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Supplementary Fig. 1. Size and breakpoint complexity of the 45 studied inversions. The graphs 

illustrate the main characteristics of inversions created by non-homologous mechanisms (NH) or non-

allelic homologous recombination (NAHR), with the inverted region represented as a gray bar and 

flanking inverted repeats (IRs) or other structural changes in different colors. In NH inversions, deletions 

are sequences present in the original orientation that are eliminated in the derived orientation, and 

insertions are sequences gained. Three of these inversions (HsInv0031, HsInv0045 and HsInv0098) 

have also short low-identity IRs (249-297 bp, 83.2-86.2% identity) in the ancestral orientation that are 

partially deleted in the derived orientation. Source data are provided as a Source Data file. 
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Supplementary Fig. 2. Inversion genotype accuracy by PCR-based validation and published data. 

a. Genotyping performance of MLPA and iMLPA assays. Inversion genotypes from MLPA/iMLPA were 

compared with those obtained from PCR or iPCR, plus those imputed from perfect tag SNPs in 1000GP 

Ph3 data. Genotyping success rate was 99.96% for MLPA and 98.56% for iMLPA. The lower success in 

iMLPA was due to a lower self-ligation efficiency of large restriction DNA fragments compared to shorter 

ones (as in the case of HsInv1051), which reduces the amount of specific probe target region and results 

in smaller amplification peaks, and to problems in specific samples (with one third of missing genotypes 

accumulating in just three samples). Biological errors correspond to known problems due to restriction 

site polymorphisms in a few specific inversions or DNA contamination, while technical errors do not have 

a clear cause and appear to be mainly due to problems in MLPA probe amplification in certain 

inversions. b. Genotype agreement between the 14 inversions in common with the 1000GP structural 

variant release
1
 according to the InvFEST database

2
 for the 434 samples shared in both datasets. Of the 

genotypes that differ between studies, 99.1% are due to 1000GP incorrectly assigning the reference 

genome orientation to one of the alleles, whereas according to our experiments it should be the 

alternative, which leads to underestimating the frequency of the inversion. Also, with a few exceptions, 

1000GP error rates tend to be much higher in inversions flanked by indels or inverted repeats than in 

those with clean breakpoints. Source data are provided as a Source Data file. 
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Supplementary Fig. 3. Summary of haplotype relationships for different inversions. a. 

Representative median-joining networks from 1000GP Ph1 haplotypes obtained with PHASE 2.1
3
. Each 

circle represents a haplotype, whose size is proportional to the number of chromosomes carrying that 

particular haplotype. Small red points are hypothetical haplotypes not found in the individuals analyzed, 

and the length of the branch connecting two haplotypes is proportional to the number of changes 

between them. b. Integrated haplotype plots (iHPlots) for the same four inversions. For unique inversions 

(HsInv0058 and HsInv0092), the haplotypes correspond to those from 1000GP Ph3 with the extended 

flanking region whenever possible, whereas for recurrent inversions (HsInv0114 and HsInv0340), the 

haplotypes are those obtained with PHASE 2.1
3
 from 1000GP Ph1 data including only the inverted 

region. O1 and O2 haplotypes of unique inversions can be clearly separated (e.g. HsInv0058), probably 

corresponding to old inversions that had time to diverge, or those with the derived orientation can be 

clustered together with haplotypes carrying the other orientation (e.g. HsInv0092), likely representing 

more recent or small inversions with few informative positions and little differentiation. 
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Supplementary Fig. 4. Summary of inversion gene-expression analysis in lymphoblastoid cell 

lines (LCL). a. Genotype imputation accuracy of 23 autosomal and chr. X inversions without perfect tag 

SNPs (r
2
 = 1) based on all 1000GP Ph3 variants (including both SNPs and structural variants). 

Imputation was performed with IMPUTE v2.3.2
4
 adapted to unphased reference genotypes, due to the 

difficulty of phasing correctly recurrent inversions, using a region of 1.5 Mb at each side of the inversion 

and an effective population size of 20,000 (15,000 in chr. X). Genotypes were called with a posterior 

probability higher than 0.7, and were classified as missing otherwise. Imputation accuracy was checked 

by removing three random sets of 30 individuals from European (CEU, TSI) and YRI populations from 

the reference panel of 173 GEUVADIS individuals with known inversion genotypes, which were 

subsequently imputed under the same criteria. The red line represents the mean percentage of right calls 

in the three test samples (red dots) and 14 inversions with >90% imputation accuracy (dashed line) were 

used for gene-expression analysis in other GEUVADIS individuals. Maximum LD between inversions and 

surrounding genomic variants (blue line) was lower for inversions with worse imputation accuracy. In 

HsInv0102, which does not have SNPs in high LD, its imputation is based on the 1000GP genotypes for 

the inversion itself. b. Pie chart and graph summarizing the effects in cis of the 45 inversions on LCL 

expression variation and the number of genes or transcripts affected. Results represented correspond to 

those from the experimentally-genotyped set (173 individuals) for the 9 inversions that could not be 

imputed and the extended imputed set (445 individuals) for the 33 imputed inversions. c. Comparison of 

effect sizes on genes and transcripts from inversion cis-eQTLs (INV-eQTLs) identified in the 

experimentally-genotyped and imputed sets in LCLs, showing concordant results (dark green, replicated 

in both sets; light green, specific of the imputed set; and red, specific of the experimentally-genotyped 

set). d. Cis-eQTL analysis of inversions in LCL expression data. Left: Distribution of INV-eQTLs with 

respect to the transcription start site (TSS) of the affected genes and transcripts. Inversions tend to 

locate closer (<100 kb) to genes or transcripts affected compared to all association tests performed both 

for the experimental (top, Fisher test P = 0.013 and P = 0.0005, respectively) and imputed data sets 

(bottom, Fisher test P = 0.018 and P = 3 × 10
-6

, respectively). Right: Quantile-quantile plot of 

associations between inversions and gene or transcript expression for the experimentally-genotyped and 

the imputed sets: red dots, significant INV-eQTLs (FDR < 0.05); grey dots, not significant associations; 

and black dots, negative controls obtained by permuting sample labels from the inversion genotype 

matrix relative to covariates and expression levels, which follow the expected P value distribution 

assuming no-association. e. Correlation of gene eQTL analysis P values for inversions located in chr. X 

with and without heterozygous females (to eliminate the effect of the random inactivation of one copy of 

this chromosome). Significant associations (FDR < 0.05) in both analyses are indicated as green dots, 

and the similarity between the observed and perfect 1:1 correlation (red and black dashed lines, 

respectively), with slightly lower eQTL P values when including all samples, suggests that the 

consequences of silencing the chr. X with or without the inversion get averaged across all cells. f. 

Results of inversion effects in gene and transcript expression when using different approaches: 

“PCA+QTLtools”, which corresponds to the pipeline used in this work
5
 (blue); “PEER+FastQTL”, which 

corresponds to the pipeline used in the GTEx Project
6
 (red); and “edgeR-limma”

7,8
 (green). Numbers 

indicate the significant inversion-gene or inversion-transcript pairs with each analysis method. Venn 

diagram was done with BioVenn
9
. Findings using the different pipelines were highly coincident, although 

a larger number of significant genes/transcripts were estimated by the GTEx pipeline, indicating that our 

chosen method based in PCA and QTLtools is more conservative. Source data are provided as a Source 

Data file. 
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Supplementary Fig. 5. Summary of inversion effects on GTEX gene-expression data. Inversion 

effects were estimated through variants in high LD (r
2
 ≥ 0.8), or moderate LD (r

2 
≥ 0.6) for recurrent 

inversions, reported as eQTLs in GTEx Analysis Release v7 (Supplementary Data 9). The direction and 

strength of the beta effect of the eQTL is indicated in different color, with blue and red representing 

respectively lower and higher expression associated to the O2 orientation of the inversion. Inversion 

eQTLs also identified in the LCL analysis from the GEUVADIS data are represented in the last column. 

