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Supplementary Figure 1. Genome-wide localization of CLL open chromatin regions. (a) Histo-
gram showing the distance of CLL open chromatin regions to the transcription start site (TSS) of the
nearest gene, based on ATAC-seq data for CLL patient samples collected before and during ibrutinib
treatment. (b) Bar plots showing the number of CLL open chromatin regions that overlap with anno-
tated genes (left) and chromatin segments based on epigenome maps for CD19" B cells (right). (c)
Overlap of the identified CLL open chromatin regions in this study with those from a previous study
of CLL patients that were not selected for ibrutinib treatment®. (d) Maximum significance (measured
as -logqo(p-value)) for the interaction of ibrutinib treatment with each of seven clinical variables. P-
values were obtained by comparing a linear regression model where chromatin accessibility is ex-
plained by an interaction term between one of the clinical variables and ibrutinib treatment (~ batch
+ variable * treatment) and an alternative model that lacks the interaction term (~ batch + treatment)
within the DESeq2 framework using all ATAC-seq samples (n = 36). No genomic regions were de-
tected with a FDR-corrected p-value below 0.05 (indicated by the vertical line).



Q

=
—
8
—ﬂ
=

)

ﬂ
| J

W,

J

]

WWFWWWTTW?TW'EWFmW#f“?T*WW

[} ] 10 1 CLLS
o 1]: lIII 1 + 1 ll F i n 8“}3
in_ ‘) I | "T 1 ma m i |-1| ma || b I .8:13
M _—— 111 |‘| I.c:ﬁ
— II“. III 1 1 1 ‘III. J miul II | -l Il n :8-_?3
o 1 P M L | | CLL 10
— 1 1 1 I o CLL 10
—II] | 1 1 ' 1 | 1 1 IIll 1 8..?2
iﬁ_lll " ‘I Tl ] Yy I|||'8:%
1 1 2 LR S E 1 GLL 21
[— ] 1 | 1 ®CLL 21
— — 1 | 1 J I 1 oCLL2
i— L L ' ! vl GHE 20
[ ] CLL 11
L 1 1 1 n CLL 14
— 1 1 rm 1m Illllll III minm I ] i I- I In 8--%
— — l l IIII *II I ll oCLL4
| 1 I EI i | CLL 14
aint 1 H 1 n Fll 1 Ill | IIIII I | 1 CLL1
— 1 '
T 1LANg 1 CLL6
[ 10 | I I 1 \ ] I ! | | .8..80
— 1 1 1 1 oCLL7
_ IF1 1 I‘JII ml an 1 1 mEim 8__};
[ P— I |'| 1 1 e 1 || ] 1 ! n || OB 3 Before ibrutinib treatment
T I | 1 I 1 | | u oCLL3  ® During ibrutinib treatment
Nico_(ine a_nd VEGF, Ras, MAPK Ptguléraii‘oq/cancer pathways ‘\‘ Purin'e Metabolism;_ Cell-cell c_onlact, Z-score of pathway
r:g::;;ic;rdn pathways / * metabolism :;mzr;?ds:;::eo;,s adhesion accessibility
(histidine, alanine), TNF, TGFB, BCR pathwa: ~ ’ N and transport
P Y Ribosome
DNA repair autophagy pathways NFKB signaling 3 0 3
b pathway
[ I
CLL1
u ®CLL1
HEE B | . | BN "H EmocCLL2
. ®CLL2
B I CLL3
CLL3
l CLL5
B mn || ® CLL5
CLl
[ | l | ®CLL6
| | u Hm = | CL
|| ®CLL7
| u
| | | ®CLLY
I ] | | | CLL 10
2 om | | ®CLL10
| l n | o CLL12 . -
] EE u [ CLL 15 Before ibrutinib treatment
| ® CLL15 @ During lbrutinib treatment
595889 3E 5395 D8 CooRES338820S£5o88ESE8EEE Z-score of pathway
£53%8352 288 %883 2 %3?354338%353933535%3&3 accessibility
EEFepcSt BE& SpPn EOgefiffg padpetispiztese
£c c SEER 2 S £95E 9EEE E£Q°
52285805 98 2EEf F ogceSfl B5:-5fPPoEEE £e¥
55828725 <5 823 58insEs 9335937822 ¢ % 3 0 3
g8 < § 2maed 5202302 £8358F OfFL T w
=39 5 = 58@2 65227 & gLefseg ZEE 2 ¢
Fa 5 0 Z¥g METE > Z3Egeg LRt o5 @
S5 Bt RN
g o 8° s =2 g & <
2 & g 2 o 3
s 2 b3
© g g < °
€ 8
I3 [}
o £
o

