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Extended Abstract 

Gene Set Enrichment Analysis is one of the most common tasks in the analysis of 

omic data, and is critical for biological interpretation. In the context of 

Epigenome-Wide Association Studies, which typically rank individual cytosines 

according to the level of differential methylation, enrichment analysis of biological 

pathways is challenging due to differences in CpG/probe density between genes. 

While a number of recent methods, which overcome this bias have been proposed, 

we have found that these algorithms may overadjust, rendering them less powerful 

to detect genuine biological enrichment. Here we propose an empirical Bayes Gene 

Set Enrichment Analysis (ebGSEA) algorithm, which does not rank CpGs but 

genes according to the overall level of differential methylation of its CpGs/probes, 

allowing unbiased and sensitive detection of enriched pathways. Using simulated 

data and real data scenarios, we demonstrate that ebGSEA substantially 

outperforms the existing state-of-the-art. ebGSEA is freely available and 

anticipate that it will become the tool of choice for GSEA in the context of DNA 

methylation studies. 

 

Background 

The most common task in omic data analysis is the ranking of features (e.g. 

genes/CpGs/SNPs) in relation to some phenotype or factor of interest (e.g. case-control 

status, age, obesity). The main purpose of this ranking is to subsequently establish if 

specific biological pathways (or other biological terms) are enriched among the highly 

ranked features, which would indicate that these pathways or biological terms are 

altered, or associated, with the factor of interest. While in the context of gene expression, 

rankings are often derived at the level of genes, in the context of Epigenome-Wide 

Association Studies (EWAS), which measure DNA methylation (DNAm) at individual 

cytosines, rankings are most often derived at the level of individual cytosines, genomic 

regions, or probes, depending on the underlying technology. However, a well-known 

problem is that the number of cytosines or probes can vary dramatically between genes, 

which may lead to genes with higher CpG or probe density having an intrinsically 



higher probability of being highly ranked. Thus, if genes appearing in specific 

biological terms have abnormally higher CpG or probe density, not adjusting for this 

bias could lead to false enrichment [1, 2].  

A similar bias may also occur in the context of RNA-Seq data, where longer genes are 

intrinsically more likely to exhibit differential expression [3], although in this context 

the bias is caused by the fact that expression levels are measured more reliably for 

longer genes. An algorithm called goseq was proposed to avoid this bias in the context 

of RNA-Seq data [3], and the underlying method was recently adapted to tackle the 

differential probe representation bias of DNA methylation data generated with Illumina 

Infinium beadarrays [1]. This method is called GSAmeth and is part of the missMethyl 

Bioconductor package. While GSAmeth is efficient at removing this bias, we have 

found that this algorithm may overadjust, rendering the method less sensitive to detect 

genuine biological enrichment. Here, we explicitly demonstrate this using two different 

real EWAS, where specific biological terms should be enriched and where GSAmeth 

does not predict their enrichment. In addition, we also find that GSAmeth may 

introduce other biases: for instance, it does not care about the number of DMCs that 

map to a gene, nor about their significance levels, all of which can lead to suboptimal 

ranking of enriched biological terms, and thus to a potentially reduced sensitivity and 

specificity. 

To address these issues, we propose a novel empirical Bayes algorithm (called 

ebGSEA), which unlike most other methods, ranks genes instead of CpGs/probes. 

ebGSEA leverages the evidence of differential methylation from all CpGs/probes 

mapping to a given gene, to rank genes according to their overall level of differential 

methylation. A key property of ebGSEA is that, like GSAmeth, it does not favour genes 

with high or low CpG/probe representation, thus avoiding the bias, whilst also 

rendering the method sensitive enough to detect true biological enrichment. With genes 

ranked by this empirical Bayes regression model, GSEA can subsequently be performed 

using a non-parametric Wilcoxon rank sum test or the known-population median test 

(KPMT) [4], thus allowing GSEA to be performed in a threshold independent manner.   