Source data are provided as a Source Data file.  
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Supplementary Fig. 6. Examples of potential expression effects of six inversions in different 

tissues. Manhattan plots of logarithm-transformed linear regression t-test P values for cis-eQTLs 

associations from the GTEx project in which an inversion shows the highest LD (r
2
 ≥ 0.9) with the two 

first lead markers in the corresponding tissue. The orange bar pinpoints the inversion position and its LD 

to each variant is represented in different colors. The affected genes are shown in black and arrowheads 

indicate the direction of transcription.  
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Supplementary Fig. 7. Representation of the fusion transcript created by HsInv1051. a. Diagram of 

CCDC144B gene disruption by inversion HsInv1051 and the novel fusion transcript created by including 

additional 3’ sequences from region D (light blue), with the segmental duplications at the inversion 

breakpoints represented as red arrows. CCDC144B is part of a family with two other members, 

CCDC144A and CCDC144C, that have ~99% identity and very similar exon-intron structure (shown on 

top). Nevertheless, whereas CCDC144A encodes a 1,427-amino acid protein, CCDC144B and 

CCDC144C have different frameshift mutations that reduce their coding capacity to 725 and 646 amino 

acids, respectively (with stop codons shown by asterisks). CCDC144B premature stop codon is not 

included in the fusion transcript from the inverted allele. b. RNA-Seq profiles from GEUVADIS LCL reads 

mapped to the inversion BD breakpoint, which was created by reversing in silico the sequence between 

the HsInv1051 breakpoints in the human reference genome (hg19). Reads were remapped to this 

construct using STAR 2-pass
10

 to improve the accuracy of alignments, revealing a novel fusion transcript 

expressed only in O1/O2 heterozygotes and at higher levels in O2/O2 homozygotes. The chimeric 

transcript structure is shown below, after its precise reconstruction with Cufflinks default parameters
11

 by 

merging all reads from these samples around the breakpoint region. In addition, its homology with the 

first six exons of CCDC144B and CCDC144A is also shown. RNA-seq profiles were visualized on 

Integrative Genomics Viewer
12

.  
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Supplementary Fig. 8. Potential phenotypic effects of inversions from GWAS data. a-b. Enrichment 

of GWAS signals around 44 autosomal and chr. X inversions (inverted region ± 20 kb) in the GWAS 

Catalog (a) and GWASdb (b) databases. Error bars show the 0-0.95 confidence interval of the difference 

in the observed number of GWAS hits compared with a background model from 1,000 random genomic 

regions for each inversion, together with the mean (filled circle) and the median (cross) of the 

differences. The color indicates the one-tailed empirical test P value of the enrichment according to the 

scale shown. HsInv0058 showed significant enrichment of GWAS hits in both datasets, whereas 

HsInv0030 and HsInv0347 showed similar trends in both datasets and significant differences from the 

expected number in at least one. *, P < 0.05; **, P < 0.01. c. Coverage of SNPs associated with 

inversions in 76 commonly-used genotyping arrays by checking the presence of inversion global tag 

SNPs (r
2
 ≥ 0.8) in the arrays through the LDLink web portal

13
. LD with the inversion of the best global tag 

SNP in each array is indicated in different colors, showing that for the great majority of NAHR inversions 
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and several of the NH inversions there are not tag SNPs or they are not present in the array (represented 

as white squares). The best performing arrays assessed, HumanOmni5-4v1 and HumanOmni5Exome-

4v1 (Illumina), could detect up to 23 inversions (51%), with only 7 being represented by perfect global tag 

SNPs (r
2
 = 1), and 16 by variants with lower LD. Source data are provided as a Source Data file.  
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Supplementary Table 1. Frequencies of the 45 inversions in seven human populations. The 

derived allele frequency (DAF) is shown whenever the ancestral orientation is known, and the frequency 

of the minor allele considering the seven populations together (MAF) is indicated otherwise. The total 

number of genotyped individuals, as well as those unrelated (Unrel) and included in either the 1000 

Genome Project Phase 1 (Ph1) or Phase 3 (Ph3), are also indicated for each population and population 

group at the bottom. Inversion frequency was estimated from the 480 unrelated individuals of the seven 

known populations, although for some analyses only the 434 individuals in common with 1000GP Ph3 

were used. Deviation from Hardy-Weinberg equilibrium was calculated with Plink --hardy option
14

 and for 

all populations and inversions an exact test P > 0.01 was obtained. Populations are: Luhya in Webuye, 

Kenya (LWK); Yoruba in Ibadan, Nigeria (YRI); Utah residents (CEPH) with Northern and Western 

European ancestry (CEU); Toscani in Italia (TSI); Gujarati Indians in Houston, Texas, USA (GIH); Han 

Chinese in Beijing, China (CHB); and Japanese in Tokyo, Japan (JPT). Population groups are: African 

ancestry (AFR); European ancestry (EUR); South-Asian ancestry (SAS); and East-Asian ancestry (EAS). 

 

Inversion Allele 

Population or population group 

Total LWK YRI AFR CEU TSI EUR GIH SAS CHB JPT EAS 

Derived allele frequency (DAF) 

HsInv0004 O1 0.981 0.993 0.987 0.800 0.828 0.817 0.837 0.837 0.856 0.889 0.872 0.884 

HsInv0006 O1 0.931 0.943 0.937 0.408 0.356 0.377 0.511 0.511 0.456 0.400 0.428 0.587 

HsInv0030 O1 0.012 0.021 0.017 0.158 0.156 0.157 0.062 0.062 0 0 0 0.066 

HsInv0031 O1 0.481 0.371 0.430 0.317 0.281 0.295 0.399 0.399 0.433 0.432 0.433 0.383 

HsInv0040 O1 0.228 0.279 0.252 0.208 0.382 0.312 0.191 0.191 0.100 0.044 0.072 0.225 

HsInv0041 O2 0.747 0.629 0.692 0.442 0.428 0.433 0.371 0.371 0.411 0.422 0.417 0.500 

HsInv0045 O2 0.463 0.636 0.543 0.450 0.561 0.517 0.393 0.393 0.611 0.544 0.578 0.514 

HsInv0058 O1 0.222 0.384 0.297 0.383 0.350 0.363 0.258 0.258 0.456 0.456 0.456 0.340 

HsInv0059 O1 0.093 0.093 0.093 0.183 0.161 0.170 0.180 0.180 0.722 0.678 0.700 0.247 

HsInv0061 O1 0 0 0 0.025 0.034 0.030 0.006 0.006 0 0.022 0.011 0.013 

HsInv0068 O1 0.099 0.116 0.107 0.225 0.233 0.230 0.112 0.112 0 0 0 0.126 

HsInv0092 O2 0.265 0.350 0.305 0.067 0.089 0.080 0.129 0.129 0.078 0.089 0.083 0.160 

HsInv0095 O1 0.173 0.121 0.149 0.325 0.289 0.303 0.157 0.157 0.256 0.244 0.250 0.218 

HsInv0097 O2 0.019 0.014 0.017 0 0 0 0 0 0 0 0 0.005 

HsInv0098 O2 0.346 0.307 0.328 0.117 0.111 0.113 0.096 0.096 0.078 0.078 0.078 0.171 

HsInv0102 O2 0.272 0.350 0.308 0.133 0.156 0.147 0.202 0.202 0.033 0.044 0.039 0.188 

HsInv0105 O1 0.469 0.450 0.460 0.517 0.639 0.590 0.618 0.618 0.256 0.211 0.233 0.488 

