacterized protein	A8J9W7	CHLREDRAFT_151809	N/A	373	577	SAGA1	78.60%	0	1,992
Gonium pectorale	Uncharacterized protein	A0A150FZL5	GPECTOR_106g128	N/A	507	1,080	SAGA1	46.10%	0	1,746
Volvox carteri*	Mitotic checkpoint protein MAD1	N/A	Vocar.0009s0363	192-305	~1000	1,639	SAGA1	37.60%	1.50E-97	1414
Chlorella sorokiniana	TPR repeat- containing protein	A0A2P6TEU7	C2E21_8179	N/A	343	4,188	SAGA1	27.10%	2.80E-82	801
Porphyra umbilicalis	Uncharacterized protein	A0A1X6PGC9	BU14_0071s0060	N/A	154	2,312	SAGA1	27.60%	7.10E-82	796
Chlorella sorokiniana	Kinesin K39 isoform A	A0A2P6TPQ7	C2E21_5045	N/A	956	2,826	SAGA1	27.70%	8.80E-82	796
Chlamydomonas reinhardtii	Uncharacterized protein	A0A2K3DKA0	CHLRE_07g336750v5	N/A	2450	3,869	SAGA1	28.50%	2.30E-80	785
Emiliania huxleyi	Uncharacterized protein	R1EUH6	EMIHUDRAFT_113389	N/A	1856	4,388	SAGA1	27.80%	3.20E-80	784
Gonium pectorale	Uncharacterized protein	A0A150G2C5	GPECTOR_75g720	N/A	1374	1,898	SAGA1	26.30%	1.30E-79	776

134 **Table S2.** Protein BLAST results using SAGA1 as a query sequence.

135 Top 10 results from a Protein BLAST using the Uniprot BLAST portal (unitprot.org). Target database was Eukaryota. Column titles are as in

136 Table S1. * indicates that this result was identified using Phytozome (phytozome.jgi.doe.gov) Protein BLAST.

137 **Table S3.** Photosynthetic $K_{0.5}$ (Ci) of wild-type, *saga1* and *saga1;SAGA1-Venus-3xFLAG*

138 cultures.

Sample	Conditions	$K_{0.5}(C_i)(\mu M)$	p-value
Wild type	HC	115.8 ± 24.2	-
wha type	LC	38.7 ± 11.8	-
sagal	HC	775.5 ± 88.7	1.0 x 10 ⁻⁵
sugui	LC	160.0 ± 19.1	0.00015
aggal:SACAL Vanue 2xELAC	HC	267.4 ± 84.3	0.20929
sugu1, SAGA1-V enus-3XF LAG	LC	41.9 ± 26.3	0.91083

139 Data are shown as average \pm standard error, which were obtained from at least three

140 independent experiments. The paired t-test was used to determine the significance compared

141 to wild type. C_i, inorganic carbon; HC, high CO₂; LC, low CO₂.

Sample	Average area of	Average area of	Normalized i particle count (p	immunogold articles nm ⁻²), N	Rubisco in	Comparison to wild type	
Sample	section (nm ²)	section (nm ²)	Pyrenoid, N _i	Stroma, N _j	pyrenoid (%)	(adjusted p-value)	
Wild type	9.25 x 10 ⁶	120.11×10^{6}	140 ± 17.0	6 ± 1.3	93.8	-	
sagal	7.91 x 10 ⁶	113.21 x 10 ⁶	50 ± 8.6	4 ± 0.8	90.3	n.s.	

142 **Table S4.** Rubisco fraction in the pyrenoid or stroma of wild-type cells and the *saga1* mutant.

143 The percentage of Rubisco in the pyrenoid was calculated as described in the Supplementary

144 Methods. The data shown are the means \pm SEM.

145 Table S5. Spearman rank rho values calculated from pixel intensities of the SAGA1-Venus
146 fluorescence and chlorophyll autofluorescence.

