Supporting Information

Fig. S1. Hypoxia results in activation of the UPR pathways along with downregulation of βcatenin signaling in HEK293 cells. (A) HEK293 cells were cultured under moderate hypoxia condition (1% O₂) for the indicated time intervals. Protein expression levels of HIF1α and β-catenin, as well as phosphorylation of IRE1α (p-IRE1α) and eIF2α (p-eIF2α), were analyzed by immunoblotting. Quantification of HIF1α and β-catenin levels (relative to α-tubulin), and p-IRE1α/IRE1α, p-eIF2α/eIF2α ratios, is shown after normalization to the value at 0 hours. (B) Quantitative RT-PCR analysis of the expression of the spliced form of *Xbp1 (Xbp1s)* mRNA relative to the total amount of *Xbp1 (Xbp1t)* mRNA, and the mRNA levels of *Bip* (relative to *Actin*). Values were normalized to normoxic levels. (C) Quantitative RT-PCR analysis of the mRNA levels of β-catenin target genes (*c-MYC, CyclinD1, DKK1, Axin2*). All data are shown as the mean ± SD from three independent experiments. *p<0.05, **p<0.01 and ***p<0.001 by Students *t*-test.

Fig. S2. Chemical-induced ER stress results in decreased stability of β-catenin. (A) HEK293 cells cultured in LCM or WCM were treated with DMSO, 10 µg/ml TM or 1 µM TG for 8 hours. Protein expression level of β-catenin and phosphorylation of eIF2α (p-eIF2α) were analyzed by immunoblotting. (B) HEK293 cells were transfected with TOPFlash luciferase reporter plasmid, and then cultured in LCM or WCM and treated with DMSO, 10 µg/ml TM or 1 µM TG for 8 hours. TopFlash luciferase activity was determined and is shown as the mean ± SD from three independent experiments. *p<0.05, **p<0.01 and ***p<0.001 by Students *t*-test.

Fig. S3. Chemical alleviation of ER stress partially reverses hypoxia-induced reduction of β catenin in RKO cells. (A) RKO cells were pre-treated with DMSO, 2 mM 4PBA or 2 mM TUDCA for 2 hours and then subjected to normoxia (N) or hypoxia (H) for 12 hours. Phosphorylation of eIF2 α (p-eIF2 α) and protein expression levels of HIF1 α and β -catenin were analyzed by immunoblotting. (B) Quantification of p-eIF2 α /eIF2 α ratio and HIF1 α and β -catenin levels (relative to α -tubulin) is shown after normalization to the value of DMSO control cells. Results are shown as the mean \pm SD from three independent experiments. *p<0.05, **p<0.01 and ***p<0.001 by Students *t*-test.

Fig. S4. Effects of chemical-induced ER stress or hypoxia on the mRNA abundance for β -catenin or LRP6. RKO or HEK293 cells were (A-B) treated with DMSO, 10 µg/ml TM or 1 µM TG for 8 hours, or (C) subjected to normoxia (N) or 1% O₂ hypoxia (H) for 12 hours. Quantitative RT-PCR analysis of the abundance of mRNA encoding (A) β -catenin or (B-C) LRP6. Data are shown as the mean ± SD from three independent experiments.