# Supplementary Information for

### Long-read assembly of the Chinese rhesus macaque genome and

### identification of ape-specific structural variants

Yaoxi He\*, Xin Luo\*, Bin Zhou\*, Ting Hu\*, Xiaoyu Meng\*, Peter A. Audano, Zev N. Kronenberg, Evan E. Eichler, Jie Jin, Yongbo Guo, Yanan Yang, Xuebin Qi, Bing Su†

> \*These authors contributed equally to this work. †Corresponding author. E-mail: <u>sub@mail.kiz.ac.cn</u>

This PDF file includes: Supplementary Figures 1-28 Supplementary Tables 1-22 Supplementary Data are provided as separate Excel files.

### **Supplementary Figures**



**Supplementary Figure 1. Distribution of subread length of rheMacS.** Marginal box plot indicates quartiles. The mean subread length is 9.7 Kbp (red line) and the N50 subread length is 14.7 Kbp (blue line).



Supplementary Figure 2. Data generation and *de novo* assembly pipeline.



**Supplementary Figure 3. The chromosomal distribution of scaffolds of the rheMacS genome assembly.** The red rectangles represent scaffolds >3 Mbp; green and blue rectangles correspond to the scaffolds with lengths between 1 Mbp and 3 Mbp and those <1 Mbp, respectively.



Supplementary Figure 4. Distribution of closed gaps in rheMac8 (only the >1 Kbp closed gaps are shown). The blue-colored histograms on the axes of each chromosome indicate the counts of the closed gaps based on 500 Kbp windows. The black dot on each chromosome indicates the centromere position.





LINE: long interspersed nuclear elements; SINE: short interspersed nuclear elements; LTR: long terminal repeats; RC: rolling-circle transposition.



Supplementary Figure 6. Dot plots of assembly comparison between rheMacS and rheMac8.



**Supplementary Figure 7. Distribution of transcripts. (A)** Length distribution of Full-length non-chimeric (FLNC) reads. **(B)** Length distribution of consensus sequences. **(C)** Length distribution of the NGS-corrected reads. **(D)** Length distribution of collapsed isoforms.



Supplementary Figure 8. Comparison of gene structures between rheMacS and rheMac8.



Supplementary Figure 9. Comparison of orthologous gene families among rheMacS, rheMac8 and genome assemblies of other species.



**Supplementary Figure 10. Genotyping results of 53,916 SVs of rheMacS in five unrelated Chinese rhesus monkeys.** *UG*: un-genotyped SVs; *REF*: reference SVs; *HET*: heterozygous SVs; *FIXED*: fixed SVs.



**Supplementary Figure 11. Schematic diagram of ASSV calling.** The ape and monkey cladogram show SVs assigned to lineages according to the assembly comparison. Gibbon is excluded due to its poor assembly quality. The SV count is shown on each branch. For human genomes, a long-read assembled genome ZF1 and the reference genome GRCh38 are used for SV calling, and the SVs number are marked in red (ZF1) and blue (V38). The common marmoset genome assembled by short-read sequencing is used to exclude the SVs that occurred in the monkey lineage. After obtaining the 38,499 SVs between macaque and apes, we then characterized SVs between macaque and marmoset and obtained 363,308 SVs. An SV is defined as an ape-specific structural variant or ASSV if it is included in the 38,499 set, but not in the 363,308 set. We obtained 17,000 ASSVs in total. The final set of ASSVs are highlighted in red box.



Supplementary Figure 12. The orthologous locations of ASSVs on each chromosome between rhesus macaque and apes are consistent with the known chromosomal synteny. The dashed line refers to the known translocation event between chromosome 17 and chromosome 5 in gorilla.



**Supplementary Figure 13. Functional enrichment of the 3,412 ASSV-related genes.** The top 5% (10/208) categories are shown.



**Supplementary Figure 14. An ASSV located in gene-coding regions. (A)** A 318 bp deletion located in *CCDC168* in the great ape lineage. The graph shows multiple comparative alignments of the 318 bp deletion region. (B) Amino-acid alignments. The 318 bp coding-region deletion leads to a 106-amino acid deletion in the ape lineage. (C) Dot plots for pairwise comparison of the 318 bp deletion region (1 Kbp downstream and upstream flanking sequences) between macaque and apes. (D) PCR validation for 318 bp deletion in *CCDC168*.



