
DeepAffinity: Interpretable Deep Learning of Compound-Protein

Affinity through Unified Recurrent and Convolutional Neural

Networks

(Supplementary Data)

Mostafa Karimi1,2, Di Wu1, Zhangyang Wang3 and Yang Shen1,2,∗

1 Department of Electrical and Computer Engineering, 3 Department of Computer Science
and Engineering, and 2 TEES-AgriLife Center for Bioinformatics and Genomic Systems

Engineering, Texas A&M University, College Station, 77843, USA.

∗ Contact: yshen@tamu.edu

1 Materials and Methods

1.1 Data curation

For the labeled data, we chose the half maximal inhibitory concentration (IC50) as the main measure
of binding affinity and extracted samples with known IC50 values from BindingDB (Liu et al.,
2006). We used the measurements along with amino-acid sequences of proteins and 2D structures
of compounds provided by BindingDB in the file “BindingDB All 2018m8.tsv.zip”. Since compound
SMILES strings are not always available and not necessarily in the canonical form, we retrieved these
strings from PubChem (Kim et al., 2016) by cross-referencing their PubChem CIDs (compound
IDs). As 95% of compounds and proteins with known IC50 values are of lengths up to 100 (SMILES
characters) and 1500 (amino acids), respectively, we removed samples outside of the length ranges.
And we also removed samples with incomplete information to determine protein sequences (such
as those containing the letter “X”, lower-case letters, or arabic numerals) or with IC50 as a range
instead of exact value (unless it is worse than a weak 10−2M (10mM) or better than a tight 10−11M
(0.01nM)). Moreover, for each protein-compound pairs with multiple measurements, we removed
measurements outside aforementioned ranges and then used the geometric mean of the rest. In the
end, we collected 489,280 IC50 samples from BindingDB.

The collected IC50 data are split into training, testing, and 4 generalization sets. We first
withheld 4 generalization sets of all the 3,374 nuclear estrogen receptors (ER α and β), 14,599
ion channels, 34,318 receptor tyrosine kinases, and 60,238 G-protein coupled receptors (GPCR),
respectively; and then split the remaining into the training (263,583) and the testing (113,168)
sets. To determine each of the 4 generalization sets (protein classes), we compared each protein’s
Gene Ontology (GO) molecular function terms to a set of target GO terms. Specifically, using
the QuickGO REST API, we identified for each of the 4 protein classes a target GO molecular
function term (ER: GO:0030284, ion channel: GO:0005216, receptor tyrosine kinase: GO:0004713,

1



and GPCR: GO:0004930) and its molecular-function descendants. And using UnitProt ID as a
protein identifier, we retrieved each protein’s molecular function GO terms by cross-referencing its
UniProt entry html. If any GO term of a protein belongs to a target GO set, we will classify the
protein to the corresponding protein class. The only exception applied to ER. Since some proteins
contained target GO terms for both ER and GPCR, we only classified proteins with the ESR1 and
ESR2 genes (again retrieved from their UniProt entries’ html files) to nuclear estrogen receptor
(ER).

We used IC50 in its logarithm form (pIC50 = − log10IC50) as the target label for regression.
Prior to taking the logarithm, we truncated IC50 to the range of [10−11M, 10−2M] considering the
sensitive ranges of experimental methods for IC50 measurement. In other words, measurements
stronger than 10−11 or weaker than 10−2 would be regarded 10−11 or 10−2, respectively.

We also used Ki and Kd values (again, in their logarithm forms) from BindingDB as measures
of binding affinity. These data were curated similarly as the IC50 data. In total, we split a curated
Ki (Kd) dataset into 101,134 (8,778) samples for training, 43,391 (3,811) for testing, 516 (4) for
ER, 8,101 (366) for ion channels, 3,355 (2,306) for receptor tyrosine kinases, and 77,994 (2,554) for
GPCRs. Furthermore, we curated EC50 data from BindingDB similarly and split them into 26,413
samples for training, 11,483 for testing, 961 for ER, 1,691 for ion channels, 292 for receptor tyrosine
kinases, and 21,720 for GPCRs. Due to their relatively small sizes, Kd and EC50 data were only
used in shallow regression to compare the baseline and novel representations.

For the unlabeled compound data from STITCH, we randomly chose 500K samples for training
and 500K samples for validation (sizes were restricted due to computing resources) and then re-
moved those whose SMILES string lengths are above 100, resulting in 499,429 samples for training
and 484,481 for validation. For the unlabeled protein data from UniRef, we used all UniRef50
samples (50% sequence-identity level) less those of lengths above 1,500, resulting in 120,000 for
training and 50,525 for validation.

1.2 Protein representation

We designed an algorithm to first generate secondary structure elements (SSEs) from predicted
secondary structure classes based on two rules: the minimum size of α- or β SSEs is 5 and that for
coil SSEs is 3; a group of less size is merged to neighboring SSEs that satisfy the minimum size,
by sliding a window of size 7 down the sequence to “smooth” it. The rules are adopted to address
uncertain or “orphan” groups of few members. More details can be found in Algorithm 1.