 

The ebGSEA algorithm 

As mentioned, ebGSEA has two direct advantages over a competing method like 

GSAmeth. First, it directly ranks genes according to their overall level of differential 

methylation, as assessed using all of the probes that map to the given gene, without 

incurring differential probe representation bias. Second, because ebGSEA ranks genes, 

enrichment of biological terms can be performed on this ranked list using either a 

standard one-tailed Wilcoxon rank sum test (WT), or a recently introduced more 



powerful version called Known Population Median Test (KPMT) [4], thus avoiding the 

need for what is normally an arbitrary choice of threshold for calling significant genes. 

This is in contrast to GSAmeth, which ranks probes and which subsequently requires 

the specification of a significance threshold to declare a list of significant DMCs. 

ebGSEA ranks genes according to their level of differential methylation by adapting 

the global test from Goeman et al [5-7], which can be interpreted either as a random 

effects model, or alternatively, as an empirical Bayes generalized regression model.  

Specifically, the global-test evaluates whether the DNA methylation patterns of CpGs 

mapping to a given gene g differ significantly between two phenotypes. Assuming that 

the phenotype of samples labeled by an index s is encoded in a vector Y, then the model 

for gene g is  

𝐸𝑔[𝑌𝑠|𝛾𝑔] = ℎ−1(𝛼𝑔 +∑ 𝛾𝑐𝑔𝑚𝑐𝑠

𝑛𝑐𝑔

𝑐=1
) 

where h is the link function, 𝛼𝑔 is the intercept term, 𝑚𝑐𝑠 is the methylation (beta-

value) for CpG c (that maps to gene g) in sample s, 𝛾𝑐𝑔 are regression coefficients to 

be estimated, and where 𝑛𝑐𝑔 is the total number of probes (CpGs) mapping to gene g. 

Since this number could be large, testing the null that all 𝛾𝑐𝑔 = 0 can be conveniently 

formulated in an empirical Bayesian setting where one assumes that all 𝛾𝑐𝑔 are drawn 

from a common distribution of mean zero and variance 𝜎2. The null hypothesis then 

becomes 𝜎2 = 0. The observed methylation data of the CpGs mapping to the gene is 

then used to determine the posterior probability that 𝜎2 > 0. As shown by Goeman et 

al, and interpreting the above model as a random effects model, a score test can be 

constructed which is locally most powerful on average in a neighborhood of the null 

hypothesis [8]. The test is therefore specially powerful for detecting alternatives 

characterized by many weak effects (e.g. many marginal DMCs mapping to the same 

gene). The test yields a P-value, that allows all genes to be ranked based on the 

combined evidence for differential methylation of its constituent probes.  

 

ebGSEA improves ranking and sensitivity on simulated data 

To illustrate some of the key advantages of ebGSEA, we considered specific simulation 

models. In order to avoid the influence of gene overlaps between different pathways, 

we devised a simulation framework whereby altered “pathway(s) of interest” were 

constructed by selecting genes with representative probes on the Illumina beadarrays 

(450k or EPIC), but which were not found in the Molecular Signatures Database 

(MsigDB) [9] (the database we use to perform GSEA) (Fig.S1). In other words, we use 

a strategy whereby the 8567 biological terms of MSigDB contain genes that are not 



altered in relation to the phenotype of interest. These define our “true negative pathways” 

allowing us to more reliably estimate the specificity. In order to estimate sensitivity, we 

augment the MSigDB with new hypothetical altered pathways (the true positives) 

consisting of genes with probe representation on the beadarrays but which are not found 

in the original MSigDB database. These genes are allowed to contain DMCs, as 

specified in more detail below. The lack of gene overlap between our altered pathways 

of interest and all those in the MSigDB database allows us to assess the specificity in 

an unbiased way. In more detail, we considered the following simulation models:  

Simulation model-1: We defined two altered pathways of interest (A & B), as 

described above, matched for all variables (i.e. number of genes in pathway, probes 

mapping to each gene and number of genes containing at least 1 DMC). In pathway A, 

all CpGs mapping to a differentially methylated gene (DMG) are DMCs (we model 

these from a different beta distribution so that the average difference in DNAm is large, 

Δβ =0.6). In pathway B, only one CpG mapping to an altered gene is a DMC. Thus, in 

this scenario both pathways have the same number of DMGs (as the DMCs occur at 

very high statistical significance), but the number of DMCs within a DMG are wildly 

different. Fig.S2a-b depicts this scenario. As results show, GSAmeth assigns the same 

P-value to those two pathways (Fig.S2c), whereas ebGSEA favors the pathway 

containing more DMCs, as required. The inability of GSAmeth to properly rank 

pathways occurs because it first ranks DMCs, then maps DMCs to genes, assigning 

same weight to genes with lots of DMCs than to genes with only one DMC. 

