Supplemental material:

A previously unrecognized Ca2+-inhibited non-selective cation channel in red blood cells

- Polina Petkova-Kirova¹, Laura Hertz¹, Asya Makhro², Jens Danielczok¹, Rick Huisjes⁴, Esther Llaudet-Planas³, Maria del Mar Mañú-Pereira³, Joan-Luis Vives Corrons³, Richard 2
- 3
- van Wijk⁴. Anna Boqdanova². Lars Kaestner⁵ 4

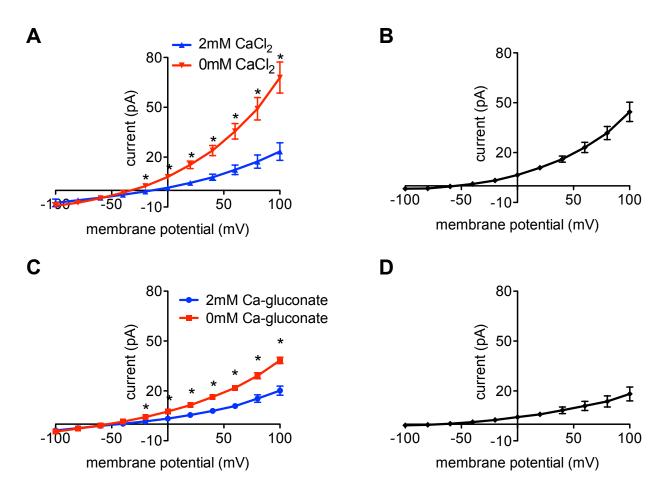
5

1

- 6 ¹Research Centre for Molecular Imaging and Screening, Medical School, Institute for
- Molecular Cell Biology, Saarland University, Homburg/Saar, Germany 7
- 8 ²Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty and
- the Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich.
- Switzerland 10
- ³Red Blood Cell defects and Hematopoietic disorders unit, Josep Carreras Leukaemia 11
- Research Institute, Badalona, Barcelona, Spain 12
- ⁴Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, 13
- Utrecht. The Netherlands 14
- ⁵Theoretical Medicine and Biosciences, Saarland University, Homburg/Saar and 15
- Experimental Physics, Saarland University, Saarbruecken, Germany 16

17 18

Materials and Methods


19 Blood

- 20 Blood was obtained from healthy donors after giving an informed consent in compliance
- 21 with the ethical requirements of the Saarland University, Homburg, Germany (Ärztekammer
- des Saarlandes, approval number 132/08) and the University of Zürich, Zürich, Switzerland, 22
- (the Canton's ethics committee of canton Zürich, KEK ZH NR 2010-0237). The study was 23
- carried out in accordance with the Helsinki Declaration of 1975, as revised in 2008. A blood 24
- 25 collection system by Becton and Dickinson (Vacutainer Blood Collection Set REF 367282,
- 26 Becton, Dickinson and Co., Franklin Lakes, NJ, USA) and the same batches of 9 ml
- 27 containers for K3EDTA (referred to as EDTA) and Sodiumheparin (referred to as heparin)
- (Vacuette, Becton, Dickinson and Co., Franklin Lakes, NJ, USA) were used. 28
- 29 Patch-clamp
- 30 Patch-clamp measurements were performed with a NPC-16 Patchliner (Nanion
- Technologies, Munich, Germany) as previously described¹. The resistance of the chips was 31
- 32 between 5 and 8 M Ω . Gigaseals were considered successful if exceeding 5 G Ω . Gigaseal
- 33 formation was facilitated by the use of a seal enhancing solution as recommended by the

