Structure, Volume 27

Supplemental Information

Computational Redesign of PD-1 Interface

for PD-L1 Ligand Selectivity

Rojan Shrestha, Sarah C. Garrett, Steven C. Almo, and Andras Fiser

Supplementary Table 1. (Related to Fig. 3) The first three columns list hPD-L1, hPD-1 residues in the interface and the corresponding rs-pharmacophore preferences for PD-L1. The last three columns show, in a similar fashion, the rs-pharmacophores for mPD-L2, and the structurally corresponding interface residues of mPD-1 and mPD-L2. The central column lists single residue mutants of hPD1 that were selected to induce PD-L1 specificity. Amino acids in red color represent matched rs-pharmacophores with wild type residues, whereas blue colored amino acids in rs-pharmacophore refer to previously studied mutants, not explored experimentally in the current study. In column with star (*), positions are shown for mouse PD1, while in the brackets numbers refer to the equivalent position in human PD1 (4ZQK.B). # indicates structurally aligned positions between mouse and human PD-L2 when these are different residues.

human PD-L1/PD1 (4ZQK)			designs	mouse PD-L2/PD1 (3BP5)		
Interface of hPD-L1 (4ZQK.A)	Interface of hPD1 (4ZQK.B)	rs-pharmacophore		rs-pharmacophore	Interface of mPD1 (3BP5.A) *	Interface of mPD-L2 (3BP5.B)
F19	K78	HKNQRTW	K78R	H <mark>K</mark> NQW	K45(78)	F21
D26	Q75, S73	HKNQRWY	Q75N, S73RK	HKNQRWY	Q42(75), S40(73)	E28
Y56	A132, I134	HIKLMNPQRVWY	I134QEDTNF	HNPQRSTWY	A99(132), I101(134)	Q60
Q66	A132, K131	H K NPQRTWY	K131H	KNQRTWY	K100(131)	S67
R113	E136	DEPQSY	E136QN			
Mar	1126,		1126V,	DFHIKLMNPQRSTV	I93(126), A92(125), N33(66), K45(78), G91 (124),	W/440
G120	E128		E128VIVIV	VVY	10131(64)#	WITO
A121	N66, K78	KNQRSTWY	N66QE			
D122	K78, Y68	HKNQRTWY	Y68KRNQ	HKNQRSWY	K45(78)	D111
Y123	E136, G124, I126, I134, T76, Y68	D <mark>E</mark> FHIKLMNPQR TVW Y	1126V, T76DQENSY, G124VMY	D <mark>E</mark> FHLMNPQRSTV WY	E103(136), I101(134), T43(76), N35 (68)#	Y112
K124	D77, T76	DENPQSTY	D77E	DENQST	T43(76)	K113
R125	Q75	HNPQSTW		HIKLMNPQRSTVW Y	N41(74), Q42(75), E103(136), T43(76)	Y114

Supplementary Table 2. (Related to Fig 3) List of tested mutations of PD-1 (first column), five technical replicates of cell-assay-based experiments. The second and third column show average binding, normalized to wild type to PD-L1 and PD-L2. The fourth and fifth columns are the corresponding standard deviations. The sixth and seventh columns are the t-statistics and corresponding two-tailed p-values for differences in PD-1 binding affinity to PD-L1 and PD-L2.