Simulation Model-2: In this scenario we again consider two pathways (A & B), but in 

this case all the CpGs mapping to DMGs are DMCs. The difference between A and B 

is in terms of the level of statistical significance of the DMCs, with DMCs in pathway 

A exhibiting high statistical significance (△β =0.6), whereas DMCs in pathway B 

exhibit more marginal differences in DNAm (△β =0.2). Thus, although the number of 

DMCs and DMGs are the same in the two pathways, the significance levels of the two 

pathways should be different, since for pathway-A, the associated effect sizes are much 

bigger. Fig.S3a-b depicts this scenario, and as we can see, GSAmeth assigns almost the 

same P-value to these two pathways, whereas ebGSEA favors the pathway containing 

the more significant DMCs (Fig.S3c), as required.  

Simulation Model-3: We now only have one altered pathway “A” containing 50 genes 

with 25% of the CpGs mapping to them exhibiting marginal DNAm changes (△β 

=0.15). These marginal DMCs do not pass genome-wide significance levels. We also 

randomly choose 1000 CpGs from the full background set of 450k CpGs to be DMCs 

(△β =0.3), that do pass genome-wide significance levels. We refer to these as 

background DMCs as these are randomly chosen and therefore not necessarily 

associated with any pathway. Fig.1a depicts an example of a gene in pathway A, and 



of another gene not in pathway-A but containing a top ranked DMC. We can see that 

genes in pathway-A contain a lot of marginal DMCs which will not be selected as 

DMCs in GSAmeth (Fig.1b), resulting in the enrichment of the pathway being missed 

by GSAmeth. In contrast, those genes will be relatively highly ranked via ebGSEA, and 

the ensuing ranked list leads to significant enrichment of the pathway (Fig.1c-d).  

 

Simulation Model-4: We implemented Simulation Model-3 more systematically in 

order to better estimate sensitivity and to assess its dependence on the number of 

background DMCs. We allowed the number of background DMCs to vary from 1000, 

3000 to 5000. We also used two different thresholds to call significance at the pathway 

level: (1) Bonferroni-corrected, i.e. using 0.05/(number of pathways) as the P-value 

threshold, and (2) using Benjamini-Hochberg FDR and selecting those with FDR<0.05. 

We also considered the two different versions of beadarrays: EPIC [10] and Illumina 

450k [11]. We ran a total of 100 Monte-Carlo simulations to obtain an average 

sensitivity and specificity for each method (ebGSEA/GSAmeth). Results confirm our 

previous analysis, in that ebGSEA can achieve very high sensitivity in scenarios where 

GSAmeth would not identify the truly altered pathway of interest, and that this 

increased sensitivity does not occur at the expense of a substantially decreased 

specificity (Fig.S4). We also modified Model-4 to include 50 altered pathways of 

interest, instead of only 1. Each of the 50 altered pathways consists of 50 genes, thus 

making a total of 250 genes, all selected from genes represented on the beadarray but 

not part of the MSigDB database. As before, 25% of the CpGs mapping to genes in 

each of the 50 pathways were chosen to be altered at a marginal level (△β =0.15). 

Results for sensitivity are in line with those obtained earlier (Fig.S5). 

 

ebGSEA avoids differential probe representation bias 

We further evaluated ebGSEA on 3 independent real EWAS HM450k datasets. 