	Spearman rank rho	<i>p</i> -value	Expected mean \pm SD
Image 1	0.0336	< 0.0001	0.0028±0.0042
Image 2	0.038	< 0.0001	0.0027±0.0034
Image 3	0.1128	< 0.0001	$6.6577e^{-04} \pm 9.2904e^{-04}$
Image 4	0.0699	< 0.0001	0.0015±0.0022 148
Control	0.0023	ns	0.0016±0.0024
	l		149

Expected Spearman-rank rho distributions (a nonparametric measure of the statistical dependence between the two rankings of two variables, ranging from 0 (no dependence) to 1 (complete dependence)) were created for each image using 100 independently scrambled pixel intensity values of the chlorophyll and Venus channels. The expected means and standard deviations were calculated from these simulated rho distributions. *p*-values were calculated by comparing the observed Spearman rank rho to the distribution of simulated Spearman-Rank rho values (Z-score test). **Table S6.** Primers used to confirm the location of the *saga1* mutants.

158	Primer Name	Sequence		
	Fprimer (saga1)	GCATTGAGATCCGAGATGGT		
	Rprimer cassette	GCACCAATCATGTCAAGCCT		
	Rprimer exon (saga1)	AGTCCAGGCCGACTACTCC		
	Rprimer exon (saga1-3)	GTGTGAGTGGGATCGCATTCAT		
	Fprimer cassette (saga1-3)	GACGTTACAGCACACCCTTG		
	Fprimer (saga1-2)	CCCACCCCTCACATAAACAC		
	Rprimer cassette (saga1-2)	GCACCAATCATGTCAAGCCT		

160 SI Materials and Methods

161 Screening for the *saga1* mutant

- 162 ~7,500 mutants on 79 plates, each with 96 colonies were grown on solid TP media in high and
- 163 low CO₂ in 100 μ mol photons m⁻² s⁻¹ light. Mutants that required high CO₂ were sequenced as
- 164 described in (54). Three mutant alleles mapped to the SAGA1 locus. *saga1*: ~12,590 nt (Intron
- 165 26); saga1-2: ~13,370 nt (Intron 28); saga1-3: ~12,070 nt (Intron 25). The mutants were
- 166 confirmed by PCR using a primer that originated from the mutagenesis cassette and a primer
- 167 in the SAGA1 gene flanking the insertion site. All primers used are in SI Appendix (Table S6).

168 SAGA1 Sequence Analysis

- 169 The full length amino acid sequence of SAGA1 was subjected to PSIPRED (55), NCBI CDD
- 170 (52) and Phyre2 (56) analyses to identify predicted secondary structures, regions of disordered
- 171 protein and putative domains.

172 Generation of the *saga1;SAGA1-Venus* line

Because of the challenge of amplifying across the entire gene, 3 fragments with ~40 nt overlap for Gibson assembly were synthesized (NeoScientific and GeneWiz). These 3 fragments and the resulting construct contained all the exons but only the first 20 introns of SAGA1. Introns 21-34 were removed due to highly repetitive sequences that made them difficult to synthesize and amplify. The 3 fragments were Gibson-assembled into an expression vector that includes a C-terminus Venus and FLAG tag, along with *AphVII* gene for hygromycin resistance under a beta2-tubulin promoter.

180 Using this construct, we transformed the saga1 mutant by electroporation as in (45). For each transformation, 14.5 ng kb⁻¹ of EcoRV-digested construct was mixed with 250 µL of 181 2 x 10⁸ cells mL⁻¹ and transformed immediately into *saga1* strains. Cells were selected for 182 hygromycin resistant colonies on hygromycin TAP plates (25 µg mL⁻¹). These colonies were 183 184 picked into 180 µl of TAP with hygromycin (25 µg mL⁻¹) in a 96-well plate and screened for 185 fluorescence using a Tecan Infinite M1000 PRO plate reader. Excitation and emission settings 186 were: Venus, 532 excitation with 555/20 emission; chlorophyll autofluorescence, 633 187 excitation with 670/30 emission.

188 Of the 9 colonies that exhibited a high Venus/chlorophyll fluorescence ratio, 2 showed 189 pyrenoid localization. These 2 complements with pyrenoid Venus fluorescence were the only 190 that rescued the CCM phenotype.

191 Western Blotting

192 *Chlamydomonas* cells were grown to mid-log phase (1 x 10⁶ cells mL⁻¹) and then harvested by 193 centrifugation at 5,000 x g. Total protein extraction, detection and quantification of SAGA1 in 194 wild type and *saga1* mutant were performed using method described in (51). Protein was 195 extracted from flash-frozen cells, normalized to chlorophyll absorbance, separated by SDS-196 PAGE, and western blots were performed with different antibodies.