HsInv0114 O1 0.800 0.843 0.820 0.375 0.354 0.362 0.348 0.348 0.144 0.156 0.150 0.463 

HsInv0201 O2 0.611 0.664 0.636 0.533 0.644 0.600 0.506 0.506 0.489 0.367 0.428 0.561 

HsInv0209 O2 0.184 0.271 0.225 0.017 0.084 0.057 0 0 0.022 0.011 0.017 0.091 

HsInv0260 O2 0.204 0.129 0.169 0.125 0.083 0.100 0.174 0.174 0.289 0.422 0.356 0.183 

HsInv0266 O2 0.269 0.271 0.270 0.208 0.178 0.190 0.500 0.500 0.250 0.289 0.270 0.288 

HsInv0278 O1 0.608 0.543 0.577 0.898 0.909 0.905 0.843 0.843 0.733 0.656 0.694 0.751 

HsInv0284 O2 0.105 0.101 0.103 0 0 0 0 0 0 0 0 0.032 

HsInv0379 O2 0 0 0 0 0 0 0 0 0.022 0.033 0.028 0.005 

HsInv0409 O1 0.385 0.359 0.373 0.478 0.630 0.569 0.455 0.455 0.662 0.776 0.719 0.515 

HsInv1051 O2 0.029 0.080 0.055 0 0 0 0 0 0 0 0 0.018 

HsInv1053 O2 0.247 0.236 0.242 0.692 0.600 0.637 0.702 0.702 0.722 0.689 0.706 0.538 

HsInv1116 O2 0.722 0.843 0.778 0.750 0.711 0.727 0.938 0.938 1 1 1 0.833 

(Continued in next page) 
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Inversion Allele 

Population or population group 

Total LWK YRI AFR CEU TSI EUR GIH SAS CHB JPT EAS 

Minor allele frequency (MAF) 

HsInv0055 O1 0.605 0.557 0.583 0.217 0.225 0.221 0.247 0.247 0.156 0.122 0.139 0.325 

HsInv0072 O1 0.050 0.078 0.063 0.011 0.008 0.009 0.007 0.007 0 0 0 0.024 

HsInv0124 O1 0.146 0.121 0.134 0.608 0.551 0.574 0.281 0.281 0.022 0.056 0.039 0.281 

HsInv0241 O2 0.582 0.597 0.589 0.167 0.184 0.177 0.301 0.301 0.405 0.378 0.391 0.370 

HsInv0340 O2 0.513 0.507 0.510 0.008 0.034 0.024 0.011 0.011 0 0 0 0.167 

HsInv0341 O2 0.152 0.257 0.201 0.025 0.022 0.024 0.017 0.017 0 0.023 0.011 0.076 

HsInv0344 O2 0.487 0.493 0.490 0.542 0.483 0.507 0.354 0.354 0.411 0.278 0.344 0.442 

HsInv0347 O2 0.234 0.286 0.258 0.092 0.118 0.107 0.303 0.303 0.133 0.122 0.128 0.195 

HsInv0374 O2 0.392 0.243 0.322 0.467 0.461 0.463 0.601 0.601 0.533 0.711 0.622 0.475 

HsInv0389 O2 0.958 1 0.978 0.178 0.173 0.175 0.478 0.478 0.221 0.313 0.267 0.499 

HsInv0393 O2 0.317 0.330 0.323 0.367 0.391 0.381 0.657 0.657 0.647 0.746 0.696 0.474 

HsInv0396 O2 0.263 0.417 0.335 0.159 0.144 0.150 0.209 0.209 0.029 0.015 0.023 0.195 

HsInv0397 O2 0.608 0.553 0.583 0.156 0.158 0.157 0.291 0.291 0.456 0.687 0.570 0.393 

HsInv0403 O2 0.650 0.650 0.650 0.267 0.189 0.221 0.328 0.328 0.824 0.672 0.748 0.475 

HsInv0832 O2 0.821 1 0.908 0 0 0 0.250 0.250 0 0.043 0.022 0.339 

HsInv1124 O2 0.375 0.551 0.456 0.625 0.589 0.603 0.365 0.365 0.409 0.600 0.506 0.495 

Total indiv. - 90 100 190 90 90 180 90 90 45 45 90 550 

Unrel. indiv. - 81 70 151 60 90 150 89 89 45 45 90 480 

Ph1 indiv. - 87 48 135 35 90 125 0 0 41 39 80 340 

Ph3 indiv. - 75 58 133 45 89 134 82 82 40 45 85 434 
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Supplementary Table 2. Summary of the total number of analyzed, shared and fixed variants in 

human inversions from 1000 Genomes Project (1000GP) Phase3 and HapMap genotype data. For 

1000GP data only accessible variants according to the strict criteria were used. As expected, most NH 

inversions have no shared variants between orientations within the inverted region. The only exceptions 

were HsInv1053, with a single shared SNP near the second breakpoint in 1000GP and two shared SNPs 

in HapMap, and HsInv0095, with shared variants only in HapMap. These variants tend to be grouped in 

certain positions and are likely the result of gene conversion, SNP genotyping errors or even 

independent mutations. In addition, there is considerable variation in the number of fixed variants 

between inversions, which is probably related to the recombination events outside the inverted region. 

Non-recombining flanking region was estimated according to the distribution of fixed and shared variants 

up to a maximum 20 kb from the breakpoints. NA, Not applicable. 

 

  Inside Inside + 200 kb Non-recombining 
flanking region (kb)   Analyzed variants Shared variants Fixed variants 

Inversion 1000GP HapMap 1000GP HapMap 1000GP HapMap Upstream Downstream 

Inversions generated by non-homologous mechanisms (NH) 

HsInv0004 21 2 0 0 18 2 1.9 11.7 

HsInv0006 0 0 NA NA 4 0 3.1 0.1 

HsInv0031 8 4 0 0 9 2 0.5 0 

HsInv0041 0 1 NA 0 2 0 0 0.2 

HsInv0045 4 1 0 0 1 0 0 1.3 

HsInv0058 0 1 NA 0 8 2 0.9 2.6 

HsInv0059 0 0 NA NA 1 0 4.3 4.7 

HsInv0068 0 1 NA 0 1 1 3 7.7 

HsInv0092 56 1 0 0 1 0 2.8 3.2 

HsInv0095 101 7 0 3 4 1 3.9 2.1 

HsInv0097 247 18 0 0 17 0 20 20 

HsInv0098 8 0 0 NA 8 0 10.9 0.4 

HsInv0102 14 0 0 NA 0 0 0 0.6 

HsInv0105 1 0 0 NA 0 1 0.5 20 

HsInv0201 0 0 NA NA 16 3 3.3 4.7 

HsInv0260 12 1 0 0 3 0 19.8 1.8 

HsInv0284 418 13 0 0 3 0 1.6 18.3 

HsInv0379 3426 155 0 0 3 0 18.1 15.6 

HsInv0409 0 0 NA NA 1 1 0 0.3 

HsInv1053 185 12 1 2 2 0 0.2 0.3 

HsInv1116 0 0 NA NA 22 3 7.7 2 

(Continued in next page) 
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  Inside Inside + 200 kb Non-recombining 
flanking region (kb)   Analyzed variants Shared variants Fixed variants 

Inversion 1000GP HapMap 1000GP HapMap 1000GP HapMap Upstream Downstream 

Inversions generated by non-allelic homologous recombination (NAHR) 

