Supplementary material for:

An increased cell cycle gene network determines MEK and Akt inhibitor double resistance in triple-negative breast cancer.

Vera E. van der Noord^{1, 3}, Ronan P. McLaughlin^{1, 3}, Marcel Smid², John A. Foekens², John W.M. Martens², Yinghui Zhang¹, Bob van de Water^{1, *}

¹Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA Leiden, The Netherlands

²Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands

³These authors contributed equally to the work.

*Corresponding author: Professor Bob van de Water, Division of Drug Discovery and Safety, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, PO box 9502, 2300 RA Leiden, The Netherlands. Email:

b.water@lacdr.leidenuniv.nl

Supplementary Figure S1. Clustered kinase inhibitors differentially affecting TNBC cell proliferation. Enlarged and annotation version of the clustered branch of differentially effective kinase inhibitors from Figure 1A. The black box highlights mainly MEK and Akt inhibitors. Low Z-scores (red) indicate reduced cell proliferation, whereas high Z-scores indicate resistance (blue) upon treatment with the kinase inhibitors (1 μ M).

Supplementary Figure S2. Proliferative responses to MEK, Akt, Raf and PI3K inhibitors (1 μ M) among TNBC cell lines. Low Z-scores (red) indicate reduced cell proliferation, whereas high Z-scores indicate resistance (blue) upon treatment with the kinase inhibitors.

Supplementary Figure S3. Sensitivity profiling in TNBC cell lines. Validation of Akt-i/MEK-i sensitivity classifications from primary screening (Figure 1B). Proliferative responses of cell lines to increasing concentrations (0.001-10 μ M) of selumetinib (MEK-i) and ipatasertib (Akt-i) are shown.

Supplementary Figure S4. Uncropped full-length images of blots. Source images for the western blot bands presented in Figure 2, 3 and 6. Green dotted squares indicate the approximate cropping area. Antibody combinations were previously tested to not interfere with each others bands. In some cases, blots were cut horizontally to perform separate stainings and full-length blots are not depicted. Protein sizes are according to pre-stained protein ladders from Cell signalling (#13953) or Thermo Fisher (#26619).

Supplementary Figure S4. Uncropped full-length images of blots (continued). Source images for the western blot bands presented in Figure 2, 3 and 6. Green dotted squares indicate the approximate cropping area. Antibody combinations were previously tested to not interfere with each others bands. In some cases, blots were cut horizontally to perform separate stainings and full-length blots are not depicted. Protein sizes are according to prestained protein ladders from Cell signalling (#13953) or Thermo Fisher (#26619).

Source images Figure 3 (continued)

Supplementary Figure S4. Uncropped full-length images of blots (continued). Source images for the western blot bands presented in Figure 2, 3 and 6. Green dotted squares indicate the approximate cropping area. Antibody combinations were previously tested to not interfere with each others bands. In some cases, blots were cut horizontally to perform separate stainings and full-length blots are not depicted. Protein sizes are according to prestained protein ladders from Cell signalling (#13953) or Thermo Fisher (#26619).

Supplementary Figure S4. Uncropped full-length images of blots (continued). Source images for the western blot bands presented in Figure 2, 3 and 6. Green dotted squares indicate the approximate cropping area. Antibody combinations were previously tested to not interfere with each others bands. In some cases, blots were cut horizontally to perform separate stainings and full-length blots are not depicted. Protein sizes are according to prestained protein ladders from Cell signalling (#13953) or Thermo Fisher (#26619).

Supplementary Figure S5. Gene set enrichment map for sets enriched in mRNA expression for Akt-i/MEK-i-resistant Group 3 cell lines. This figure represents an enlarged and annotated version of Figure 4A (left part). mRNA expression was compared between MEK and Akt inhibitor-resistant Group 3 versus MEK or Akt inhibitor-resistant Group 1 and 2 cell lines using gene set enrichment analysis (GSEA). The enrichment map visualises enriched gene sets (P<0.005, FDR Q-value<0.1, overlap>0.7), among which cell cycle gene sets were most abundant. Every node (red) represents a single overexpressed gene set and the size of the node indicates the size of the gene set. Every line (green) represents overlap between gene sets.