First is a buccal swab dataset [12]. We here use the discovery dataset which contains 

400 buccal swab samples from women all aged 53 at sample draw and who varied 

significantly in terms of their smoking exposure. As shown previously using Fisher’s 

exact GSEA method, a biological term containing genes overexpressed in smoking 

related head & neck cancer was highly enriched among smoking-associated DMCs 

derived from these buccal swabs [12]. This makes biological sense since the epithelial 

cells from the buccal swabs are likely to serve as close proxies for the cell of origin of 

specific head & neck cancers (nasopharyngeal carcinoma). Thus, we can objectively 

test ebGSEA and GSAmeth in their ability to detect enrichment of this specific 



biological term. The biological term in question is 

DODD_NASOPHARYNGEAL_CARCINOMA_UP and is part of MSigDB [9]. To 

derive smoking DMCs, we followed the procedure in [12], performing linear 

regressions between smoking pack years and DNAm using bisulfite conversion 

efficiency as a covariate.  

 

The second dataset is one of the largest available EWAS for aging [13]. We 

downloaded this Illumina 450k data from GEO (GSE40279). This dataset contains 656 

whole blood samples. We used Singular Value Decomposition (SVD) to asses the 

sources of inter-sample variation. This showed that variation of this dataset was mostly 

driven by the source site of samples, plate and ethnicity, with gender and age associated 

with lower ranked components. Since source and ethnicity were fully correlated with 

plate, here we used “Combat” function in sva R-package to remove the plate effect. 

Age was used as the phenotype to subsequently identify DMCs. As a gold-standard 

biological term we used the list of genes differentially expressed in peripheral blood as 

a function of age from Peters et al [14]. These age-associated mRNA changes co-locate 

with potentially functional CpG methylation sites in enhancer and insulator regions, 

and are thus likely to be accompanied by DNAm changes, providing a non-trivial but 

also objective test. 

The third dataset is a Rheumatoid arthritis (RA) EWAS study by Liu et al [15]. It is an 

Illumina 450k dataset of 689 peripheral blood samples, which we downloaded from 

GEO (GSE42861). In this set we used RA as the phenotype, and because RA is known 

to be associated with a shift in the granulocyte to lymphocyte ratio, we would expect 

biological terms related to the immune system to be highly enriched among top-ranked 

DMCs associated with RA. We note that DMCs were derived not adjusting for blood 

cell subtype fractions, since we want to test whether the GSEA method can capture the 

shift in the granulocyte to lymphocyte ratio. 

We checked that in all 3 datasets, ebGSEA avoids differential probe representation bias, 

since the statistical significance of the DMGs did not correlate with the number of CpGs 

mapping to the gene (Fig.S6, or Figs.1f,h,i).  

 

ebGSEA retains high sensitivity in real EWAS 

To compare the sensitivity of ebGSEA to GSAmeth, we observed that ebGSEA ranked 

the corresponding gold-standard biological terms in each dataset very highly, whereas 

GSAmeth exhibited substantial variation as a function of the number of selected DMCs 

(Fig.S7, Figs.1g,e) (with the exception of the Liu et al set where both methods did well). 



 

Implementation and availability 

ebGSEA is available in ChAMP as function champ.ebGSEA().We can use the codes as 

below: 

myLoad <-champ.load(directory=system.file("extdata",package="ChAMPdata")) 

myNorm <- champ.norm() 

myebGSEA<- 

champ.ebGSEA(beta=myNorm,pheno=myLoad$pd$Sample_Group,arraytype="450K") 

Where parameter beta is a matrix of values representing the methylation scores for each 

sample, pheno is the phenotype information. 

Alternatively stand-alone functions are available from 

http://github.com/ebGSEA/aet21 

 

Conclusions 

In summary, ebGSEA, like GSAmeth, successfully avoids the bias associated with 

differential probe representation, whilst also allowing biological terms to be ranked 

depending on the number and statistical significance level of the DMCs present in the 

differentially methylated genes. The fact that ebGSEA ranks genes, not CpGs, is a 

succinct advantage, as it combines the information pertaining to the number of DMCs 

and their individual significance levels for each gene, to rank them in an unbiased 

fashion. Thus, ebGSEA also naturally avoids having to assign what is often an arbitrary 

statistical significance threshold for calling DMCs, since enrichment analysis methods 

based on ranked lists of genes can be used to obtain final rankings of enriched biological 

terms. Although we have demonstrated the validity of ebGSEA mainly on the HM450k 

platform, our simulation results on the EPIC beadarray suggest that its performance is 

largely independent of the version of Illumina beadarray platform. Thus, ebGSEA will 

be a useful GSEA tool for all upcoming EWAS that use EPIC beadarrays and for re-

analysis of existing HM450k data. 