HsInv0030 225 11 17 6 0 0 NA NA 

HsInv0040 33 0 0 NA 43 0 9.1 20 

HsInv0055 21 2 5 2 0 0 NA NA 

HsInv0061 10 0 0 NA 0 0 NA NA 

HsInv0072 14 1 1 0 0 0 NA NA 

HsInv0114 141 12 10 4 0 0 NA NA 

HsInv0124 58 0 8 NA 0 0 NA NA 

HsInv0209 71 4 9 3 0 0 NA NA 

HsInv0241 46 3 18 3 0 0 NA NA 

HsInv0266 40 0 2 NA 0 0 NA NA 

HsInv0278 18 0 6 NA 0 0 NA NA 

HsInv0340 170 6 45 5 0 0 NA NA 

HsInv0341 196 11 33 11 0 0 NA NA 

HsInv0344 37 2 15 2 0 0 NA NA 

HsInv0347 44 2 13 1 0 0 NA NA 

HsInv0374 1 1 0 1 0 0 NA NA 

HsInv0389 247 7 39 7 0 0 NA NA 

HsInv0393 73 1 11 1 0 0 NA NA 

HsInv0396 399 14 75 14 0 0 NA NA 

HsInv0397 98 0 18 NA 0 0 NA NA 

HsInv0403 10 0 4 NA 0 0 NA NA 

HsInv0832 0 0 NA NA 0 0 NA NA 

HsInv1051 67 30 0 0 1 0 NA NA 

HsInv1124 6 1 3 1 0 0 NA NA 
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Supplementary Table 3. Summary of inversion mutational effects on gene sequences. Gene annotations are based on GENCODE Version 26 

Comprehensive Gene Annotation Set, including gene isoforms with a Transcript Support Level of at least 3, single-exon genes not labelled as “problem”, and 

pseudogenes. Effects of inversions and associated indels at the breakpoints were classified conservatively in six different categories: (1) gene disruption, if there 

is at least one transcript that encompasses the complete area of one breakpoint; (2) exchange of genic sequences, if two genes of the same family overlap each 

inversion breakpoint and extend outside of them; (3) inversion of a gene/exon, if the entire gene/exon is situated within the inverted region; (4) inversion of part 

of an intron, if the inversion and breakpoints are contained inside an intron; (5) overlap of breakpoints with genes within IRs, if there are genes completely 

embedded within IRs at the inversion breakpoints; and (6) intergenic, if none of the above conditions are fulfilled. For genes overlapping inversion breakpoints 

within IRs, there could be a potential disruption or exchange of gene sequences, although it is difficult to determine its precise effect due to the high identity of 

the IRs. 

 

Inversion Effect Protein-coding genes Long non-coding RNAs Pseudogenes Other 

HsInv0006 Inversion of part of intron DSTYK       

HsInv0030 Exchange of genic sequences CTRB1, CTRB2       

HsInv0055 Inversion of part of intron     AC016561.1   

HsInv0059 Inversion of part of intron GABRR1       

HsInv0061 Inversion of part of intron   RP1-60O19.1     

HsInv0098 Inversion of part of intron ULK4       

HsInv0102 Inversion or deletion of an exon RHOH isoform       

HsInv0105 Inversion of part of intron SUGCT       

HsInv0124 

Gene disruption IFITM2 isoform       

Inversion of whole gene IFITM1       

Breakpoints overlap genes within IRs   
RP11-326C3.7, RP11-
326C3.11 

    

HsInv0201 Inversion or deletion of an exon SPINK14       

HsInv0209 Breakpoints overlap genes within IRs 
KRTAP5-10, KRTAP5-11, 
AP000867.1 

  
AP000867.14, KRTAP5-
14P 

  

HsInv0241 
Breakpoints overlap genes within IRs AQP12A, AQP12B       

Inversion of whole gene AC011298.1 AC011298.2     

HsInv0278 Inversion of whole gene     FOXO1B   

HsInv0340 Gene disruption   LINC00395     

HsInv0344 Breakpoints overlap genes within IRs SNX6 
RP11-671J11.7, antisense 
RNA RP11-671J11.4 

  
small nuclear RNAs RNU1-
27P and RNU1-28P 
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Inversion Effect Protein-coding genes Long non-coding RNAs Pseudogenes Other 

HsInv0347 Inversion of whole gene       Small nucleolar RNA U3 

HsInv0374 

Inversion of part of intron     
AC005562.1 (SMURF2P1-
LRRC37BP1 readthrough 
transcribed pseudogene) 

  

Inversion of whole gene     SH3GL1P2   

Breakpoints overlap genes within IRs     
RP11-271K11.6, 
LRRC37BP1 

  

HsInv0379 

Gene disruption ZNF257   RP11-420K14.1   

Inversion of whole gene ZNF100, ZNF43, ZNF208 RP11-420K14.8, AC003973.4 

MTDHP2, MTDHP3, 
MTDHP4, VN1R84P, RP11-
420K14.6, BRI3BPP1, 
BNIP3P27, BNIP3P28 

miRNAs AC092364.2 and 
AC092364.4 

HsInv0389 Inversion of whole gene FLNA, EMD       

HsInv0393 Breakpoints overlap genes within IRs ARMCX6   ARMCX7P   

HsInv0396 Breakpoints overlap genes within IRs PABPC1L2A, PABPC1L2B 
antisense RNAs 
PABPC1L2B-AS1 and RP11-
493K23.4 

    

HsInv0409 Inversion of part of intron NLGN4X       

HsInv1051 

Gene disruption     CCDC144B   

Breakpoints overlap genes within IRs PRPSAP2   AC107982.4 
small non-coding RNAs 
RN7SL639P and 
RN7SL627P 

Inversion of whole gene 
TBC1D28, ZNF286B, 
TRIM16L, FBXW10, TVP23B 

CTD-2145A24.3 
RP11-815I9.3, AC026271.5, 
FOXO3B , UBE2SP2, 
RP11-815I9.5, TRIM16L 

short non-coding RNA 
RP11-815I9.4 

HsInv1124 Breakpoints overlap genes within IRs   FAM225A, FAM225B      
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Supplementary Table 4. Potential phenotypic effects of inversions from GWAS data. Inversion effects were estimated through linkage disequilibrium (LD) 

with GWAS signals reported in the GWAS Catalog (http://www.ebi.ac.uk/gwas/) or GWASdb (http://jjwanglab.org/gwasdb) databases with a P value of less than 

1 × 10
-4

. Because each study is focused on individuals with different ancestry, we included in the analysis only inversions in high LD (r
2
 ≥ 0.8) with the GWAS 

variants in the studied population, the closest one available (e.g. TSI for Sardinian, JPT for Japanese, CHB for Han Chinese or Singapore Chinese, and GIH for 

South Asian, Indian or Bangladeshi) or the same population group (e.g. EUR for Ashkenazi, Framingham, British, Caucasian or Hutterite, and EAS for Korean). 

Finally, if studied populations were from different continents or not specified, we used the LD in the global population (GLB). References to each of the GWAS 

studies are indicated with the same number as in the Supplementary References list or with the dbGAP accession number. 