Each SSE is classified based on secondary structure category, solvent accessibility, physicochem-
ical properties, and residue length (Table S1). Specifically, an SSE is solvent exposed if at least 30%
of residues are and buried otherwise; polar, non-polar, basic or acidic based on the highest odds
(for each type, occurrence frequency in the SSE is normalized by background frequency seen in
all protein sequences to remove the effect from group-size difference, See Table S2); short if length
L 6 7, medium if 7 < L 6 15, and long if L > 15. More details can be found in Algorithm 2.

Secondary Structure Solvent Exposure Property Length

Alpha Beta Coil
Not
Ex-
posed

Exposed
Non-
polar

Polar Acidic Basic Short Medium Long

A B C N E G T D K S M L

Table S1: 4-tuple of letters in protein structural property sequence (SPS) for creating words.

2



Algorithm 1 “Smoothing” Secondary Structure Element Sequence

Input: Secondary Structures over a Protein Sequence
Output: Smoothed Secondary Structure Element Sequence
Initialize: MeaningfulMinLength as 3 for Coil and 5 for Sheet and Helix
Initialize: MaxGroupLength as 7
for Each line in Secondary Structure do

Initialize FinalSeq as Empty
for Each letter in line do

if Current = Next then
Store Current in S
Mark the length of continue same sequence as L

else if L > MeaningfulMinLength then
Smooth all letters in S to last letter
Store S to FinalSeq and clear S
Continue

else if Length of S < MaxGroupLength then
Store to S
Continue

else
Smooth all letters to the most number letter in S
Store S to FinalSeq and Clear S
Continue

end if
end for
return FinalSeq
Clear FinalSeq

end for

Groups Amino-acid members # of members Background frequency

Nonpolar Gly, Ala, Val, Leu, Ile, Met, Phe, Pro, Trp 9 0.505

Polar Ser, Thr, Tyr, Cys, Gln, Asn 6 0.253

Acidic Asp, Glu 2 0.111

Basic Lys, Arg, His 3 0.131

Table S2: Nonpolar, polar, basic and acidic amino acids and their frequencies.

In this way, we defined 4 “alphabets” of 3, 2, 4 and 3 “letters”, respectively to characterize
categories in SSE, solvent accessibility, physicochemical characteristics, and length (Table S2) and
combined letters from the 4 alphabets in the order above to create 72 “words” (4-tuples) to describe
SSEs. For example, the word “AEKM” means an α-type SSE that is solvent-exposed, overly basic,
and of medium length. Lastly, we “flattened” the 4-tuples into a protein alphabet of 76 letters (72
plus 4 special symbols such as beginning, ending, padding, and not-used ones).

3



Algorithm 2 Secondary Structure Element (SSE) Sequence to Structure Property Sequence (SPS)

Input: Smoothed Secondary Structure and Exposedness Protein Sequence
Output: Structural Property Sequence (SPS).
Initialize: Exposedness threshold eThres
Initialize: Polarity threshold pThres based on the average of each types
for Each ss in Secondary Structure Element Sequences do

Initialize FinalSeq as Empty
Read next Exposedness Protein Sequence to acc
Read next Protein Sequence to protein
for Each continuous same letter in ss do

Store corresponding letter to G
if the number of ‘e’ in ss > eThres then

Store ‘E’ to G
else

Store ‘N’ to G
end if
if percentage of one type polarity in protein > pThres then

Store corresponding letter to G
end if
if Length of group ≤ 7 then

Store ‘S’ letter to G
else if Length of group ≤ 15 then

Store ‘M’ letter to G
else if Length of group > 15 then

Store ‘L’ letter to G
end if
Store G to FinalSeq
Clear G

end for
return FinalSeq
Clear FinalSeq

end for

4



1.3 Shallow machine learning models

Shallow machine learning models — ridge, lasso, and random forest (RF) — were used to com-
pare learned protein/compound representations with baseline ones and implemented using scikit-
learn (Pedregosa et al., 2011). Hyper parameters include regularization constant α ∈ {10−4, 10−3, . . . , 104}
for lasso and ridge regression as well as the number of trees ∈ {50, 100, 200, 500}, the minimum
sample per leaf ∈ {10, 50, 100} and the maximum number of features for each tree ∈ {n,

√
n, log2 n}

for random forest where n denotes the number of features. These hyper parameters were optimized
using 10-fold cross validation.

1.4 RNN for Unsupervised Learning

1.4.1 Introduction to GRU

+

f
t

i
t o

t
C
t

˜ r
t

X

x
t

s
t-1

h
t

X

+

1-

tanh

tanh

s
t

z
t

XX

X X

σ σ σtanh
σ σ

+

x
t

s
t-1

C
t-1 C

t

s
t

s
t

Figure S1: LSTM and GRU

As shown in Fig. S1, an LSTM unit consists of three “gates” — input (it), forget (ft) and output
(ot) gates as well as two states — cell (also memory, Ct) and hidden states (also output, st).
LSTM will iterate over the input sequence (x1, · · · , xt, · · · , xT ) and calculate the output sequence
of (s1, · · · , st, · · · , sT ) through:

ft = σ(Wf × [st−1, xt] + bf )

it = σ(Wi × [st−1, xt] + bi)

C̃t = tanh(Wc × [st−1, xt] + bc)