Supplementary Figure S6. Gene set enrichment map for sets enriched in protein expression for Akt-i/MEK-i-resistant Group 3 cell lines. This figure represents an enlarged and annotated version of Figure 4A (right part). Protein expression was compared between MEK and Akt inhibitor-resistant Group 3 versus MEK or Akt inhibitor-resistant Group 1 and 2 cell lines using gene set enrichment analysis (GSEA). The enrichment map visualises enriched gene sets (P<0.005, FDR Q-value<0.1, overlap>0.7), among which cell cycle gene sets were most abundant. Every node (red) represents a single overexpressed gene set and the size of the node indicates the size of the gene set. Every line (green) represents overlap between gene sets.

Supplementary Figure S7. Expression of the 142 cell cycle genes and the selected 46 clinically differentially expressed genes in TNBC cell lines. The mRNA expression of the 142 cell cycle genes, as given in Figure 4B, and of the later selected 46 clinically differentially expressed genes, as shown in Figure 5, in the TNBC cell lines is shown.

Supplementary Table S1. IC50's for Akt and MEK inhibitors. To validate the resistance to Akt and/or MEK inhibitors, cells were treated with a dose range $(0.01 - 3.16 \,\mu\text{M})$ of inhibitors in three technical replicates in two independent experiments. Proliferation was evaluated using an SRB assay and IC50's were calculated using GraphPad Prism. If 50% of proliferation was not reached, IC50's are noted as >3.16. For the case of more than 50% reduction of growth at the lowest concentration, IC50's were noted as <0.01.

		Akt-i resistant			MEK-i resistant			Akt-i & MEK-i double resistant		
	IC50 (μM)	MDA- MB- 231	MDA- MB- 435s	HCC18 06	MDA -MB- 468	BT20	HCC70	SKBR7	SUM15 9PT	MDA- MB- 436
rs	MK-2206	>3.16	>3.16	>3.16	0.30	>3.16	0.26	>3.16	1.35	>3.16
ibito	GDC-0068	>3.16	>3.16	>3.16	0.16	0.38	0.21	>3.16	>3.16	>3.16
inh	AZD5363	>3.16	>3.16	>3.16	0.15	0.34	0.17	>3.16	~3.16	>3.16
Akt	GSK690693	>3.16	>3.16	>3.16	>3.16	0.15	1.31	>3.16	>3.16	>3.16
	Selumetinib	0.05	0.03	>3.16	>3.16	>3.16	>3.16	>3.16	2.74	>3.16
	MEK-i162	<0.01	<0.01	7.617	>3.16	>3.16	>3.16	>3.16	~3.16	>3.16
	Trametinib	<0.01	<0.01	<0.01	0.03	>3.16	>3.16	>3.16	NA	NA
ors	PD318088	0.15	<0.01	<0.01	0.32	>3.16	>3.16	>3.16	>3.16	>3.16
ibito	PD184352	0.79	0.12	<0.01	>3.16	>3.16	>3.16	>3.16	>3.16	>3.16
(int	PD032590	<0.01	<0.01	0.48	0.53	>3.16	>3.16	>3.16	>3.16	>3.16
MEP	Pimasertib	<0.01	<0.01	2.27	2.39	>3.16	>3.16	>3.16	>3.16	>3.16
	Refametinib	<0.01	<0.01	<0.01	>3.16	>3.16	>3.16	>3.16	~3.16	>3.16
	TAK-733	<0.01	<0.01	<0.01	0.27	>3.16	>3.16	>3.16	~3.16	>3.16
	AZD8330	<0.01	<0.01	<0.01	>3.16	>3.16	>3.16	>3.16	>3.16	>3.16

Supplementary Table S2. Common mutations in cell lines in components of the PI3K, MAPK, cell cycle and DNA damage repair pathways. Mutations in Cancer Gene Census genes were deducted from the COSMIC database (http://cancer.sanger.ac.uk/cosmic).