Mutation	AVE-hPD-L1	AVE-hPD-L2	STD-hPD-L1	STD-hPD-L2	t - statistics	Two-tailed p-value
N66Q	3.62E-01	1.05E-02	1.14E-01	4.80E-03	6.91E+00	2.27E-03
N66E	6.10E-03	4.38E-03	4.03E-03	3.19E-03	7.49E-01	4.76E-01
Y68N	1.06E+00	1.08E-01	9.96E-02	9.14E-02	1.58E+01	2.84E-07
Y68K	7.75E-01	2.23E-02	8.98E-03	1.88E-02	8.07E+01	5.54E-10
Y68R	8.76E-01	3.34E-02	8.44E-03	1.03E-02	1.42E+02	1.89E-14
Y68Q	9.47E-01	2.02E-01	2.52E-02	8.28E-02	1.92E+01	1.12E-05
S73R	9.71E-01	1.11E+00	4.50E-02	8.98E-02	-3.17E+00	1.98E-02
S73K	9.68E-01	1.00E+00	2.71E-02	1.26E-01	-6.38E-01	5.55E-01
Q75N	9.70E-01	1.13E+00	2.23E-02	5.07E-02	-6.44E+00	9.38E-04
T76D	1.07E+00	2.05E-01	1.02E-01	1.11E-01	1.28E+01	1.40E-06
T76Q	9.57E-01	9.80E-01	5.88E-02	9.46E-02	-4.65E-01	6.56E-01
T76E	9.64E-01	6.42E-01	4.14E-02	7.93E-02	8.06E+00	1.91E-04
T76N	9.28E-01	9.98E-01	8.56E-02	9.13E-02	-1.26E+00	2.43E-01
T76S	8.85E-01	9.54E-01	2.92E-02	9.69E-02	-1.51E+00	1.95E-01
T76Y	1.08E+00	1.11E+00	7.99E-02	8.81E-02	-7.18E-01	4.93E-01
D77E	9.57E-01	1.13E+00	3.87E-02	4.01E-02	-6.79E+00	1.40E-04
K78R	7.17E-01	1.25E-01	2.38E-02	1.02E-01	1.26E+01	1.23E-04
E84Y	9.87E-01	9.99E-01	3.43E-02	5.26E-02	-4.10E-01	6.94E-01
G124V	9.61E-01	1.16E+00	2.95E-02	9.93E-02	-4.26E+00	9.21E-03
G124M	8.45E-01	7.05E-01	4.30E-02	1.28E-01	2.32E+00	6.92E-02
G124Y	6.51E-01	5.57E-01	1.28E-01	1.87E-01	9.21E-01	3.88E-01
I126V	8.63E-01	7.11E-01	5.95E-02	1.47E-01	2.15E+00	8.13E-02
L128V	8.82E-01	1.03E+00	2.45E-02	1.12E-01	-2.82E+00	4.29E-02
L128W	8.97E-01	1.03E+00	4.68E-02	1.12E-01	-2.50E+00	5.12E-02
K131H	9.94E-01	1.58E+00	9.26E-02	1.55E-01	-7.24E+00	2.38E-04
I134F	7.54E-01	1.11E+00	1.53E-01	2.68E-01	-2.57E+00	4.01E-02
I134Q	9.79E-02	2.52E-02	6.55E-02	2.86E-02	2.27E+00	6.76E-02

I134D	1.30E-02	1.05E-02	8.74E-03	6.40E-03	5.06E-01	6.28E-01
I134T	3.79E-01	3.07E-01	1.17E-01	1.48E-01	8.56E-01	4.18E-01
I134N	4.24E-01	5.34E-02	1.40E-01	5.08E-02	5.58E+00	2.49E-03
E136Q	8.61E-01	9.67E-01	7.45E-02	7.95E-02	-2.17E+00	6.17E-02
E136N	8.89E-01	8.20E-01	4.31E-02	5.45E-02	2.23E+00	5.84E-02
WT	1	1	0	0		

Supplemental Table 3 (related to Figure 3)

Mutation	Forward PRIMER
N66Q	GAGCTTCGTGCTACAGTGGTACCGCATGAG
N66E	GAGCTTCGTGCTAGAGTGGTACCGCATGAG
Y68K	CGTGCTAAACTGGAAACGCATGAGCCCCAG
Y68R	CGTGCTAAACTGGAGACGCATGAGCCCCAG
Y68N	GTGCTAAACTGGAACCGCATGAGCC
Y68Q	CGTGCTAAACTGGCAACGCATGAGCCCCAG
S73R	CATGAGCCCCAGAAACCAGACGGAC
S73K	CGCATGAGCCCCAAAAACCAGACGGAC
Q75N	GAGCCCCAGCAACAATACGGACAAGCTGG
T76D	CCCAGCAACCAGGACGACAAGCTGGCC
T76Q	CCCAGCAACCAGCAGGACAAGCTGG
T76E	CCCAGCAACCAGGAGGACAAGCTGG
T76N	CCAGCAACCAGAACGACAAGCTGGCC
T76S	CAGCAACCAGAGCGACAAGCTGGCC
T76Y	CCCAGCAACCAGTACGACAAGCTGGCCG
D77E	CAACCAGACGGAAAAGCTGGCCGCT
K78R	AACCAGACGGACCGGCTGGCCGCTT
E84Y	GCCGCTTTCCCCTATGACCGCAGCCAG
G124V	CCTACCTCTGTGTCGCCATCTCCCTG
G124M	CACCTACCTCTGTATGGCCATCTCCCTG
G124Y	CACCTACCTCTGTTACGCCATCTCCCTGG
I126V	ACCTCTGTGGGGCCGTATCCCTGGCCCCCA
L128V	TGGGGCCATCTCCGTAGCCCCCAAGGCGCA
L128M	TGGGGCCATCTCCATGGCCCCCAAGG
L128W	TGGGGCCATCTCCTGGGCCCCCAAGGC
K131H	CTCCCTGGCCCCCCATGCGCAGATCAAAG
I134Q	CCCAAGGCGCAGCAGAAAGAGAGCCTGC
I134E	CCCAAGGCGCAGGAGAAAGAGAGCCTGC
I134D	CCCAAGGCGCAGGACAAAGAGAGCC
I134T	CCAAGGCGCAGACAAAAGAGAGCCTG
1134N	CCAAGGCGCAGAATAAAGAGAGCCTGC
I134F	CCCAAGGCGCAGTTCAAAGAGAGCC
E136Q	GCGCAGATCAAACAGAGCCTGCGGG
E136N	GGCGCAGATCAAAAACAGCCTGCGGGCAG
Y68K	GTGCTAAACTGGAAACGCATGAGCC
Y68R	GTGCTAAACTGG <mark>AGA</mark> CGCATGAGCC