 

 

 

 

 

 



 

 

 

 

Supplementary Figures 

 

 

Fig.S1. Venn Diagram of genes in the MSigDB database and genes annotated to the 

HM450k beadarray. In MSigDB we have 31,862 unique Entrez Gene IDs, of which 17930 

overlap with Entrez Gene IDs annotated to the HM450k platform. In total, we observed 719 

genes that have no overlap with genes in MsigDB, and it is from this subset of 719 genes that 

we define new hypothetical pathways of interest (POI) which contain DMCs and are thus 

altered (defining true positives). All other pathways/biological terms in MSigDB contain no 

genes with DMCs and thus constitute true negatives. This strategy allows more reliable 

assessment of the specificity of GSEA methods. 

 

 

 

 

 

 



 

Fig.S2: Specification and result of simulation model-1. a) Example of a gene in pathway-A,: 

all the CpGs mapping to the gene exhibit highly significant and fairly large (~0.6) DNAm 

changes. b) Example of a gene in pathway-B: only one of the CpGs mapping to the gene is a 

DMC with a ~0.6 DNAm change. c) Pathway significance values  ( -log10(P), y-axis) for 

8569 pathway terms and three different GSEA methods (x-axis). Red dot indicates pathway-A, 

blue dot indicates pathway-B. Grey dashed line indicates Bonferroni significance level. 

Observe that although gsameth assigns both pathways higher statistical significance levels than 

ebGSEA, that the statistical significance values from ebGSEA still pass a stringent Bonferroni-

level and that it ranks pathway-A above pathway-B, as required. 

 

 

 

 

Fig.S3: Specification and result of simulation model-2. a-c) As in previous figure, but now 

with the CpGs mapping to genes in pathway-B all being marginal DMCs, in contrast to those 

in pathway-A where they are all highly significant DMCs. Again, observe that although 

gsameth assigns both pathways higher statistical significance levels than ebGSEA, that the 

statistical significance values from ebGSEA still pass a stringent Bonferroni-level and that it 

ranks pathway-A above pathway-B, as required. 

 

 

 



 

Fig.S4: Result of simulation model-4 for the case of 1 altered pathway of interest. Top-

row: The average sensitivity of ebGSEA (orange) and GSAmeth (blue) to detect the 1 altered 

pathway of interest for 3 different numbers of background DMCs, for two different pathway 

significance thresholds (FDR<0.05 and Bonferroni) and for both HM450k and EPIC beadarray 

versions. Bottom-row: As top-row, but for the specificity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig.S5: Result of simulation model-4 for the case of 50 altered pathways of interest. Top-

row: The average sensitivity of ebGSEA (orange) and GSAmeth (blue) to detect the 50 altered 

pathways of interest for 3 different numbers of background DMCs, for two different pathway 

significance thresholds (FDR<0.05 and Bonferroni) and for both HM450k and EPIC beadarray 

versions. Bottom-row: As top-row, but for the specificity. 

 

 

 

Fig.S6. ebGSEA avoids differential probe representation bias. Scatterplots of gene-level –

log10(P-values) from the global-test used in ebGSEA against the number of CpGs per gene. We 

give the R2 value, indicating absence of a correlation. a) Buccal Dataset, b) Hannum et al.’s 

dataset, c) Liu et al.’s dataset. 