197 The primary anti-SAGA1 antibody was used at a 1:10,000 dilution and the secondary 198 horseradish-peroxidase (HRP) conjugated goat anti-rabbit (Life Technologies) at a 1:10,000 199 dilution. The primary anti-Rubisco antibody was used at a 1:50,000 dilution and the secondary 200 horseradish-peroxidase (HRP) conjugated goat anti-rabbit (Life Technologies) or a goat anti-201 Rabbit IgG (1:10,000 dilution). To ensure even loading, membranes were stripped (Restore 202 PLUS western blot stripping buffer, Thermo Scientific) and re-probed with anti-tubulin 203 (1:25,000; Sigma) or anti-Histone H3 (1:10,000; abcam) followed by HRP conjugated goat anti-mouse (1:10,000; Life Technologies) or goat anti-Rabbit IgG (H+L) 800 CW (1:5,000; 204 205 LiCOR).

The anti-SAGA1 antibody was raised in rabbit to the last 19 amino acids of C-terminal tail of SAGA1 (RGTGDSPTRRAFGDWRKNL-cooh) by Yenzym Antibodies (South San Francisco, California, USA). The anti-Rubisco polyclonal antibody was a gift from Prof. John Gray, University of Cambridge.

210 **Oxygen Evolution**

211 Chlamydomonas cells grown in Tris-phosphate medium were harvested by centrifugation at 212 3,000 x g for 3 min at 20°C and resuspended in 25 mM HEPES-KOH (pH 7.3) to the 213 concentration of about 200 µg chlorophyll ml⁻¹ using the equations from (57). Aliquots of cells 214 (1 mL) were added to an OXYV1 Hansatech Oxyview System (Hansatech Instruments, King's 215 Lynn, UK) maintained at 23°C using a circulating water bath. The chamber was sealed and illuminated with 200-300 µmol photons m⁻² s⁻¹ until the cells had depleted the internal 216 inorganic carbon storage. When net oxygen evolution ceased, 10-µl aliquots of sodium 217 218 bicarbonate were added to the cells at 30-s intervals. The cumulative concentrations of HCO₃⁻ 219 after each addition were as follows: 2.5, 5, 10, 25, 50, 100, 250, 500, 1000 and 2000 µM. The 220 rate of oxygen evolution was recorded per second using the PicoLog 1216 Data Logger (Pico 221 Technologies, St. Neots, UK). K_{0.5} values were calculated using the Michaelis-Menten 222 equation.

223 Fixing and Embedding for TEM

224 *Chlamydomonas* cells were harvested by centrifugation at 5,000 x g and fixed for 1 h at room 225 temperature with fixation buffer (2% (v/v) glutaraldehyde, 0.01% (v/v) hydrogen peroxide in 226 TP medium)). Samples were then fixed and osmicated for 1 h at room temperature in an 227 osmium mix (1% (v/v) OsO₄, 1.5% (w/v) K₃[Fe(CN)₆], 2 mM CaCl₂). Bulk staining was 228 performed with 2% (w/v) uranyl acetate for 1 h at room temperature. At the interval of each of 229 the subsequent step, three 5 min washes with distilled water were performed. Samples were 230 dehydrated progressively in 70% (v/v) and 95% (v/v) ethanol, followed by two washes in 100% 231 ethanol and 100% acetonitrile.

The samples were then embedded in epoxy resin (34% (w/v) Quetol 651, 44% (w/v) nonenyl succinic anhydride, 20% (w/v) methyl-5-norbonene-2,3-dicarboxylic anhydride, and 2% (w/v) catalyst dimethylbenzylamine (Agar Scientific, Essex, UK)). The fixed cells were first mixed with a mixture of acetonitrile and epoxy resin at a ratio of 1:1 and left to settle overnight. Over the next two days, the cells were refreshed with 100% epoxy resin. Lastly, the samples were cured at 60°C for at least 24 h.

238 Sections of 50 nm thickness were prepared with a Leica Ultracut UCT (Leica 239 Microsystems, Milton Keynes, UK), mounted on 300 mesh copper grids and counterstained 240 with uranyl acetate followed by lead citrate (Ms. Lyn Carter, Cambridge Advanced Imaging 241 Centre, UK).