Ct = ft × Ct−1 + it × C̃t
ot = σ(Wo × [st−1, xt] + bo)

st = ot × tanh(Ct)

(1)

GRU further simplifies LSTM without sacrificing the performance much. With much less param-
eters, it demands lighter computational time. A GRU unit consists of two gates — reset (rt) and
update (Zt) gates as well as one state — hidden state (st). It calculates the output sequence of
(s1, · · · , st, · · · , sT ) over the input sequence (x1, · · · , xt, · · · , xT ) through:

zt = σ(Wz × [st−1, xt] + bz)

rt = σ(Wr × [st−1, xt] + br)

ht = tanh(Wh × [rt × st−1, xt] + bh)

st = (1− zt)× st−1 + zt × ht

(2)

5



1.4.2 GRU implementation

Our alphabets include 68 and 76 letters (including 4 special symbols such as padding in either
alphabet) for compound SMILES and protein SPS strings, respectively. Based on the statistics of
95% CPIs in BindingDB, we set the maximum lengths of SMILES and SPS strings to be 100 and
152, respectively. Accordingly, we used 2 layers of GRU with both the latent dimension and the
embedding layer (discrete letter to continuous vector) dimension being 128 for compounds and 256
for proteins. We used an initial learning rate of 0.5 with a decay rate of 0.99, a dropout rate of 0.2,
and a batch size of 64. We also clipped gradients by their global norms. All neural network models
for supervised learning were implemented based on TensorFlow (Abadi et al., 2016) and TFLearn
(Tang, 2016).

We further test four more seq2seq variants under the combination of the following options:
• Bucketing (Khomenko et al., 2016) as an optimization trick to put sequences of similar

lengths in the same bucket and padded accordingly during training. We used bucketing
groups of {(30,30), (60,60), (90,90), (120,120), (152,152)} for SPS and {(20,20), (40,40),
(60,60), (80,80), (100,100)} for SMILES.

• Bidirectional GRU that shares parameters to capture both forward and backward depen-
dencies (Schuster and Paliwal, 1997).

• Attention mechanism (Bahdanau et al., 2014) that allows encoders to “focus” in each en-
coding step on selected previous time points that are deemed important to predict target
sequences.

Both bidirectional RNN and attention mechanism can help address computational challenges from
long input sequences.

1.4.3 Attention mechanism for unsupervised learning

To address the challenge from long input sequences, the attention mechanism provides a way to
“focus” for encoders. It only allows each encoding step to be affected by selected previous time
points deemed important, thus saving its memory burden. Suppose that the maximum length of
both the encoder and the decoder is L, the output of RNN (the input to the attention model)
is (s1, · · · , st, · · · , sL), the hidden state of the decoder (h1, · · · , hj , · · · , hL), and the output of
attention model is Cj at each time step j of the decoder. The attention model is parametrized by
two matrices, Ua and Wa, and a vector va (‘a’ stands for attention) and formulated as:

ej,t = va tanh(Uahj−1 +Wast) ∀j = 1, · · · , L and ∀t = 1, · · · , L

αj,t =
exp(ej,t)∑L
k=1 exp(ej,k)

∀j = 1 · · ·L and t = 1 · · ·L

Cj =

L∑
t=1

αj,tst ∀j = 1 · · ·L

(3)

All seq2seq models were implemented based on the seq2seq code released by Google (Britz et al.,
2017).

1.5 Unified RNN-CNN for supervised learning

1.5.1 CNN

Convolutional neural networks (CNN) (Lawrence et al., 1997) have made great success in modeling
image data for computer vision. For either proteins or compounds, our CNN model consisted of

6



a one-dimensional (1D) convolution layer followed by a max-pooling layer. The outputs of these
layers for proteins and compounds were concatenated then fed to two fully connected (or dense)
layers.

In particular, the 1D convolution layer had 64 various filters (all have length 8 and stride 4 for
proteins and length 4 and stride 2 for compounds). The max-pooling layer with a filter of length
4 was to reduce the parameters for the next layers and introduce nonlinearity to the predictor.
The 2 fully connected layers are with 200 and 50 neurons, respectively, activation function of leaky
RELU (Maas et al., 2013), Xavier initialization (Glorot and Bengio, 2010), and a drop-out rate of
20%.

1.5.2 Separate and unified RNN-CNN models

RNNs (encoders and attention models only) for unsupervised learning and CNNs for supervised
learning are connected in series and trained separately or jointly (see Fig. S2).

SMILE String

C1=CC=CN=C1

COCCOCCO

 S=C=S

      Seq2Seq

SMILE encoder

Protein sequence

MVFAGUE

AGGPSEVUTY

      Seq2Seq

protein encoder           CNN

y

          CNN

          Concat           dense          dense

Thought Vector 

from RNN encoder

 of PSF

          CNN

y

          CNN

          Concat           dense          dense

Thought Vector 

from RNN encoder

 of SMILE

Figure S2: Separate and unified RNN-CNN models.

In separate RNN-CNN models, a seq2seq model for proteins or compounds is trained once for
context-specific representations and thought vectors from its encoder are fed as the input to train a
subsequent CNN model. In unified RNN-CNN models, both RNN (just encoder + attention model)
and CNN models are trained together to jointly learn representations and make predictions, which
makes the representations further relevant to the specific task.