		PI3K	MAPK	PI3K/ MAPK	Cell cycle	DNA damage repair
	HCC1143			FGFR2	TP53	
esistant	MDA-MB-435s		BRAF		TP53, CDKN2A, EP300	
	MDA-MB-231		BRAF,NF1	PDGFRA, KRAS	TP53, CDKN2A	
т Т	HCC1806		NFATC2, ROS1	PDGFRB	TP53, CDKN2A	
Ak	SUM229PE			KRAS	CDKN2A	
:(1	SUM52PE				TP53, CDKN2A	
	SUM149PT				TP53, CDKN2A, EP300	BRCA1
	HCC70	PTEN			TP53, RB1	
ant	MDA-MB-453	PIK3CA, PTEN	ROS1		CREBBP, ATM, STAG2	CREBBP, ATM
sist	SUM185PE	PIK3CA			TP53	
EK-i res	BT20	PIK3CA			ATM, CDKN2C, CDKN2A, RB1, TP53	MLH1
2) M	Hs578T	PIK3R1	NF1	HRAS	TP53, CDKN2A, POLE	POLE
	MDA-MB-468	PTEN	CACNA1D, MAP3K13		TP53, CDKN2A, RB1	
ant	BT549	PTEN		FGFR1	TP53, RB1, BUB1B, (DCTN1), PCM1	MUTYH
MEK-i resist	SKBR7			KRAS, NRAS	CDKN2A	
	HCC1937	PTEN	MAPK13		TP53, RB1	BRCA1
	MDA-MB-436	PIK3R1			TP53, RB1	BRCA1, POLE
∆kt /	HCC38		IKBKB		TP53, CDKN2A	PMS2, BRCA1*
3) /	SUM159PT	PIK3CA		HRAS	TP53	
	SUM1315MO2	PIK3CA			TP53	BRCA1

* methylation

Supplementary Table S3. Enriched cell cycle genes in Akt-i/MEK-i resistant group 3

cell lines. From the significantly enriched, cell cycle associated, gene sets, enriched genes or proteins (signal-to-noise < 0.1) were used for further analysis.