 

Inversion Database 
GWAS 
variant 

Chr 
Position 
(hg19) 

Population of 
study 

Inv. LD (r
2
) 

(Population) 
GWAS 
P value 

Phenotypic trait and reference 

HsInv0006 GWAS Catalog rs16937 chr1 205035455 Ashkenazi Jewish 0.811 (EUR) 5.00 × 10
-7

 Schizophrenia
15

 

HsInv0058 GWAS Catalog rs2844665 chr6 31006855 European 1 (EUR) 3.00 × 10
-7

 
Drug-induced Stevens-Johnson syndrome or toxic 
epidermal necrolysis (SJS/TEN)

16
 

HsInv0004 GWASdb rs2488411 chr1 197658799 British 0.872 (EUR) 3.83 × 10
-4

 Height
17

 

HsInv0004 GWASdb rs1775456 chr1 197733055 European 1 (EUR) 3.00 × 10
-7

 Asthma
18

 

HsInv0004 GWASdb rs1924518 chr1 197738327 European 1 (EUR) 2.90 × 10
-4

 Body mass index (asthmatics)
19

 

HsInv0006 GWASdb rs12142514 chr1 205122529 European 1 (EUR) 2.68 × 10
-5

 Glaucoma (primary open-angle)
20

 

HsInv0006 GWASdb rs10900468 chr1 205163057 Not specified 0.881 (GLB) 5.30 × 10
-5

 Blood pressure (dbGAP pha003046) 

HsInv0006 GWASdb rs10900468 chr1 205163057 Not specified 0.881 (GLB) 9.14 × 10
-5

 Blood pressure (dbGAP pha003048) 

HsInv0031 GWASdb rs2937145 chr16 85190230 European 0.981 (EUR) 2.02 × 10
-6

 Alzheimer's disease
21

 

HsInv0045 GWASdb rs465446 chr21 28022267 Caucasian 0.971 (EUR) 5.79 × 10
-4

 Response to TNF antagonist treatment
22

 

HsInv0045 GWASdb rs366384 chr21 28024225 European 0.986 (EUR) 6.50 × 10
-6

 Urinary metabolites
23

 

HsInv0058 GWASdb rs2844665 chr6 31006855 European 1 (EUR) 3.00 × 10
-7

 
Stevens-Johnson syndrome and toxic epidermal 
necrolysis (SJS-TEN)

16
 

HsInv0058 GWASdb rs2517538 chr6 31013541 Korean 1 (EAS) 2.60 × 10
-5

 Height
24

 

HsInv0058 GWASdb rs2517538 chr6 31013541 Hutterite 0.964 (EUR) 2.07 × 10
-21

 Lymphocyte counts
25

 

HsInv0063 GWASdb rs10269258 chr7 70440091 European 1 (EUR) 1.60 × 10
-5

 Urinary metabolites
23

 

HsInv0098 GWASdb rs10510717 chr3 41332490 Framingham 0.882 (EUR) 5.00 × 10
-5

 Volumetric brain MRI
26

 

HsInv0098 GWASdb rs1487569 chr3 41368428 Not specified 0.804 (GLB) 9.44 × 10
-5

 Coronary artery disease
27

 

HsInv0098 GWASdb rs9311269 chr3 41374621 European 0.922 (EUR) 2.62 × 10
-5

 Statin-induced myopathy
28

 

HsInv0409 GWASdb rs5916341 chrX 6135980 Not specified 1 (GLB) 2.47 × 10
-4

 Amyotrophic lateral sclerosis
29
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Supplementary Methods 

Inversion genotyping by MLPA and iMLPA 

The multiplex ligation-dependent probe amplification (MLPA) technique enables the specific detection 

of a region of interest by using a pair of oligonucleotide probes (left and right probes) that hybridize 

contiguously to the target genome sequence in order to be ligated together in a subsequent step. The 

probes include a variable stuffer sequence and the sequence of the forward or reverse common 

primers, which are used for the simultaneous amplification of fragments of different sizes formed by 

the ligation of the left and right probes, and their detection by capillary electrophoresis
30

. In order to 

genotype at the same time multiple inversions with IRs or other repetitive sequences at the 

breakpoints, we developed a new method based on inverse PCR and MLPA that we termed inverse 

MLPA (iMLPA). iMLPA differs from normal MLPA by the addition of several extra initial steps that are 

necessary to obtain an orientation-specific unique target sequence for these inversions before probe 

hybridization.  

 

The iMLPA protocol optimization was carried out by comparison with the known genotypes from the 

panel of nine individuals in which the inversions had been previously validated
2
 (Supplementary Data 

1). A detailed description of iMLPA steps can be found in the patent application EP13382296.5
31

. 

Briefly, 400 ng of genomic DNA of each sample were first digested overnight at 37ºC in six separated 

20-µl reactions with 5 U of the appropriate restriction enzyme (EcoRI, HindIII, SacI or BamHI from 

Roche, and NsiI or BglII from New England Biolabs), followed by restriction enzyme inactivation for 15 

min at 65ºC (with the exception of BglII that was inactivated for 20 min at 80ºC). Next, DNA self-

ligation was performed overnight for 16-18 hours at 16°C by mixing together the six restriction 

enzyme digestions with 1x ligase
 
buffer and 400 U of T4 DNA Ligase (New England Biolabs) in a total 

volume of 640 µl (resulting in an optimal concentration of 0.625 ng/µl of the DNA fragments generated 

by each restriction enzyme). Then, the ligase was inactivated and the DNA was fragmented by 

heating at 95ºC for 5 min, purified with the ZR-96 DNA Clean & Concentrator
TM

-5 kit (Zymo Research) 

and resuspended in 7.5 µl of water. 

 

The last step was the regular MLPA assay using the SALSA MLPA kit (MRC-Holland), according to 

the manufacturer instructions with minor modifications. In particular, the ligated DNA was denatured 

at 98ºC for 1.5 min, and probe hybridization was carried out adding 1.5 µl of our iMLPA probe mix 

(Supplementary Data 10) plus 1.5 µl of SALSA MLPA Buffer (MRC-Holland) and incubating for 1.5 

min at 95ºC and 16 hours at 60ºC. Ligation of adjacent probes was then performed for 25 min at 54ºC 

by adding 25 µl water, 1 µl SALSA Ligase 65, 3 µl Ligase Buffer A and 3 µl Ligase Buffer B (MRC-

Holland). After ligase inactivation (5 min at 95ºC), PCR amplification of ligated probes was performed 

separately in three groups of 8-9 inversions (Supplementary Data 10) using a common reverse primer 

and one of three forward primers labeled with a different fluorochrome (FAM, VIC or NED) 

(Supplementary Data 11). Each PCR was done in 25 µl with 5-6 µl of the iMLPA hybridization-ligation 

reaction, 2 µl SALSA PCR buffer (MRC-Holland), 0.25 mM each dNTP, 0.2 µM each primer, 1 µl PCR 

buffer without MgCl2 (Roche), and 2.5 U of Taq DNA polymerase (Roche). PCR conditions were 95°C 

for 15 sec, 47 cycles of 95°C for 30 sec, 60°C for 30 sec and 72°C for 60 sec, and final extension at 

72°C for 25 min. Finally, 0.67 µl of the three PCRs of each sample were mixed together, analyzed by 

capillary electrophoresis using an ABI PRISM 3130 Genetic Analyzer (Applied Biosystems), and the 

peaks were visually inspected using the GeneScan version 3.7 software (Applied Biosystems). For 

the regular MLPA, the process was identical with the exception that it started directly at the 

denaturation step of 100-150 ng of genomic DNA in 5 µl for 5 min at 98°C and that the ligated probes 
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were amplified in only two multiplex PCRs with 8-9 inversions each (Supplementary Data 10). In both 

cases all the successive reactions were carried out in a 96-well plate format to maximize speed and 

throughput and, with the exception of those used for optimization of the technique, only one MLPA or 

iMLPA reaction was done for every sample. 

 

Visualization of inversion haplotypes and quantification of recurrence events 

Reticulated networks are able to accommodate past recombination events, but each sequence is 

reduced to a node or edge, making it difficult to understand at the same time haplotype relationships 

and the spatial distribution of nucleotide changes along the sequence. Therefore, apart from building 

Median-Joining networks
32

, we devised our own way to represent the similarities between haplotypes, 

named integrated haplotype plot (iHPlot), which are similar to the Haplostrips plots that have been 

recently developed independently
33

. Specifically, distances between simplified haplotypes after 

removing singleton positions were computed as the number of pairwise differences and were 

clustered with the UPGMA average method implemented in R
34

 base function hclust. The 

corresponding dendrogram was then created using ggdendro R package
35

 and all the information was 

integrated with a custom R script using ggplot2 and cowplot packages
36

. iHPlots were applied to the 

phased 1000GP Ph1 haplotypes of the inverted region and the imputed 1000GP Ph3 haplotypes 

based on inversion tag SNPs or on homozygotes for each orientation. For 1000GP Ph3 data, we used 

only accessible SNPs (excluding indels) according to the pilot accessibility mask that includes more 

SNPs than the strict mask
37

. In addition, besides the inverted region, whenever possible, we extended 

the analysis to the non-recombining region flanking the breakpoints (excluding associated indels and 

IRs) to increase the resolution of haplotype discrimination. 