Considering that training the unified model involves a non-convex optimization problem in a
much higher dimensional parameter space than training the CNN model alone, we used previously-
learned GRU parameters as starting points to have a “warm start” for optimization.

Specifically, we first fixed parameters of RNN encoders and trained the attention models, CNN
layers and fully connected layers over the labeled training set for 100 epochs with a learning rate
of 10−3. After the newly-trained layers are also warmed up (i.e., initialized), we jointly trained the
unified RNN-CNN model for 200 epochs with a learning rate of 10−4.

In other words, we fine-tuned protein or compound representations learned from seq2seq previ-
ously for compound-protein affinity prediction.

1.5.3 Attention mechanisms for unified RNN-CNN models

Separate attention. We have also introduced protein and compound attention models in super-
vised learning to both improve predictive performances and enable model interpretability at the
level of “letters” (SSEs in proteins and atoms in compounds). In the supervised model we just have
the encoder and its attention αt on each letter t for a given string x (protein or compound). And
the output of the attention model, A, will be the input to the subsequent 1D-CNN model. Suppose
that the length of protein encoder is T and (s1, · · · , st, · · · , sT ) are the output of protein encoder
and similarly the length of compound encoder is D and (m1, · · · ,md, · · · ,mD) are the output of

7



compound encoder. We parametrize the attention model of unified model with matrix Ua and the
vector va. Then, The attention model for the protein encoder is formulated as:

ePt = vPa tanh(WP
a st) ∀t = 1, · · · , T

αPt =
exp(ePt )∑T
k=1 exp(e

P
k )

∀t = 1 · · ·T

AP =
T∑
t=1

αPt st

(4)

Similarly for the compound encoder:

eCd = vCa tanh(WC
a md) ∀d = 1, · · · , D

αCd =
exp(eCd )∑D
k=1 exp(e

C
k )

∀d = 1 · · ·D

AC =

D∑
d=1

αCdmd

(5)

The attention weights (scores) α·t suggest the importance of the tth “letter” (secondary structure
element in proteins and atom or connectivity in compounds) and thus predict the binding sites
relevant to the predicted binding affinity.

Marginalized attention. Considering that the separate attention model does not address compound-
protein pair specificity, we have exploited a co-attention mechanism similar to Lu et al. (2016)
which has been widely used in visual question answering. We name this attention mechanism
“marginalized attention” because we marginalize over rows or columns of a pair-specific interaction
matrix for compound or protein attention in this pair. Specifically, a pairwise “interaction” matrix
N of size T ×D is defined with each element as:

Ntd = tanh(sTt Wamd) ∀t = 1, · · · , T, ∀d = 1, · · · , D, (6)

where the parameter matrix Wa is now of size T ×D.
By considering max column marginalization, we have the marginalized attention model for the
protein:

ePt = max
d=1:D

(Ntd) ∀t = 1, · · · , T

αPt =
exp(ePt )∑T
k=1 exp(e

P
k )

∀t = 1 · · ·T

AP =
T∑
t=1

αPt st

(7)

Similarly, by max row marginalization, we have the marginalized attention model for compounds:

eCd = max
t=1:T

(Ntd) ∀d = 1, · · · , D

αCd =
exp(eCd )∑D
k=1 exp(e

C
k )

∀d = 1 · · ·D

AC =
D∑
d=1

αCdmd

(8)

8



Joint attention. We have further developed a novel “joint attention” mechanism that removes
the need of marginalization and thus pays attention directly on interacting “letter” pairs rather
than individual interfaces. Specifically, for the same pairwise interaction matrix N of size T ×D as
defined in Eq. (6), we would learn the space for the joint model by another layer of neural network:

Btd = tanh(Vbst +Wbmd + b) ∀d = 1 · · ·D, ∀t = 1, · · · , T (9)

Then we can derive the attention score αtd for each (t, d) pair and the final output A as:

αtd =
exp(Ntd)∑T

k=1

∑D
k′=1 exp(Nkk′)

∀d = 1 · · ·D, ∀t = 1, · · · , T

A =

T∑
t=1

D∑
d=1

αtdBtd

(10)

Throughout the study, we disregarded attention scores on special symbols and re-normalized
the rest. For compound SMILES, we further disregarded SMILES symbols that are not English
letters when interpreting compound attentions on atoms, which awaits to be improved.

All neural network models for supervised learning were implemented based on TensorFlow
(Abadi et al., 2016) and TFLearn (Tang, 2016).

1.6 Deep transfer learning

For deep transfer learning, we fine-tuned the first embedding layer (proteins or compounds) and
the last two fully connected layers while fixing the RNN, attention and CNN layers of the model.
Parameters for those fine-tuned layers were initialized at values in the original models and optimized
over the new training data. Batch sizes were set at 2, 10, and 64 for ultra-low (1%), low (5%, 10%),
and medium (30%, 50%) training coverage of each set, respectively.

We held out 30% of each labeled generalization set for testing and incrementally made available
{1%,5%,10%,30%,50%} of each such set for training.