Reverse PRIMER

CTCATGCGGTACCACTGTAGCACGAAGCTC CTCATGCGGTACCACTCTAGCACGAAGCTC CTGGGGCTCATGCGTTTCCAGTTTAGCACG CTGGGGCTCATGCGTCTCCAGTTTAGCACG GGCTCATGCGGTTCCAGTTTAGCAC CTGGGGCTCATGCGTTGCCAGTTTAGCACG GTCCGTCTGGTTTCTGGGGGCTCATG GTCCGTCTGGTTTTTGGGGGCTCATGCG CCAGCTTGTCCGTATTGTTGCTGGGGGCTC GGCCAGCTTGTCGTCCTGGTTGCTGGG CCAGCTTGTCCTGCTGGTTGCTGGG CCAGCTTGTCCTCCTGGTTGCTGGG GGCCAGCTTGTCGTTCTGGTTGCTGG GGCCAGCTTGTCGCTCTGGTTGCTG CGGCCAGCTTGTCGTACTGGTTGCTGGG AGCGGCCAGCTTTTCCGTCTGGTTG AAGCGGCCAGCCGGTCCGTCTGGTT CTGGCTGCGGTCATAGGGGAAAGCGGC CAGGGAGATGGCGACACAGAGGTAGG CAGGGAGATGGCCATACAGAGGTAGGTG CCAGGGAGATGGCGTAACAGAGGTAGGTG TGGGGGCCAGGGATACGGCCCCACAGAGGT TGCGCCTTGGGGGGCTACGGAGATGGCCCCA CCTTGGGGGCCATGGAGATGGCCCCA GCCTTGGGGGGCCCAGGAGATGGCCCCA CTTTGATCTGCGCATGGGGGGGCCAGGGAG GCAGGCTCTCTTTCTGCTGCGCCTTGGG GCAGGCTCTCTTTCTCCTGCGCCTTGGG GGCTCTCTTTGTCCTGCGCCTTGGG CAGGCTCTCTTTTGTCTGCGCCTTGG GCAGGCTCTCTTTATTCTGCGCCTTGG GGCTCTCTTTGAACTGCGCCTTGGG CCCGCAGGCTCTGTTTGATCTGCGC CTGCCCGCAGGCTGTTTTTGATCTGCGCC GGCTCATGCGTTTCCAGTTTAGCAC GGCTCATGCGTCTCCAGTTTAGCAC

Y68Q	GTGCTAAACTGG <mark>CAA</mark> CGCATGAGCC
K78R	CAGACGGACCGGCTGGCCGCTTTC
L128M	GGGCCATCTCCATGGCCCCCAAGG
K131H	CCTGGCCCCCCATGCGCAGATCAAAG
I134E	CCCAAGGCGCAG <mark>GAG</mark> AAAGAGAGCC
I134F	CCAAGGCGCAGTTCAAAGAGAGCCTG
I134F	CCCAAGGCGCAGTTCAAAGAGAGCCTGC

GGCTCATGCGTTGCCAGTTTAGCAC GAAAGCGGCCAGCCGGTCCGTCTG CCTTGGGGGGCCATGGAGATGGCCC CTTTGATCTGCGCATGGGGGGGCCAGG GGCTCTCTTTCTCCTGCGCCTTGGG CAGGCTCTCTTTGAACTGCGCCTTGGG GCAGGCTCTCTTTGAACTGCGCCTTGGG Supplementary Figure 1. (Related to Fig. 4.) **Structural models of mutant PD-1:L1:L2 interfaces.** (A) Wild-type hPD-1 (green) : hPD-L1 (magenta) complex, (B) mutant (T76D) hPD-1 (green) : hPD-L1 (magenta) complex, (C) wild-type hPD-1 (green) : hPD-L2 (magenta) complex, and (D) mutant (T76D) hPD-1 (green) : hPD-L2 (magenta) complex. For PD1 five conformations taken every 4ns during the MD simulation are shown.

Supplementary Figure 2. (Related to Fig. 4.) Comparison between experimentally observed and computationally calculated binding preferences of PDL1 and PDL2 to various mutants of PD1. X-axis shows the difference of the normalized fraction of PDL1 and PDL2 bound to 32 mutant variants of PD1. Y-axis shows the computationally calculated $\Delta\Delta G$ Kcal/mol for the same cases as obtained from BeAtMusic (A), FoldX (B), and MutaBind (C), respectively.

Supplementary Figure 3. (Related to Fig. 3.) Averaged mCherry expression data for all of the PD-1 mutants. The percent binding in Fig. 3 is calculated as a percentage of mCherry expressing cells (direct C-term fusion with PD-1) therefore this calculation corrects for any minor deviations in protein expression.