mRNA expression			Protein expression			Shared			
PROBE Signal-to- noise		Signal-to- noise	PR	OBE	Signal-to- noise	PR	OBE	Signal-to- noise (mRNA)	Signal-to-noise (protein)
1.	SNAP25	0.710	1.	SEC13	0.797	1.	PSMD11	0.447	0.631
2.	STX11	0.640	2.	RUVBL1	0.765	2.	PSMC2	0.379	0.632
3.	KAT2B	0.530	3.	PSMC4	0.737	3.	SEC13	0.124	0.797
4.	PPP2R3B	0.528	4.	PSMD3	0.737	4.	PSMD3	0.107	0.737
5.	SGOL1	0.499	5.	PSMA3	0.693	5.	PSMD1	0.106	0.678
6.	PTRF	0.489	6.	PSMD1	0.678	6.	PCM1	0.409	0.336
7.	TUBB4A	0.448	7.	PSMA4	0.670	7.	PSMD12	0.103	0.611
8.	PSMD11	0.447	8.	CKAP5	0.666	8.	PSMA7	0.139	0.574
9.	CDC25A	0.425	9.	YWHAG	0.647	9.	PSMB7	0.117	0.571
10.	STX2	0.423	10.	PSMC2	0.632	10.	ORC5	0.240	0.424
11.	PCM1	0.409	11.	PSMD11	0.631	11.	RPS27	0.108	0.545
12.	CENPI	0.393	12.	PSMD12	0.611	12.	PSMD9	0.375	0.239
13.	PSMC2	0.379	13.	RUVBL2	0.604	13.	CCNB1	0.170	0.415
14.	PSMD9	0.375	14.	PSMD4	0.589	14.	CDC23	0.267	0.308
15.	NINL	0.360	15.	PSMA7	0.574	15.	GINS4	0.143	0.414
16.	POLR3D	0.332	16.	PSMB7	0.571	16.	ACTR1A	0.150	0.375
17.	RFC3	0.316	17.	PSMA1	0.569	17.	CUL1	0.164	0.338
18.	HIST1H2A	0.308	18.	SKP1	0.557	18.	ANAPC7	0.141	0.338
19.	CENPO	0.298	19.	RPS27	0.545	19.	NDC80	0.104	0.360
20.	PPP2R1B	0.293	20.	CDK4	0.533	20.	CDK2	0.138	0.316
21.	RPA4	0.289	21.	PSME2	0.526	21.	CDK5RAF	2 0.180	0.255
22.	GTF3C3	0.284	22.	PSMC5	0.514	22.	TYMS	0.228	0.198
23.	GTF2H2	0.283	23.	PSMD8	0.504	23.	SPC25	0.209	0.147
24.	SNAPC1	0.277	24.	RBX1	0.498	24.	PPP2CB	0.107	0.223
25.	TUBA1A	0.274	25.	NUDC	0.487	25.	ZWILCH	0.154	0.176
26.	POLR1A	0.274	26.	PSMC1	0.478	26.	ERCC6L	0.175	0.127
27.	CDK6	0.269	27.	PSME1	0.478	27.	KIF2A	0.117	0.143
28.	CDC23	0.267	28.	PSMB4	0.472	28.	GINS1	0.115	0.141
29.	LIN54	0.250	29.	PSMD13	0.466	29.	SYNE1	0.112	0.120
30.	STX4	0.245	30.	DCTN2	0.445	30.	MAX	0.116	0.116
31.	CEP250	0.244	31.	RPS27A	0.443				
32.	ORC5	0.240	32.	CLASP1	0.442				
33.	CDC6	0.235	33.	UBE2E1	0.440				
34.	TFDP1	0.232	34.	MAGED1	0.438				
35.	MCM6	0.232	35.	DCTN3	0.435				
36.	ATRIP	0.229	36.	ORC5	0.424				
37.	TYMS	0.228	37.	UBE2I	0.423				
38.	WRAP53	0.223	38.	CUL5	0.422				
39.	NUP43	0.222	39.	CCNB1	0.415				
40.	BUB1	0.220	40.	GINS4	0.414				

41. BRCA1	0.218	41. PSMD7	0.382
42. VAMP1	0.218	42. ACTR1A	0.375
43. E2F1	0.211	43. PAFAH1B1	0.365
44. STX1B	0.210	44. PSMB1	0.364
45. SPC25	0.209	45. PSMC3	0.361
46. TUBG1	0.205	46. NDC80	0.360
47. ERCC6	0.205	47. PSMD6	0.355
48. SKA1	0.201	48. CLIP1	0.352
49. CCNE1	0.199	49. XPO1	0.347
50. ORC1	0.199	50. ANAPC2	0.338
51. TAOK1	0.192	51. CUL1	0.338
52. CCNE2	0.190	52. PCM1	0.336
53. HIST1H4J	0.187	53. ANAPC7	0.333
54. GTF2H2B	0.187	54. LMNA	0.331
55. CCNA2	0 184	55. KIE2C	0.328
56. CDKN2C	0 181	56. CDK2	0.316
57. CDK5RAP	0 180	57. TUBGCP2	0.314
58 TUBGCP5	0.100	58 TCEB2	0.314
59 BTRC	0.179	59 CDC23	0.003
60 PSMB2	0.170	60 PSMB5	0.000
	0.177		0.200
62 CENDK	0.173	62 DEMRS	0.279
62 CONPA	0.172	62 CDK5DAD2	0.211
64 DOLES	0.170	64 DEMD2	0.255
64. PULE2	0.169	65 NUE2	0.251
65. CEP135	0.167	65. NUF2	0.248
66. CULI	0.164	66. PSIND9	0.239
67. RBBP4	0.163	67. CEINZ	0.233
68. DNA2	0.161	68. PSINC6	0.232
	0.160	69. DINCIIZ	0.232
70. PPP2R2A	0.156	70. KIF20A	0.226
71. CEP72	0.156	71. RPA1	0.226
72. ZWILCH	0.154	72. PPP2CB	0.223
73. HAUS2	0.152	73. HSPA2	0.222
74. CENPH	0.151	74. PSMD10	0.217
75. CDC25C	0.150	75. PPP2R1A	0.206
76. ACTR1A	0.150	76. FEN1	0.200
77. IAF1B	0.147	77. TYMS	0.198
78. MCM10	0.147	78. MNAT1	0.178
79. UBTF	0.145	79. PPP2R5D	0.177
80. MCM4	0.144	80. ZWILCH	0.176
81. CDC27	0.144	81. ANAPC5	0.176
82. ANAPC10	0.143	82. PRKACA	0.166
83. LIN52	0.143	83. ORC2	0.166
84. GINS4	0.143	84. SEH1L	0.155
85. SNAPC3	0.142	85. YWHAE	0.153
86. SNAPC4	0.142	86. DCTN1	0.150
87. SGOL2	0.142	87. PSMA2	0.150
	0.141	88. HSP90AA1	0.149