1.7 Paired t-test for analyzing binding site predictions

To show that the attention values of the binding site are statistically more significant in comparison
with the non-binding sites, we performed a one-sided paired t-test. Suppose that there are n1

binding site SSEs and n2 non-binding site ones, we create pairs of samples by pairing each of the
binding site SSE with the non-binding site SSE and create n1× n2 such pairs. We assume the null
hypothesis that there is no difference between the means of the attention values for binding site
SSEs and those for non-binding site SSEs and the alternative hypothesis that the mean of attention
values for binding site SSEs are larger than the non-binding site ones. Then we performed the paired
t-test as following:

• Calculate the difference between the observations in any pair, d.

• Calculate the mean of differences over all n pairs, d̄, and their standard deviation σd.

• Calculate the standard error of mean difference by SE(d̄) = σd√
(n)

.

9



• Calculate the t-statistic by T = d̄
SE(d̄)

under the assumption that this statistic follows a

t-distribution with n− 1 degrees of freedom.

• At the end, calculate the p-value based on the t-distribution.

1.8 Comparing SPS & protein sequence in unsupervised representation learning

We used the same bidirectional+attention seq2seq model for both SPS and amino acid sequences.
Since the maximum length of protein sequences in our dataset is 1,500, we used 1,500 two-layer
GRUs (almost 10 times that of the SPS seq2seq model with 152 GRUs). For protein sequence data,
due to the limit of GPU memory in our facility (one Tesla K80 GPU with 12GB memory), the
highest model specification we could try was with the batch size of 8 and the hidden dimension of
64. We trained the protein sequence seq2seq model for 8 days which is twice the limit for training
SPS seq2seq model.

1.9 Unified RNN/GCNN-CNN

We compared 1D SMILES representations with the very recently developed graph representations
(Gao et al., 2018) for compound protein interactions presented in algorithm 3. In their graphical
representation, they used terminology of radius instead of layers. Since they didn’t provide their
implementation, we implemented their method with their hyper-parameters. We used three layers
of GCNN (R = 3) and five different convolutional filters instead of one for atoms with different
number of neighbors (H1

1 · · ·H5
R). For example, if an atom has n neighbors then Hn convolutional

filter will be used for it in the CNN.
The GCNN described above replaced RNN for compound graphs and RNN was still used

for protein sequences. The rest of the unified RNN-CNN stayed the same and led to a unified
RNN/GCNN-CNN model.

To be fair, similar to our training process for unified RNN-CNN, we used two phases of training
for unified RNN/GCNN-CNN: 1) fixing the protein encoder part and warming-up the rest with
learning rate of 0.001; and 2) jointly training all of them together with the lower learning rate of
0.0001.

Algorithm 3 Graph CNN

Input: Molecule graph G = (V,E), radius R, hidden weights H1
1 · · ·H5

R

Output: A vector ra for each atom a
Initialize: Initialize all the ra
for L = 1 to R do

for each node a ∈ V do
N = neighbors(a)
v← ra +

∑
u∈N ru

ra ← σ(vH
|N |
L )

end for
end for

10



2 Affinity Prediction Results

2.1 Unsupervised learning for representation pre-training

seq2seq +bucketing +fw/bw +attention +attention+fw/bw

Number of iterations 400K 400K 400K 400K 400K

Training error (perplexity) 7.07 7.09 2.02 1.25 1.001

Testing error (perplexity) 6.5 6.91 1.84 1.13 1.0002

Time (h) 40.2 49.52 62.93 84.75 82.52

Table S3: Performance comparison among 5 variants of seq2seq for compound representation based
on perplexity under the limit of 4-day running time and 400K iterations.

seq2seq +bucketing +fw/bw +attention +attention+fw/bw

Number of iterations 400K 400K 400K 153K 153K

Training error (perplexity) 40.85 40.52 16.77 1.007 1.003

Testing error (perplexity) 41.03 43.19 19.62 1.001 1.001

Time (h) 80.7 83.75 79.89 96 96

Table S4: Performance comparison among 5 variants of seq2seq for protein representations based
on perplexity under the limit of 4-day running time and 400K iterations.

2.2 Supervised shallow learning for representation comparison

Baseline representations Novel representations

Ridge Lasso RF Ridge Lasso RF

Training 1.23 (0.60) 1.21 (0.62) 0.83 (0.84) 1.26 (0.58) 1.26 (0.58) 0.67 (0.91)

Testing 1.24 (0.60) 1.22 (0.61) 0.97 (0.78) 1.27 (0.58) 1.27 (0.58) 0.97 (0.78)

ER 1.37 (0.10) 1.38 (0.10) 1.35 (0.24) 1.50 (0.17) 1.34 (0.14) 1.48 (0.14)

Ion Channel 1.44 (0.14) 1.44 (0.14) 1.38 (0.24) 1.52 (0.10) 1.66 (0.10) 1.46 (0.21)

GPCR 1.27 (0.20) 1.28 (0.17) 1.23 (0.30) 1.44 (0.10) 1.44 (0.10) 1.20 (0.19)

Tyrosine Kinase 1.41 (0.41) 1.44 (0.38) 1.43 (0.52) 1.73 (0.20) 1.77 (0.16) 1.75 (0.10)

Time (core hours) 2 2.22 333.2 0.22 1.42 236.21

Memory (GB) 3.2 3.3 3.6 3.2 3.1 2.8

Table S5: Comparing the baseline and the novel representations based on RMSE (and Pearson
correlation coefficient r) of pKi shallow regression.