Supplementary Figure 2. Pathway-centric assessment of changes in chromatin accessibility
during ibrutinib treatment. (a) Heatmap showing aggregated chromatin accessibility scores for
each KEGG pathway, which combine normalized ATAC-seq signals for the regulatory elements of
all genes in each KEGG pathway. Hierarchical clustering was performed with Pearson correlation
as distance measure and a column-wise (per pathway) Z-score transformation. (b) Heatmap show-
ing aggregated chromatin accessibility scores as in panel a, but focused only on the most differen-
tially regulated pathways between patient samples collected before and during ibrutinib treatment.
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Supplementary Figure 3. Analysis of chemosensitivity profiles for matched CLL patient sam-
ples collected before and during ibrutinib treatment. (a) Heatmap of CD19" cell-selective cyto-
toxicity for all 131 included drugs in CLL samples collected before and during clinical ibrutinib treat-
ment, averaged across patients. Red indicates drugs that were selective for the CD19" cell fraction,
green indicates drugs that were anti-selective. (b) Change in CD19" cell-selective cytotoxicity for
samples collected during ibrutinib treatment versus those collected before ibrutinib treatment, shown
for drugs with a difference greater than 0 (higher selectivity during ibrutinib treatment) and a selec-



tivity score during ibrutinib treatment greater than 0 (selective to CD19" cells), averaged across pa-
tients. (¢) Heatmap of CD19" cell-selective cytotoxicity for all 131 included drugs collapsed onto their
KEGG class annotations, in CLL samples collected before and during clinical ibrutinib treatment,
averaged across patients. Red indicates averaged drug classes that were selective for the CD19"
cell fraction, green indicates drugs that were anti-selective. The screen was performed on samples
from n =11 CLL patients, with n = 11 samples collected before ibrutinib treatment and n = 10 samples
during ibrutinib treatment (one sample was excluded due to poor cell viability after thawing). Drugs
were screened over two 384-well plates per sample in two concentrations (10 ym and 1 um), where
each concentration point was measured in triplicate (10 uM) or in duplicate (1 uM) as technical rep-
licates. The sensitivities were normalized to DMSO, and there were approximately 40 DMSO control
wells on each plate. This is the visualization of the entire dataset underlying Figure 4.
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Supplementary Figure 4. Integrative analysis and prioritization of pathways for ibrutinib drug
combinations. Bioinformatic analysis of chromatin accessibility and chemosensitivity profiles at the
level of molecular pathways. Log, fold-change values for samples collected during ibrutinib treatment
versus those collected before ibrutinib treatment were standardized for each data type with a Z-
score, combining changes between data types by taking the mean of the Z-scores. (a) All changes
of KEGG pathways when comparing samples collected before ibrutinib treatment versus during ib-
rutinib treatment, (b) and the top-10 and bottom-10 pathways highlighted.
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Supplementary Figure 5. Analysis of chemosensitivity profiles for CLL patient samples.
CD19%and/or CD5" relative cell fraction detected at each concentration of the partner drugs, shown
separately for each concentration of ibrutinib. Values below 1 indicate that the drug combination was
selective to CD19" and/or CD5" cells, while values close to or above 1 indicate general cytotoxicity.
Mean and standard error of the relative cell fractions were calculated across patient samples (n =
5). These data were obtained as part of the screen shown in Figure 5b.
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Supplementary Figure 6. Analysis of chemosensitivity profiles for CLL patient samples pre-
treated with ibrutinib in co-culture. CD19" and/or CD5" relative cell fraction for two CLL patient
samples pre-treated with ibrutinib at three concentrations in co-culture, or untreated (DMSO) in co-
culture, and then screened with seven partner drugs in two concentrations. Values below 1 indicate
that the drug combination was selective to CD19" and/or CD5" cells, while values close to or above
1 indicate general cytotoxicity. DMSO values are set to 1. Mean and standard deviation of three
technical replicates per concentration point are shown separately for each patient sample (n = 2
biological replicate).
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Supplementary Figure 7: lllustration of the gating strategy used for cellular phenotyping. The
gate was first set on living cells (R1). Unstained cells served as negative controls for setting the
quadrant boundaries for the detection of the positively stained cells. Double staining was performed
using conjugated antibodies (CD19APC/CDSFITC and CD3APC/CD14FITC). Data are presented as
pseudocolor plots, and the percentages of positive cells are shown in the corresponding quadrant.



Supplementary Tables
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