242 Immunogold labeling

243 Samples mounted on 300 mesh nickel grids were treated with 4% (w/v) Na-meta-periodate for 244 15 min and 1% (w/v) periodic acid for 5 min to remove superficial osmium and unmask the 245 epitopes. Then, the samples were blocked for 5 min in blocking buffer of 1% BSA (w/v) in 246 high-salt Tris-buffered saline (HSTBSTT) (0.05% (v/v) Tween 20, 0.05% (v/v) Triton X-100 247 and 500 mM NaCl). The sections were then incubated overnight at room temperature with 248 diluted antibody (1:1000 dilutions of rabbit anti-Rubisco antibody in blocking buffer) followed 249 by two 5-min washes in HSTBSTT and two 5-min washes in dH₂O. To detect bound antibody, 250 the sections were incubated with a secondary antibody (1:200 dilutions of goat anti-rabbit 15-251 nm gold conjugates (BBI Solutions, Cardiff, UK) in blocking buffer) for 1 h at room 252 temperature followed by two 5-min washes in HSTBSTT and two 5-min washes in dH₂O. The 253 sections were dried and kept for further observation. 254 Sections were examined using TEM and evaluation of immunogold labeling was made

254 Sections were examined using TEM and evaluation of immunogoid labeling was made 255 by using the cell counter and measurement functions of ImageJ2 (Fiji). The percentage of

256	aggregation of gold particles in pyrenoid and chloroplast stromal area was calculated using						
257	these equations:						
258 259	Particle density in the pyren <i>d</i>	oid, $l = \frac{n_i}{A_i}$	(1)				
260 261 262	Normalized number of parti	cles in the pyrenoid,					
263 264	Λ	$J_i = (d_i - d_k) \times n_i$	(2)				
265 266	Calculated percentage of Ru %	bisco aggregation in the pyrenoi $N_i = \frac{N_i}{N_i + N_j} \times 100$	d, (3)				
267 268 269	Where $d =$ density, $n =$ num measured area, $i =$ pyrenoid	where of particles counted, $N = not$, $j = chloroplast stroma, k = back$	rmalized number of particles, $A =$ ground.				
270							
271	Calculation of particle densi	ity of the background of every in	nage:				
272	Non-pyrenoid/chloroplast an	rea,					
273	A	$A_k = A_{all} - (A_i + A_j)$	(4)				
274	Particle density of the backg	ground of every image,					
275	d	$L_k = \frac{n_{other}}{A_k}$	(5)				
276	Where n_{other} is the num	ber of particles counted in the no	on-pyrenoid/chloroplast area.				
277							
278	Normalized number of parti	cles in the chloroplast stroma, <i>j</i> ,	was derived from equation (2):				
279		$N_j = (d_j - d_k) \times n_j$					
280	Indirect Immunofluoresce	nce					
281	10 ⁶ cells were concentrated	to a volume of 500 μ l and fixed	on the poly-L-lysine-coated slides				
282	for 10 min and the excess m	nedia was removed from the slide	es. The slides were placed in cold				
283	methanol and incubated at	-20°C for about 10 min. After	then, the dehydrated cells were				
284	rehydrated by incubating the	e slides in 1X PBS for 5 min. Th	nis step was repeated twice. After				
285	that, Permeating Solution (2% (v/v) of Triton X-100 in 1X PBS) was added to the jar and						
286	incubated for 10 min at room	n temperature followed by two w	vashes in PBS-Mg solution (5 mM				
287	MgCl ₂ in 1X PBS) for 10 mi	in each then air-dried. About 80 µ	ul of Blocking Solution (1% BSA,				
288	1% cold water fish gelatin, (0.05% Triton X-100 and 0.05% T	Sween20 in 1X PBS) was pipetted				
289	onto each cover slip and th	ne slides were inverted onto the	cover slips followed by 30 min				
290	incubation at room tempera	ature in the humid chambers. A	fter that, about 80 μ l of primary				

antibody was added to the cells as described previously. The slides were then placed in the
humid chambers and incubated overnight at 4°C.

The next day, the slides were washed thrice with 1X PBS for 5 min at room temperature. Secondary antibody was added to the slides as described previously and incubated at room temperature for 1 h. After the three washes with 1X PBS for 5 min each, the slides were then air-dried and mounted. First, about 25 μ l of ProLong® Gold Antifade Reagent (Life Technologies) was added onto the slide and a cover slip was then inverted over the droplet. The mounted slides were left to dry overnight in the dark at 4°C.