 

To determine more reliably the evolutionary history of each inversion, we combined the information 

from the different strategies for phasing and visualization of the inverted region haplotypes: 1) 

Median-joining networks of 1000GP Ph1 phased data; 2) iHPlots of 1000GP Ph1 phased data; and 3) 

iHPlots of 1000GP Ph3 published haplotypes (including the flanking non-recombining region if 

available). Moreover, HapMap phased data was used to confirm 1000GP results, although in many 

cases there was information from just a few SNPs. All inversions could be analyzed by at least some 

of the method combinations, except HsInv0041, which did not have enough variants and was 

excluded. Results of inversions with perfect tag variants (r
2
 = 1) were determined mainly from the 

extended 1000GP Ph3 haplotypes, but consistent conclusions were obtained in the different 

analyses. The only exceptions were a few phasing errors by PHASE 2.1
3
 in 1000GP Ph1 data in 

several inversions and a likely imputation error in HsInv0409 O2/O2 individual NA20530 in 1000GP 

Ph3 (in which one of the haplotypes is typical of O1 chromosomes, whereas in 1000GP Ph1 both 

haplotypes belong clearly to the O2 group).  

 

On the other hand, the estimation of recurrence events for inversions without tag variants relied 

mainly in the analysis of the iHPlots from phased 1000GP Ph1 haplotypes, since they contain all 

genotyped individuals in common, although there could be more phasing errors in inversion 

heterozygotes. First, we defined the putative original inversion event based on the ancestral allele 

information, the haplotype diversity within each orientation, and the frequency and geographical 

distribution of haplotypes, tending to favor as the first event those occurring in Africa. Next, we 

conservatively identified additional inversion or re-inversion events in differentiated clusters of 

haplotypes with both orientations. In order to consider that there has been inversion recurrence, these 

clusters have to differ from all other ones, and especially from those with the same orientation as the 
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potential recurrence event, by three or more sequence changes along most of the inverted region 

(and spanning at least 2 kb). Therefore, the presence of these nucleotide differences cannot be 

explained easily by other mechanisms, such as gene conversion or sequence errors. Direction of 

recurrence events was defined based on the relationship between the clusters and the frequency of 

the haplotypes with each orientation (Supplementary Data 3). Possible phasing errors in inversion 

heterozygotes were checked manually by determining if switching the orientation of both haplotypes 

still supports unequivocally the existence of recurrence. The same analysis was also repeated with 

1000GP Ph3 iHPlots, in which just the orientation from haplotypes of O1 and O2 homozygotes is 

assigned, and only those clear recurrence events not invalidated with the new data were considered. 

It is important to take into account that since recurrence detection relies on differentiated haplotype 

clusters, it is not possible to distinguish more than one event within a cluster and there is a bias to 

predict more potential recurrence in larger inversions with more variants. For example, in six of the 

smallest NAHR inversions, O1 and O2 haplotypes are too similar to identify individual recurrence 

events (Supplementary Data 3). In two others (HsInv0124, HsInv0397), most O1 and O2 haplotypes 

belong to the same big cluster with just few differences between them and no clear recurrence can be 

identified. As a consequence, these results have to be interpreted with caution. 

 

In the case of HsInv0832, we gathered publicly available information of the chr. Y haplogroups of 232 

of the 282 genotyped males from different sources
38–43

, as listed in Supplementary Data 4. Most of 

these studies determined also the evolutionary relationship between the chr. Y haplogroups, which 

were largely consistent and are shown in Fig. 3 in a simplified genealogical tree using the branch 

lengths of Poznik et al.
43

. This allowed us to identify with confidence five independent inversion events 

in the HsInv0832 region, assuming the most parsimonious scenario. HsInv0832 inversion rate was 

estimated dividing the number of inversion events (n) by the number of generations (g) encompassed 

in the phylogeny that relates the 217 Y-chromosomes for which sequence data was available
43

. To 

estimate g, we used the data from the B-T branch split to the leaves from Poznik et al.
43

, including a 

B-T branch split time of 105.8 kya, a total number of mutations in all branches involved in the 

phylogeny that relates those 217 males of 17,332, and an average number of mutations of all 

branches of 784.57, plus a generation time of 25 years as in Repping et al.
44

. This results in 93,489 

generations and an inversion rate of 5.35 × 10
-5

 per generation. In addition, to have another estimate 

of the inversion rate, we also used the approach of Hallast et al.
45

, which was based on Repping et 

al.
44

 that resequenced 80 kb in 47 Y chromosomes covering most major branches of the phylogenetic 

tree to obtain the nucleotide divergence in an unbiased manner. According to their data, we estimated 

a lower and upper bound of g of 127,467-336,533 generations by calculating the maximum (631) and 

minimum (239) total number of mutations spanning all the informative branches and an average 

number of mutations to the root in the different branches of 8.85, assuming a divergence time of 118 

kya and a generation time of 25 years
44,45

. This yields an inversion rate of 1.48-3.92 × 10
-5

, which is 

quite similar to the previous one. 

 

Bioinformatic analysis of inversion orientation in non-human primate genomes 

The bioinformatic analysis of inversion orientation in the available genome assemblies of chimpanzee 

(panTro5), gorilla (gorGor5), orangutan (ponAbe2) and rhesus macaque (macRhe8) was done using 

an automated bash script based on the command-line blat tool (v35x1)
46

. For each inversion, three 

separate hg18 sequences were extracted using twoBitToFa UCSC utility: the inverted region (or 

alternatively two separate internal 10-kb sequences adjacent to each breakpoint when the inverted 

region is longer than 20 kb) and the two 10-kb segments flanking each breakpoint outside the 
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inversion. We excluded the breakpoint intervals and their associated IRs and indels to avoid 

ambiguous mappings. Then, each sequence was aligned with blat to the genomes of interest, which 

were downloaded from the UCSC Genome Browser website in 2bit format. The longest hit was kept 

as the likely homologous region in the target assembly and orientation was defined as O1 if all best 

hits mapped in the same strand, and as O2 if the internal best hit(s) mapped in the opposite strand 

than those from the external sequences. As quality control, all best hits needed to be in the same 

scaffold or chromosome and the total span in the target assembly had to be 0.5-2-times that in hg18. 

In addition, in those cases in which the orientation could not be reliably defined or was inconsistent 

across species or with published data
47,48

, results from the automated analysis were revised by 

aligning the sequences spanning the entire region from each assembly with the Gepard dotplot 

application
49

 and Blast2seq
50

, using default parameters. 