89. ANAPC7	0.141	89. NUP37	0.148
90. MIS18A	0.139	90. SPC25	0.147
91. PSMA7	0.139	91. KIF2A	0.143
92. CDK2	0.138	92. TERF2	0.141
93. ZW10	0.138	93. GINS1	0.141
94. KIF18A	0.138	94. PAK2	0.132
95. CDCA8	0.136	95. ERCC6L	0.127
96. CCDC99	0.135	96. SYNE1	0.120
97. PRIM2	0.134	97. MAX	0.116
98. CEP41	0.134	98. PSMD5	0.112
99. TFAM	0.134	99. CDC16	0.106
100.CDC20	0.132	100.PSMA5	0.104
101.POLR3H	0.129	101.DYNC1H1	0.103
102.CEP76	0.126	102.MAPRE1	0.101
103.POLA1	0.126		
104.AURKA	0.125		
105.BIRC5	0.124		
106.SEC13	0.124		
107.CEP63	0.123		
108.SMC1A	0.123		
109.POLR1D	0.122		
110.BRF2	0.119		
111.KIF2A	0.117		
112.PSMB7	0.117		
113.B9D2	0.117		
114.SPC24	0.117		
115.MAX	0.116		
116.STX1A	0.116		
117.CEP164	0.115		
118.SMARCA5	0.115		
119.CDKN2A	0.115		
120.PLK1	0.115		
121.ORC3	0.115		
122.GINS1	0.115		
123.CDC26	0.113		
124.SYNE1	0.112		
125.RAD17	0.112		
126.DSN1	0.111		
127.HIST1H2A	0.110		
128.POLR3GL	0.110		
129.CDK7	0.109		
130.RPS27	0.108		
131.PSMD3	0.107		
132.PPP2CB	0.107		
133.CASC5	0.107		
134.PSMD1	0.106		
135.MYBL2	0.106		
136.ORC6	0.105		

137.NDC80	0.104
138.SSNA1	0.104
139.PSMD12	0.103
140.SSB	0.101
141.MCM2	0.100
142.MCM8	0.100

Supplementary Table S4. Differential sensitivity of group 3 cell lines to CDK inhibitors dinaciclib and flavopiridol. IC50 values for selected cell lines from Group 1 (Akt-i-resistant), Group 2 (MEK-i-resistant) and Group 3 (Akt-i/MEK-i double-resistant) for pan-CDK inhibitors dinaciclib and flavopiridol. IC50 values were calculated using non-linear regression fitting in GraphPad Prism.

	Group 1 (A	Akt-i-resistant)	Group 2 resistan	2 (MEK-i- ht)	Group 3 (Akt-i/MEK-i-resistant)		
IC50 (μM)	HCC180 6	MDA-MB- 435s	BT20	HCC70	SKBR7	MDA-MB- 436	SUM159P T
Dinaciclib	0.2973	0.3121	0.2069	0.1371	0.1465	0.1095	0.1543
Flavopiridol	0.4887	0.2758	0.149	0.1246	0.09521	0.1775	0.1768