 

 

 

 

 



 
 

Fig.S7. ebGSEA retains high sensitivity in real EWAS. Ranking position (expressed as a 

fraction of all pathway terms) (y-axis) of a truly altered pathway against number of top-ranked 

selected CpGs (x-axis) for ebGSEA and GSAmeth. Ranking fraction is defined as Ranking 

fraction = 1 – (rank-1)/n, where n is the number of pathway terms and where rank is the rank 

position of the truly altered pathway. Thus, if pathway is ranked at the top, rank=1, and Ranking 

fraction is also 1. a) smoking-EWAS buccal set with smoking associated pathway 

("DODD_NASOPHARYNGEAL_CARCINOMA_UP") as the truly altered pathway, b) 

Hanuum et al.’s whole blood EWAS for aging, with a truly altered pathway containing genes 

that are differentially expressed with chronological age in peripheral blood tissue. c) Liu et al.’s 

EWAS dataset (GSE42861), with immune associated pathway 

("IMMUNE_SYSTEM_PROCESS") as the truly altered pathway. 

 

 

REFERENCES 

 

1. Phipson B, Maksimovic J, Oshlack A: missMethyl: an R package for 

analyzing data from Illumina's HumanMethylation450 platform. 

Bioinformatics 2016, 32:286-288. 

2. Geeleher P, Hartnett L, Egan LJ, Golden A, Raja Ali RA, Seoighe C: 

Gene-set analysis is severely biased when applied to genome-wide 

methylation data. Bioinformatics 2013, 29:1851-1857. 

3. Young MD, Wakefield MJ, Smyth GK, Oshlack A: Gene ontology 

analysis for RNA-seq: accounting for selection bias. Genome Biol 

2010, 11:R14. 

4. Parks MM: An exact test for comparing a fixed quantitative property 



between gene sets. Bioinformatics 2018, 34:971-977. 

5. Meijer RJ, Goeman JJ: Multiple Testing of Gene Sets from Gene 

Ontology: Possibilities and Pitfalls. Brief Bioinform 2016, 17:808-818. 

6. Chaturvedi N, Goeman JJ, Boer JM, van Wieringen WN, de Menezes 

RX: A test for comparing two groups of samples when analyzing 

multiple omics profiles. BMC Bioinformatics 2014, 15:236. 

7. Goeman JJ, van de Geer SA, de Kort F, van Houwelingen HC: A global 

test for groups of genes: testing association with a clinical outcome. 

Bioinformatics 2004, 20:93-99. 

8. Goeman JJ, le Cessie S: A goodness-of-fit test for multinomial logistic 

regression. Biometrics 2006, 62:980-985. 

9. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, 

Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov 

JP: Gene set enrichment analysis: a knowledge-based approach for 

interpreting genome-wide expression profiles. Proc Natl Acad Sci U S 

A 2005, 102:15545-15550. 

10. Moran S, Arribas C, Esteller M: Validation of a DNA methylation 

microarray for 850,000 CpG sites of the human genome enriched in 

enhancer sequences. Epigenomics 2016, 8:389-399. 

11. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova 

M, Esteller M: Validation of a DNA methylation microarray for 450,000 

CpG sites in the human genome. Epigenetics 2011, 6:692-702. 



12. Teschendorff AE, Yang Z, Wong A, Pipinikas CP, Jiao Y, Jones A, 

Anjum S, Hardy R, Salvesen HB, Thirlwell C, et al: Correlation of 

Smoking-Associated DNA Methylation Changes in Buccal Cells With 

DNA Methylation Changes in Epithelial Cancer. JAMA Oncol 2015, 

1:476-485. 

13. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle 

B, Bibikova M, Fan JB, Gao Y, et al: Genome-wide methylation profiles 

reveal quantitative views of human aging rates. Mol Cell 2013, 49:359-

367. 

14. Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, 

Powell J, Reinmaa E, Sutphin GL, Zhernakova A, Schramm K, et al: 

The transcriptional landscape of age in human peripheral blood. Nat 

Commun 2015, 6:8570. 

15. Liu Y, Aryee MJ, Padyukov L, Fallin MD, Hesselberg E, Runarsson A, 

Reinius L, Acevedo N, Taub M, Ronninger M, et al: Epigenome-wide 

association data implicate DNA methylation as an intermediary of 

genetic risk in rheumatoid arthritis. Nat Biotechnol 2013, 31:142-147. 

 