- Patchliner manufacturer and containing (in mM): NaCl 80, KCl 3, MgCl₂ 10, CaCl₂ 35, 34 HEPES 10, pH=7.3 adjusted with NaOH. Whole-cell configuration was achieved by negative 35 pressure suction pulses between -45 mbar and -150 mbar and its formation judged by the 36 37 appearance of sharp capacitive transients. Whole-cell patch-clamp recordings were conducted using voltage steps from -100 mV to 100 mV for 500 ms in 20 mV increments at 38 39 5 s intervals, the holding potential being set at -30 mV. To reduce inter-cell variability in currents, data are expressed as normalized current which is the ratio of the current under 40 specified experimental conditions i.e. in 0 mM Ca²⁺ external solution or in a solution with 41 Ca²⁺ (2 or 20 mM Ca²⁺), to the current at +100 mV determined 30-60 s before starting the 42 measurement in 0 mM Ca²⁺. The Ca²⁺ blocked current is the current obtained as a result of 43 the subtraction of the current recorded in 2 mM Ca2+ from the current recorded in 0 mM 44 Ca²⁺ external solution. Before subtraction currents were normalized. All measurements were 45 performed at room temperature. Current recordings in 2 mM Ca²⁺ solutions were all 46 47 performed at 5 G Ω and above and the seals were maintained throughout the 0 mM Ca²⁺ solutions measurements as follows: 81% (13 out of 16 cells) at 5Gohm and above; 6% (1 48 49 cell) at 4.4 G Ω and 13% (2 cells) at 4 G Ω . Data are presented as means \pm SEMs and 50 statistical significance evaluated using a paired Student t-test. N is the number of cells and 51 in brackets after "n" is the number of donors. Cell capacitance (n=16 cells) was 0.59±0.04 52
- 53 Solutions used to study the Ca²⁺ blocked channel were as follows (in mM):
- I. For experiments using a Cs⁺-based internal and a TEACI-based external solutions:
- Internal: 50CsCl, 20NaCl, 60CsF, 5MgATP, 10HEPES, 20EGTA, pH=7.2 with CsOH
- External 0mM Ca²⁺: 125TEACI, 10HEPES, 5MgCl₂, 45glucose, pH=7.3 with TEAOH
- External 2mM Ca²⁺: 125TEACI, 10HEPES, 5MgCl₂, 45glucose, 2mM CaCl₂ pH=7.3 with TEAOH
- II. For experiments using a Cs⁺-based internal and an external solution without Cl⁻:
- Internal: 50CsCl, 20NaCl, 60CsF, 5MgATP, 10HEPES, 20EGTA, pH=7.2 with CsOH
- External 0mM Ca²⁺: 125TEANO₃, 10HEPES, 5MgSO₄, 45glucose, pH=7.3 with TEAOH
- External 2mM Ca²⁺: 125TEANO₃, 10HEPES, 5MgSO₄, 45glucose, 2mM Ca gluconate , pH=7.3 with TEAOH
- 64 III. For experiments using physiological internal and external solutions:
- Internal: 70KCI, 70KF, 10NaCl, 10HEPES, 3EGTA, 1.2CaCl₂, 3MgATP, pH=7.2 with
 KOH
- External 0mM Ca²⁺: 140NaCl, 4KCl, 10HEPES, 5MgCl₂ 5glucose, pH=7.3 with NaOH
- External 20mM Ca²⁺: 115NaCl, 4KCl,10HEPES, 5MgCl₂, 20CaCl₂, pH=7.3 with NaOH
- External 2mM Ca²⁺: 140NaCl, 4KCl, 10HEPES, 5MgCl₂, 5glucose, 2CaCl₂ pH=7.3 with NaOH
- 71 F- in the internal solution is a necessary requirement to achieve gigaseals when recording
- 72 from erythrocytes. Inclusion of fluoride has long been known to facilitate and improve patch-
- clamp sealing with subsequent longer and more stable patch-clamp recordings.² Relative to
- this however a note should be made on the RBC membrane permeability reported to be
- similar for Cl⁻ and F⁻ both in its DIDS sensitive and DIDS insensitive part.³

Ion measurements of blood plasma

A blood gas analyzer ABL 700 (Radiometer, Brønshøj, Denmark) was used to measure free Ca²⁺, Na⁺ and K⁺ content in blood samples and aqueous CaCl₂ solutions ⁴. Plasma K⁺ and Na⁺ contents were assessed and corrected for Na⁺ and K⁺ present in the vacutainer anticoagulants (Na-heparin and K3EDTA). To perform the correction an aqueous solution of CaCl₂ (1.8 mM final concentration) was prepared and filled into the vacutainers in volumes equal to those of the blood samples. Thereafter free Na⁺, K⁺ and Ca²⁺ were measured. The obtained values were subtracted from those measured for blood plasma. The levels of free Ca²⁺ in the EDTA containing vacutainers were below the detection limit of the ion-selective electrode of the blood analyzer for both the aqueous CaCl₂ solution and plasma. All measurements were performed at room temperature and in triplicates within an hour after blood collection.