Baseline representations Novel representations

Ridge Lasso RF Ridge Lasso RF

Training 1.04 (0.72) 1.10 (0.70) 0.97 (0.78) 1.17 (0.64) 1.21 (0.61) 0.76 (0.88)

Testing 1.33 (0.67) 1.19 (0.65) 1.11 (0.70) 1.24 (0.60) 1.28 (0.55) 1.10 (0.70)

Ion Channel 1.53 (0.46) 1.62 (0.37) 1.74 (0.30) 1.81 (0.18) 1.77 (0.16) 1.79 (0.09)

GPCR 1.75 (0.07) 1.74 (0.07) 1.58 (0.09) 1.55 (0.10) 1.53 (0.13) 1.57 (0.07)

Tyrosine Kinase 1.35 (0.45) 1.36 (0.45) 1.32 (0.50) 1.56 (0.18) 1.59 (0.13) 1.46 (0.31)

Time (core hours) 0.1 0.16 4.78 0.01 0.06 10.34

Memory (Gb) 0.4 0.4 0.4 0.4 0.4 0.4

Table S6: Comparing the baseline and the novel representations based on RMSE (and Pearson
correlation coefficient r) of pKd shallow regression.

11



Baseline representations Novel representations

Ridge Lasso RF Ridge Lasso RF

Training 1.02 (0.72) 0.98 (0.74) 0.74 (0.86) 0.92 (0.78) 0.97 (0.74) 0.64 (0.90)

Testing 1.04 (0.70) 1.02 (0.72) 0.90 (0.79) 0.93 (0.77) 0.98 (0.74) 0.80 (0.84)

ER 1.55 (0.20) 1.60 (0.17) 1.71 (0.17) 1.72 (0.14) 1.55 (0.17) 1.51 (0.13)

Ion Channel 1.25 (0.44) 1.26 (0.43) 1.21 (0.48) 1.30 (0.40) 1.39 (0.30) 1.20 (0.33)

GPCR 1.34 (0.20) 1.38 (0.14) 1.39 (0.14) 1.31 (0.24) 1.34 (0.22) 1.31 (0.24)

Tyrosine Kinase 1.25 (0.09) 1.30 (0.08) 1.21 (0.09) 1.33 (0.25) 1.63 (0.26) 1.07 (0.10)

Time (core hours) 0.34 0.42 38.46 0.05 0.26 31.67

Memory (GB) 1 1 1.1 0.9 0.9 0.8

Table S7: Comparing the baseline and the novel representations based on RMSE (and Pearson
correlation coefficient r) of pEC50 shallow regression.

2.3 Supervised deep learning for pKi prediction

Unified RNN-CNN Models (separate attention) Unified RNN-CNN Models (joint attention)
RF single parameter parameter+NN single parameter parameter+NN

ensemble ensemble ensemble ensemble

Training 0.67 (0.91) 0.44 (0.95) 0.42 (0.95) 0.41 (0.96) 0.48 (0.94) 0.44 (0.95) 0.40 (0.96)

Testing 0.97 (0.78) 0.84 (0.84) 0.83 (0.84) 0.79 (0.86) 0.91 (0.81) 0.88 (0.82) 0.80 (0.85)

ER 1.48 (0.14) 1.76 (0.17) 1.74 (0.17) 1.62 (0.07) 1.76 (0.09) 1.78 (0.07) 1.63 (0.10)

Ion Channel 1.46 (0.21) 1.50 (0.21) 1.49 (0.20) 1.41 (0.29) 1.79 (0.23) 1.78 (0.24) 1.51 (0.32)

GPCR 1.20 (0.19) 1.35 (0.28) 1.33 (0.29) 1.26 (0.36) 1.50 (0.21) 1.48 (0.23) 1.35 (0.28)

Tyrosine Kinase 1.75 (0.10) 1.83 (0.27) 1.81 (0.27) 1.85 (0.25) 2.10 (0.16) 2.08 (0.15) 1.95 (0.17)

Table S8: Under novel representations learned from seq2seq, comparing random forest and variants
of separate RNN-CNN and unified RNN-CNN models based on RMSE (and Pearson correlation
coefficient r) for pKi prediction.