 

Inversion age estimate 

Inversion age was estimated from the net number of differences accumulated between sequences in 

opposite orientations. This number was obtained by subtracting from the mean pairwise nucleotide 

differences between O1 and O2 chromosomes, the expected average pairwise differences in the 

original population (before the generation of the inversion), which was approximated by the largest 

value of the average pairwise differences within sequences with the same orientation (either O1 or 

O2). To ensure the maximum reliability of the divergence estimates, we considered all SNPs available 

in the extended 1000GP Ph3 haplotypes and sequence orientation was determined by the presence 

of tag variants or by using only O1 and O2 homozygous individuals. For two low-frequency inversions, 

HsInv0061 and HsInv1051, divergence could not be estimated because there were no tag variants in 

the analyzed region and all inversion carriers are heterozygous. A first age estimate was obtained by 

using a constant substitution rate of 10
-9

 changes per base-pair per year
51

. Moreover, in order to 

control for local differences in substitution rates, we obtained two additional local estimates from the 

divergence between human and chimpanzee or gorilla genomes, considering, respectively, a split 

time of 6 and 8 million years in each case (Supplementary Data 6). Pairwise LASTZ alignments
52

 of 

human hg19 assembly with chimpanzee (assembly CSAC 2.1.4/panTro4) and gorilla (assembly 

gorGor3.1) genomes were retrieved from ENSEMBL GRCh37 portal
53

, using the Compara Perl API
54

. 

We then used Kimura's two-parameter substitution model
55

 to calculate the divergence between 

human and outgroup assemblies in the same inversion region analyzed above, after removing 

alignment gaps and non-syntenic alignment blocks. Alignments shorter than 1 kb were discarded, 

including the missing chimpanzee alignment for inversion HsInv0045 due to a deletion of the whole 

region and both outgroup alignments for inversion HsInv0041. 

 

Simulation of inversion detection ascertainment bias 

Given the heterogeneous origin of the inversions included in the study (Supplementary Data 1), to 

take into account the effect of ascertainment bias associated to inversion detection, we simulated two 

different processes using a bash and R
34

 pipeline: one for the 38 autosomal or chr. X inversions 

detected from the fosmid paired-end mapping (PEM) data of nine individuals
56

, and another for the six 

inversions detected exclusively by comparison of two genome assemblies
57

. First, we built panels 

from 1000GP individuals with matching demographic and gender composition to the detection 

samples. For the PEM study, corresponding to eight females and one male with African (4 YRI), East 

Asian (1 CHB and 1 JPT) and European ancestry (2 CEU and presumably European individual 

NA15510)
56,58

, we were able to use all the original individuals except for NA19240 and NA15510, 

which were replaced with NA18502 and NA12717. For the genome comparison study, we used a 
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randomly selected European male (NA12872) and selected all SNPs that contained the alternative 

allele. Variants were filtered from 1000GP vcf files 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) with bcftools v1.7 view command
59

. 

Additional filters were applied to the SNPs to simplify comparisons (keeping only SNPs with assigned 

ID and ancestral allele in 1000GP vcf files), to use only putatively neutral variants (conservation 

GERP score
60

 below 2 in functionally annotated 1000GP vcf files ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/supporting/functional_annotation/unfiltered/), 

and to ensure high SNP quality (accessible according to the 1000GP Ph3 strict accessibility mask). 

However, the effect of these extra filters on the final frequency distribution was negligible, affecting 

just <1.5% of the detectable SNPs, which have similar average frequency to the rest of SNPs. 

 

Second, we simulated the detection process of the inversions with the methods employed. This step 

was only simulated for the PEM data, since the limitations of inversion detection by assembly 

comparison are likely independent of variant frequency (and instead probably just related to repeat 

content and complexity of the genomic region). PEM detection, on the other hand, is affected by the 

sizes of the inversion and the IRs at the breakpoints, both of which limit the number of PEMs 

supporting it. To that end, we modeled the detection of an inversion that is present in the PEM panel 

as a function of these two characteristics and the number of chromosomes with the alternative 

orientation. Specifically, the probability of having two discordant PEMs in the whole panel (the 

minimum number necessary to detect an inversion) was calculated by a Poisson distribution with a 

lambda parameter equal to the expected number of discordant PEMs (E(disc)). Following Equation 1 

in Lucas-Lledó et al.
61

, E(disc) for the two breakpoints of a given inversion (inv) and IR (ir) size, 

considering the average PEM insert length (ins) and read length (read), was estimated as: 

 

𝐸(disc) = 2
𝑚𝑖𝑛(inv − read, ins − 2 read − ir)

𝑔
𝑛 𝑓 

 

where g is the sequenced haploid genome size (approximated to 3 Gb), n is the total number of 

fosmids sequenced
56,62

, and f is the fraction of chromosomes carrying the mutation in the nine 

individuals analyzed. For each PEM inversion, a custom R script was used to generate a matching 

random sample of 10,000 SNPs. These SNPs were selected according to the detection probability of 

the SNPs based on their frequency in the PEM panel and the inversion characteristics, including the 

chromosome type (autosomes or chr. X). 

 

Frequency differences between populations (FST) 

To calculate FST
63

, we created vcf files containing the inversion genotypes for the 434 individuals 

common to 1000GP Ph3 and used the --weir-fst-pop option from vcftools (v0.1.15). FST values were 

obtained for each pair of populations within the same population group, each pair of population 

groups, and globally. Genome-wide FST null distributions were obtained from 1000GP Ph3 bialellic 

SNPs polymorphic in the same 434 individuals that are accessible according to the strict criteria and 

have a defined ancestral allele. To control FST dependence on chromosome type and allele 

frequency, empirical P values for each inversion and comparison were estimated as the fraction of the 

SNP distribution (including always a minimum of 10,000 SNPs) from the same chromosome type 

(autosome or chr. X) and global MAF bin (from 0 to 0.5 in 0.05 increases) as the inversion with equal 

or larger FST (Supplementary Data 7). Reduced levels of population differentiation are sometimes 

interpreted as evidence of balancing selection. However, power to detect the extreme low FST values 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/supporting/functional_annotation/unfiltered/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20130502/supporting/functional_annotation/unfiltered/
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was very low. Global population differentiation for all inversions together was measured by a 

hierarchic analysis of molecular variance (AMOVA) according to geographic criteria using Arlequin 

v3.5
64

. Resulting variation was mainly due to the difference between the three continental (CT) groups 

for both autosomal inversions (FST = 0.13, P < 0.0001; FCT = 0.11, P < 0.0001; FSC = 0.03, P = 0.02) 

and chr. X inversions (FST = 0.24, P < 0.0001; FCT = 0.20, P < 0.0001; FSC = 0.05, P < 0.0001). 

 

Linked site frequency spectrum (LSFS) selection tests 

For LSFS tests we used a simplified version of the tests, i.e. weights were chosen computing the 

covariance in the approximation of unlinked sites, and we assumed strong selection coefficients in 

two scenarios: (1) classical selective sweep (positive selection); and (2) long-term balancing 

selection. The frequency spectrum of variants closely linked to the inversion, including their linkage 

pattern (nested or disjoint) with the inverted allele
65

, was calculated in relatively-small non-overlapping 

windows of 3 kb in order to reduce the effects of recombination within each window on the empirical 

null spectrum. The windows tested were localized either within the inversion or the non-recombining 

flanking regions and skipped the breakpoint interval and IRs to avoid errors from associated indels or 

incorrect short-read mappings. The autosome-wide empirical spectrum was computed on windows of 

the same size (3 kb) around all autosomal SNPs. The LSFS was calculated from biallelic 1000GP 

Ph3 SNPs in the 434 samples with inversion genotypes. We removed from the analysis all SNPs with 

a GERP score
60

 higher than 2 to reduce the effect of linked selection, as well as those SNPs within 

0.5 Mb of any of the inversions in our dataset, since their dynamics could be heavily influenced by the 

inversion itself. Tests were conditioned on the inversion frequency in the different populations. For 

each test distribution conditioned on minor allele counts of at least 6, a local cubic smoothing was 

finally applied to the frequency dependence of the distribution, considering derived allele counts 

between +5 and -5 with respect to that of the inversion. In addition, to control for the complex 

demographic history of human populations, we used the empirical autosome-wide first and second 

moments of the empirical linked frequency spectrum of SNPs in each population as a substitute for 

the null spectrum.  