Supplemental Figure S1 corresponds to Figure 1 in the main body of the manuscript with currents being shown in absolute values (pAs). Whole-cell patch clamp recordings in a Cs⁺-based internal and a TEACI-based external solutions **(A)** I/V curves with 2 mM CaCI₂ (blue) and 0 mM CaCI₂ (red) in the external solution (n=5(3)) **(B)** I/V curve of the Ca²⁺ blocked current (CBC) - the current recorded in 2 mM CaCI₂-external solution was subtracted from the current recorded in 0 mM CaCI₂ -external solution. Whole-cell patch clamp recordings in a Cs⁺-based internal and a TEANO₃-based external solution devoid of

Cl⁻. **(C)** I/V curves with 2 mM Ca gluconate (blue) and 0 mM Ca gluconate (red) in the external solution (n=4(1)). **(D)** I/V curve of the Ca²⁺ blocked current (CBC) - the current recorded in 2 mM Ca gluconate-external solution was subtracted from the current recorded in 0 mM Ca gluconate -external solution. Currents were elicited by voltage steps from -100 mV to 100 mV for 500 ms in 20 mV increments at $V_h = -30$ mV. Measurements were performed at room temperature. Data are presented as mean \pm SEM. Significance is assessed with a paired Student's t test and set at p<0.05. For better visualization, a significance anywhere below p<0.05 is denoted with one star.

104

- 105 Calculation of the cation flux based on the whole-cell conductance
- The cation flux *J* across the RBC membrane caused by the ion channel under investigation can be calculated as:

$$J = J_{SC} \times n \tag{1}$$

with J_{SC} being the flux across the membrane of a single cell and n being the number of RBCs per volume of blood ($n = 5 \times 10^6 \ \mu l^{-1}$). In similarity to the calculations in the appendix of Kaestner *et al.* 1999 ⁵, the single cell flux can be estimated as:

$$J_{SC} = \frac{G V_m}{q_{el} N_A} \tag{2}$$

- with *G* being the whole cell conductance, V_m being the membrane potential, q_{el} being the elementary charge and N_A being Avogadro's number. The whole cell conductance can be derived from the slope of the I/V curve in Figure 2F (G = 143 pS). In a first approximation we use for the membrane potential the physiological RBC resting membrane potential V_R ($V_R = -10$ mV). The above values can be filled in the final equation derived from equations
- 118 (1) and (2):

$$J = \frac{G V_R}{q_{el} N_A} n \tag{3}$$

120 Thus the flux due to CiCC is estimated to be 4.3 mM min⁻¹.

121

122

References

- 123 1. Fermo E, Bogdanova A, Petkova-Kirova P, Zaninoni A, Marcello AP, Makhro A, et al. "Gardos Channelopathy": a variant of hereditary Stomatocytosis with complex molecular regulation. Sci Rep. Nature Publishing Group; 2017 May 11;7(1):1744.
- Fernandez JM, Fox AP, Krasne S. Membrane patches and whole-cell membranes: a
 comparison of electrical properties in rat clonal pituitary (GH3) cells. J Physiol (Lond).
 Wiley-Blackwell; 1984 Nov;356:565–85.
- 129 3. Knauf PA, Law FY, Marchant PJ. Relationship of net chloride flow across the human

130	erythrocyte membrane to the anion exchange mechanism. J Gen Physiol. The
131	Rockefeller University Press; 1983 Jan;81(1):95–126.

138

- Makhro A, Huisjes R, Verhagen LP, Mañú Pereira MDM, Llaudet-Planas E, Petkova Kirova P, et al. Red Cell Properties after Different Modes of Blood Transportation.
 Frontiers in Physiology. 2016;7:288.
- 135 5. Kaestner L, Bollensdorff C, Bernhardt I. Non-selective voltage-activated cation channel in the human red blood cell membrane. Biochim Biophys Acta. 1999 Feb 4;1417(1):9–15.