2.4 Comparing attention mechanisms of unified RNN-CNN models

Separate attention Marginalized attention Joint attention
single parameter parameter+NN single parameter parameter+NN single parameter parameter+NN

ensemble ensemble ensemble ensemble ensemble ensemble

Training 0.47 (0.94) 0.45 (0.95) 0.44 (0.95) 0.50 (0.94) 0.47 (0.95) 0.42 (0.96) 0.48 (0.94) 0.44 (0.94) 0.40 (0.95)

Testing 0.78 (0.84) 0.77 (0.84) 0.73 (0.86) 0.81 (0.83) 0.79 (0.84) 0.73 (0.86) 0.84 (0.82) 0.80 (0.83) 0.73 (0.86)

Generalization – ER 1.53 (0.16) 1.52 (0.19) 1.46 (0.30) 1.69 (0.20) 1.67 (0.20) 1.53 (0.30) 1.78 (0.03) 1.68 (0.04) 1.37 (0.23)

Generalization – Ion Channel 1.34 (0.17) 1.33 (0.18) 1.30 (0.18) 1.63 (0.01) 1.64 (0.06) 1.41 (0.13) 1.54 (0.25) 1.53 (0.26) 1.42 (0.26)

Generalization – GPCR 1.40 (0.24) 1.40 (0.24) 1.36 (0.30) 1.59 (0.17) 1.57 (0.18) 1.42 (0.24) 1.53 (0.19) 1.53 (0.19) 1.38 (0.25)

Generalization – Tyrosine Kinase 1.24 (0.39) 1.25 (0.38) 1.23 (0.42) 1.69 (0.22) 1.62 (0.25) 1.50 (0.32) 2.22 (0.18) 2.17 (0.21) 2.04 (0.17)

Table S9: Under novel representations learned from seq2seq, comparing different attention mecha-
nisms of unified RNN-CNN models based on RMSE (and Pearson correlation coefficient r for pIC50

prediction.

12



2.5 Generalization sets v.s. training and testing sets

2.5.1 Distributions in compound SMILES and protein SPS

0 10 20 30 40 50 60

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 10 20 30 40 50 60

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 10 20 30 40 50 60

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 10 20 30 40 50 60

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 10 20 30 40 50 60

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 10 20 30 40 50 60

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Length

D
e
n

s
it

y

ER
GPCR
Channel
Kinase
Train
Test

0 20 40 60 80 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 20 40 60 80 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 20 40 60 80 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 20 40 60 80 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 20 40 60 80 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 20 40 60 80 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

Length

D
e
n

s
it

y

ER
GPCR
Channel
Kinase
Train
Test

0 500 1000 1500

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 500 1000 1500

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 500 1000 1500

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 500 1000 1500

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 500 1000 1500

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

0 500 1000 1500

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

Length

D
e
n

s
it

y

ER
GPCR
Channel
Kinase
Train
Test

0 50 100 150

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 50 100 150

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 50 100 150

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 50 100 150

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 50 100 150

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

0 50 100 150

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

Length

D
e
n

s
it

y

ER
GPCR
Channel
Kinase
Train
Test

Figure S3: Comparing marginal distributions of various sets of compounds in size, i.e., the number
of atoms (top left); compounds in SMILES length (top right); protein targets in the amino-acid
length (bottom left); and protein targets in the SPS string length (bottom right).

13



0.0 0.1 0.2 0.3 0.4 0.5

1
.0

1
.5

2
.0

JSD for word distribution

R
e

la
ti
v
e

 e
rr

o
r

Pearson’s r: 0.68

test

ER

GPCR

Ion channel

Tyrosine kinase

0.0 0.1 0.2 0.3 0.4 0.5

1
.0

1
.5

2
.0

JSD for word length distribution

R
e

la
ti
ve

 e
rr

o
r

Pearson’s r: 0.96

test

ER

GPCR

Ion channel

Tyrosine kinase

Figure S4: Relative errors to the training set (y axis) versus Jensen-Shannon distances from the
training-set protein SPS letter distribution (x axis: left) or SPS length distribution (x axis: right)
for various sets of protein targets.

2.5.2 Predicted v.s. measured pIC50

Figure S5: Comparing predictions vs real labels for test and generalization tests for the unified
RNN-CNN model (separate attention).

14



3 Interpreting Affinity and Specificity Predictions

3.1 Comparing binding site prediction between separate attention and joint
attention

To add to the technical details in Section 3.4.1 in the main text, we first corrected joint attention
scores αij on pairs of protein SSE i and compound atom j in the single unified RNN-CNN model

to be βij = αij −
(∑I

k=1 αkj

)
/I (∀i = 1, . . . , I, j = 1, . . . , J) to offset the contribution of

any compound atom j with promiscuous attentions over all protein SSEs. We then calculated the
attention score βi for protein SSE i by max-marginalization (βi = maxj βij). No negative βi was
found in this case thus no further treatment was adopted.

Number of SSEs Top 10% (4) SSEs predicted as binding site by sep. attn. Top 10% (4) SSEs predicted as binding site by joint attn.

Target–Drug PDB ID total binding site # of TP Enrichment Highest rank P value # of TP Enrichment Highest rank P value

Human COX2–rofecoxib 5KIR 40 6 2 2.22 1 1.18e-9 1 1.68 4 0.0107

Human PTP1B–OBA 1C85 34 5 0 0 20 1 1 1.7 1 1.12e-10

Human factor Xa–DX9065 1FAX 31 4 0 0 7 0.898 3 5.81 2 2.2e-16

Table S10: Interpreting deep learning models: predicting binding sites based on joint attentions.
The binding site here is defined as SSEs making direct contacts with compounds (according to the
LIGPLOT service from PDBsum).

Number of SSEs Top 10% (4) SSEs predicted as binding site by joint attn.