Primary antibodies used for indirect immunofluorescence were anti-Rubisco (1:2,000)
and anti-SAGA antibodies (1:2,000 dilution) while the secondary antibody used was the Alexa
Fluor 488 Goat anti-Rabbit IgG (H+L) antibody (Invitrogen; 1:1,000).

302 Pyrenoid quantification using Rbcs1-mCherry fluorescence

303 15 Z-sections were taken per cell at 100x magnification. Cell boundaries were defined using
 304 chlorophyll autofluorescence. 3D pyrenoid reconstructions were generated from Z-stacks
 305 sections using Imaris software (Bitplane). Pyrenoids were defined as 'vesicle like objects'
 306 using mCherry fluorescence, and then quantified.

307 Quick-freeze deep-etch EM (QFDEEM)

308 150 mL of each of air-bubbled cultures and 75 mL of high CO₂- bubbled cultures were pelleted at 1,000 g for 10 min at RT to produce pellets of \sim 200 µL. The pellets were resuspended in 6 309 310 mL of ice-cold 10 mM HEPES buffer (pH 7) and transferred to a cold 25 mL glass flask. A 311 freshly prepared solution of 4% glutaraldehyde (Sigma-Aldrich G7651) in 10 mM HEPES (pH 7) was added 100 μ L at a time, swirling between drops, until 1.5 mL in total had been added. 312 313 The mixture was then left on ice for 1 hour, with agitation every 10 min. The mixture was pelleted (1000 g, 5 min, 4° C), washed in cold HEPES buffer, pelleted again, and finally 314 315 resuspended in 6 mL fresh HEPES. Samples were shipped overnight to St. Louis in 15 mL 316 conical screw cap tubes maintained at 0-4° C. 317 Microscopy QFDEEM was performed as previously described in (14, 58).

319 SI References

320 14. Mackinder LCM, et al. (2016) A repeat protein links Rubisco to form the eukaryotic 321 carbon-concentrating organelle. Proc Natl Acad Sci 113(21):5958-5963. 322 45. Zhang R, et al. (2014) High-Throughput Genotyping of Green Algal Mutants Reveals 323 Random Distribution of Mutagenic Insertion Sites and Endonucleolytic Cleavage of 324 Transforming DNA. Plant Cell 26:1398–1409. 325 48. Schindelin J, et al. (2012) Fiji: An open-source platform for biological-image analysis. 326 Nat Methods 9(7):676-682. 327 49. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of 328 image analysis. Nat Methods 9(7):671-675. 329 50. Rueden CT, et al. (2017) ImageJ2: ImageJ for the next generation of scientific image 330 data. BMC Bioinformatics 18(529):1-26. 331 51. Heinnickel ML, et al. (2013) Novel Thylakoid Membrane GreenCut Protein CPLD38 332 Impacts Accumulation of the Cytochrome b6f Complex and Associated Regulatory 333 Processes. J Biol Chem 288(10):7024-7036. 334 Marchler-Bauer A, et al. (2017) CDD/SPARCLE: Functional classification of proteins 52. 335 via subfamily domain architectures. Nucleic Acids Res 45(D1):D200--D203. 336 53. Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP (1997) 337 Solution structure of the granular starch binding domain of Aspergillus niger 338 glucoamylase bound to β -cyclodextrin. Structure 5(5):647–661. 339 54. Li X, et al. (2016) An Indexed, Mapped Mutant Library Enables Reverse Genetics 340 Studies of Biological Processes in Chlamydomonas reinhardtii. Plant Cell 28(2):367-341 387. 55. Jones DT (1999) Protein secondary structure prediction based on position-specific 342 343 scoring matrices. J Mol Biol 292:195-202. 344 56. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web 345 portal for protein modelling, prediction, and analysis. Nat Protoc 10(6):845-858. 346 57. Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction 347 coefficients and simulteneous equations for assaying chlorophylls a and b extracted 348 with four different solvents: verification of the concentration of chlorophyll standards 349 by atomic absorption spectroscopy. Biochim Biophys Acta 975:384-394. 350 Heuser JE (2011) The origins and evolution of freeze-etch electron microscopy. J58. 351 *Electron Microsc (Tokyo)* 60(Supplement 1):3–29.