 

Edgington’s method
66

 was used to combine the P values of the same windows of each population. 

Combining the results across different windows of an inversion is complicated by the correlation of 

their P values, since in the absence of recombination they share the same evolutionary history. We 

dealt with this in two ways. The first approach (conservative) was to assume an arbitrary dependence 

between windows, and compute the False Discovery Rate (FDR) correcting for multiple correlated 

testing via Benjamini-Hochberg-Yakutieli
67

 for each inversion separately and for all inversions 

together (in the latter case, HsInv0379 was removed from the analysis due to its size and unbalanced 

contribution to the statistical noise) (Supplementary Data 7). The second approach (approximate) is to 

approximate the joint distribution across correlated windows as a multidimensional Gaussian 

distribution by: (1) applying a Gaussian transformation to the P values; (2) computing the empirical 

correlation across all pairs of windows of the same inversion; (3) computing the average Gaussian 

score for each inversion; (4) building an equicorrelated matrix of the same size as the number of 

windows in the inversion, with elements equal to 1 on the diagonal and to the empirical correlation off 

the diagonal; and (5) comparing the average Gaussian score with the average score extracted from a 

multidimensional Gaussian distribution with covariances distributed as the equicorrelated matrix. This 

approach was applied both to each population separately and to the combined P values from all 

populations (Supplementary Data 7).  
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Non-central deviation (NCD) selection tests 

NCD statistics were adapted to test long-term balancing selection acting on autosomal and chr. X 

inversion regions. NCD1 detects site frequency spectrum shifts towards an equilibrium frequency as 

expected under balancing selection, whereas NCD2 incorporates also information on polymorphism 

density and is most powerful to detect long-term balancing selection
68

. NCD1 and NCD2 were 

computed genome-wide as previously described
68

 using overlapping windows of 2 kb (with 1 kb step), 

which fit well the size of the smaller inversions, and three target frequencies (0.3, 0.4 and 0.5). 

Human polymorphism data was obtained from 1000GP Ph3 SNPs from all individuals of the seven 

studied populations accessible according to the pilot accessibility mask, and human-chimpanzee 

differences were obtained from the hg19-panTro4 alignments available at the UCSC Genome 

Browser
46

. Windows of the 44 inversions were defined with the same criteria as in the LSFS test, 

including the inverted and flanking non-recombining region, while avoiding breakpoint, IR and indel 

intervals. Nine inversions did not have any window passing the filtering criteria and were not analyzed 

(HsInv0031, HsInv0041, HsInv0045, HsInv0055, HsInv0061, HsInv0072, HsInv0344, HsInv0409, and 

HsInv1124).  

 

A raw empirical P value was assigned to each inversion window corresponding to their quantile in the 

null genome-wide distribution of the statistic in that population computed with the target frequency 

most similar to the inversion global MAF
68

, and the lowest P value of all the windows for each 

inversion and population was selected. To correct for the fact that some inversions have more than 

one window, we then sampled 1,000 sets of regions of equal size and from the same chromosome as 

each of the inversions, selected the lowest P value of all the windows of each region, and obtained 

the empirical distribution of minimum P values equivalent to that of the inversion. Finally, size-

corrected P values for each inversion and population were estimated from the quantile in the 

corresponding minimum-P-value distribution (Supplementary Data 7). Since balancing selection 

signals are expected to be shared across multiple populations
68

, we chose as candidates those 

inversions with three or more populations with size-corrected P values < 0.01 (strong candidates) or P 

values < 0.05 (weak candidates). The main limitation of these tests is that, by reducing recombination, 

inversions may affect the expected empirical distribution. For example, inversions increase variance 

in the SFS or the age of alleles. Nevertheless, the reduced recombination means stronger effects of 

background selection, which results in lower levels of diversity and younger alleles, which are the 

opposite to the signatures detected by the NCD statistics. An additional limitation is that the 

signatures of balancing selection could be due to any SNP within the windows, rather than the 

inversion itself. However, the functional effects of the inversion are expected to be much stronger than 

those of a single nucleotide change.  

 

Validation of lymphoblastoid cell lines (LCLs) gene-expression analysis results 

We employed different strategies to confirm the reliability of the results of the gene expression 

analysis from LCLs, which are summarized in Supplementary Fig. 4C-F. In particular, we compared 

our results with those of two additional commonly-used eQTL mapping methods: the one described 

by the GTEx Project
6
 and edgeR-limma

7,8
. In the GTEx analysis, RPKM values were quantile 

normalized across all samples and gene/transcript expression levels were subsequently adjusted by 

rank-based inverse normal transformation per each gene and transcript. In this case, technical 

confounding variation was accounted with the PEER software
69

. The number of technical covariates 

was chosen to optimize eQTL identification by maximizing consistent eQTL calls and minimizing 

differences between GTEx and QTLtools pipelines, but avoiding overfitting the model. We tested up to 
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the top 60 expression-derived PEER factors and 60 principal components of the PCA, taken in groups 

of 5 in decreasing order of the variance explained, and determined the optimal number according to 

the results overlap. Linear regressions were then done with FastQTL v2.0
70

, including the selected 

PEER factors (for gene and transcript analysis, respectively, 5 and 20 in the experimental dataset and 

35 and 55 in the imputed dataset), gender, and the three population principal components as 

covariates. In the edgeR-limma workflow, raw read counts were corrected by library size in counts per 

million. Genes and transcripts that passed the expression-level cutoff (0.1 counts per million in at 

least two samples) were normalized with trimmed mean of M-values (TMM)
71

 and transformed with 

voom
7
. Next, limma fit an additive linear model to contrast differentially expressed genes across 

genotypes, including gender, population and sequencing laboratory as covariates. Other potential 

batch effects were uncovered with the SVA package (1 and 2 for experimental and imputed sets, 

respectively)
72

. All P values were corrected by Storey & Tibshirani FDR
73

.  

 

As an independent replication of these results, we also examined the available gene-expression data 

from blood samples of ~2,000 Estonian individuals obtained by hybridization with Illumina HumanHT-

12 v3.0 Gene Expression BeadChip arrays. In this case, we checked directly the effects of 1,541 

SNPs that were in high LD (r
2
 ≥ 0.8) with 33 inversions either globally (27) or just in Europeans (6). 

These SNPs were already imputed in Estonian samples based on 1000GP Ph1 variants. In total, six 

potential inversion-eQTL effects were identified in this study in blood (FDR < 5%): HsInv0006 and 

DSTYK; HsInv0058 and HLA-E and HLA-C; HsInv0095 and SPP1; HsInv0201 and FBXO38; and 

HsInv0209 and FOLR3. Of those, five were also found in the GTEx or GEUVADIS data, which 

represents a good degree of consistency considering the different expression quantification platforms 

and analysis methods used. 

 

Integrative analysis of functional and selection evidence 

Overlap of functional and selection signals for the 44 autosomal and chr. X inversions analyzed was 

calculated by a Fisher’s exact test of independence. To reduce possible spurious signals, we focused 

on selection signatures calculated on the inversion itself (excluding NCD1 and NCD2 test results) and 

all functional effects except those from GWAS data, which in most cases are related to diseases and 

could have detrimental consequences during evolution. Criteria for classification of strong and weak 

selection and functional evidence are explained in Supplementary Data 7 or Fig. 2. The association 

was replicated considering only the strongest functional effects and selection signals for the 44 

inversions (Fisher’s exact test P = 0.0130) or just the 21 inversions with perfect tag SNPs that were 

included in most analyses, which comprise all NH inversions, except HsInv0102, plus HsInv0040 

(Fisher’s exact test P = 0.0300). 
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