Target–Drug PDB ID total binding site # of TP Enrichment Highest rank P value

Human COX2–rofecoxib 5KIR 40 9 1 1.11 4 1.3e-1

Human PTP1B–OBA 1C85 34 6 2 3.77 1 <2.2e-16

Human factor Xa–DX9065 1FAX 31 6 4 5.16 1 <2.2e-16

Table S11: Interpreting deep learning models: predicting binding sites based on joint attentions.
The binding site here is defined as SSEs falling within 5Å from compound heavy atoms.

Figure S6: Protein binding site interpretation for more protein-compound pairs: (Left) COX2-
rofecoxib (PDB ID: 5KIR) and (Right) PTP1B-OBA (PDB ID:1C85). Proteins are shown in
cartoons and color-coded with attention scores βi. Compounds are shown in black sticks.

15



3.2 Attention scores on compounds

We also max-marginalized βij over protein SSE i for βj – attention score on atom j of the compound.

1 6 11 16 21 26 31
Atoms

0.00

0.01

0.02

0.03

0.04
Av

er
ag

e 
im

po
rt

an
ce

 le
ve

l

Figure S7: Max-marginalized attention scores βj ’s for compound DX-9065a interacting with factor
Xa.

Figure S8: The chemical structure and atom names for compound DX-9065a, a selective ligand for
factor Xa.

16



index atom name index atom name

1 C33 18 C13

2 C31 19 C12

3 N32 20 C8

4 N28 21 C7

5 C29 22 C10

6 C30 23 C11

7 C26 24 C6

8 C27 25 C5

9 O25 26 C4

10 C19 27 C9

11 C18 28 C2

12 C17 29 N1

13 C16 30 N2

14 C21 31 C22

15 C20 32 O23

16 C15 33 O24

17 C14 - -

Table S12: Correspondence between atom indices of compound DX-9065a in Fig. S7 and atom
names in Fig. S8.

3.3 Selectivity origin prediction

1 6 11 16 21 26 31 36 41 46
Pairwise SSE alignment

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 
- m

ax
(r

a,
r b

)

Figure S9: Interpreting joint attention in our unified RNN-CNN model for factor Xa specificity.
Pairwise alignment of amino-acid sequences of factor Xa and thrombin decomposed both sequences
into 50 segments. These segments are scored by an alternative measure: one less the maximum
between the corrected attention rank ratios for the two compound-protein interactions. The ground
truth of specificity origin is in red.

17



Segment (paired Thrombin Factor Xa Segment (paired Thrombin Factor Xa
SSE) index SSE index SSE index SSE) index SSE index SSE index

1 1 1 26 17 16

2 1 2 27 17 17

3 2 3 28 18 17

4 3 3 29 19 17

5 3 4 30 20 17

6 4 5 31 21 18

7 4 6 32 22 19

8 4 7 33 23 20

9 4 8 34 24 21

10 5 8 35 25 21

11 5 9 36 26 21

12 6 9 37 27 22

13 7 9 38 28 23

14 8 9 39 28 24

15 8 10 40 29 24

16 8 11 41 30 25

17 9 11 42 31 26

18 10 11 43 32 27

19 11 11 44 33 27

20 12 11 45 34 27

21 13 12 46 35 28

22 13 13 47 36 29

23 14 13 48 37 30

24 15 14 49 37 31

25 16 15 50 38 31

Table S13: Correspondence between segment indices in Fig. S9 (as well as Fig. 4 in Main Text)
and the paired/aligned indices of target (factor Xa) and off-target (thrombin) SSEs.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al. (2016).

Tensorflow: A system for large-scale machine learning. In OSDI , volume 16, pages 265–283.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint

arXiv:1409.0473 .

Britz, D., Goldie, A., Luong, T., and Le, Q. (2017). Massive Exploration of Neural Machine Translation Architectures. ArXiv e-prints.

Gao, K. Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., and Zhang, P. (2018). Interpretable drug target prediction using deep neural

representation. In IJCAI , pages 3371–3377.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the

thirteenth international conference on artificial intelligence and statistics, pages 249–256.

Khomenko, V., Shyshkov, O., Radyvonenko, O., and Bokhan, K. (2016). Accelerating recurrent neural network training using sequence

bucketing and multi-gpu data parallelization. In Data Stream Mining & Processing (DSMP), IEEE First International Conference

on, pages 100–103. IEEE.

Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B.,

Zhang, J., and Bryant, S. H. (2016). PubChem Substance and Compound databases. Nucleic Acids Res., 44(D1), D1202–1213.

Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE

transactions on neural networks, 8(1), 98–113.

Liu, T., Lin, Y., Wen, X., Jorissen, R. N., and Gilson, M. K. (2006). Bindingdb: a web-accessible database of experimentally determined

protein–ligand binding affinities. Nucleic acids research, 35(suppl 1), D198–D201.

Lu, J., Yang, J., Batra, D., and Parikh, D. (2016). Hierarchical question-image co-attention for visual question answering. In Advances

In Neural Information Processing Systems, pages 289–297.

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In Proc. icml,

volume 30, page 3.

18



Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,

Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12, 2825–2830.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11),

2673–2681.

Tang, Y. (2016). Tf. learn: Tensorflow’s high-level module for distributed machine learning. arXiv preprint arXiv:1612.04251 .

19