Supplementary Figure 15. A 3,076 bp insertion located in the splice acceptor of *NMNAT3* in the ape lineage. (A) The genomic location and transcript isoform comparison of *NMNAT3* between human and macaque. (B) Multiple comparative alignments of the 3,076 bp insertion region among primates. (C) Amino-acid alignment of *NMNAT3* between human and macaque. A human-specific protein isoform (highlighted) is identified, which is caused by the 3,076 bp insertion. (D) Dot plot for pairwise comparison of the insertion region (1 Kbp downstream and upstream flanking sequences) between macaque and apes. (E) PCR validation for 3,076 bp insertion in *NMNAT3*.



Supplementary Figure 16. Two ASSVs located at the splice sites of EXOSC10 and

*IL20RB.* (A) A 316 bp insertion located in the splice acceptor of *EXOSC10*, resulting in a nonsense mediated decay (NMD) transcript (dashed frame) in the human lineage. The genomic location and multiple comparative alignments of the 316 bp insertion region (up-panel); transcript comparison of *EXOSC10* between human and macaque.
(B) A 1,435 bp insertion located in the splice donor of *IL20RB*, resulting in an NMD transcript (dashed frame) in the human lineage. The genomic location and multiple comparative alignments of the 1,435 bp insertion region (up-panel); transcripts comparison of *IL20RB*, resulting in an NMD transcript (dashed frame) in the human lineage. The genomic location and multiple comparative alignments of the 1,435 bp insertion region (up-panel); transcripts comparison of *IL20RB* between human and macaque. (C) PCR validations of 316 bp insertion in *EXOSC10* (left) and 1,435 bp insertion in *IL20RB* (right).



**Supplementary Figure 17. Heatmap for ADEs with candidate ASSVs in eight brain regions.** There are 87 ADEs (111 candidate ASSVs). The nearest genes are indicated and the corresponding brain regions are shown in red. The neuro-function-related genes are highlighted (red). ASSV deletions (circles) and insertions (triangles) are denoted.



**Supplementary Figure 18. Comparison of H3K27Ac signals of the ADE between apes and macaques, which possess an ASSV (587 bp deletion) in** *ITSN2.* It shows that the ADE exhibits significant difference between apes (human: n=3 and chimpanzee: n=2) and macaque (n=3) in five brain regions. Shadow in light blue refers to ADE region, vertical lines and box in red refer to the ASSV region.



Supplementary Figure 19. A 1,128 bp deletion located at an ADE of *NEDD9* in the ape lineage. (A) Location of the 1,128 bp deletion in *NEDD9* and the H3K27Ac signals among human, chimpanzee and macaque. (B) Sequence alignment of the deletion region among apes and macaque. (C) PCR validation. (D) Comparison of the H3K27Ac signals among human, chimpanzee and macaque. (\*\*\*-P<0.001; NS-not significant, P>0.05) (E) Dot plots for pairwise comparison of the 1,128 bp deletion region (1 Kbp downstream and upstream flanking sequences) between macaque and apes.



Supplementary Figure 20. An ASSV (130 bp deletion) located in a tail
development related gene MAP3K7. (A) Location of the 130 bp deletion of
MAP3K7 in apes and sequence alignments. (B) Dot plot for the pairwise comparison of the 130 bp deletion region (1 Kbp downstream and upstream flanking sequences)
between macaque and apes. (C) PCR validation of the 130 bp deletion.



Supplementary Figure 21. A GASSV (410 bp deletion) located in the intron region of *COL9A3*, a gene related to body size. (A) Location of the 410 bp deletion in great apes and the gene regulatory annotations (from ENCODE). (B) Sequence alignments among primates. (C) Dot plot for the pairwise comparison of the deletion region (1 Kbp downstream and upstream flanking sequences) between macaque and apes. (D) PCR validation of the 410 bp deletion in *COL9A3*.



Supplementary Figure 22. A GASSV (125 bp deletion) located in the regulatory region of *ERCC5*, a gene related to body size. (A) Location of the 125 bp deletion in great apes and regulatory annotations (from ENCODE). (B) Sequence alignments among primates. (C) Dot plot for the pairwise comparison of the deletion region (1 Kbp downstream and upstream flanking sequences) between macaque and apes. (D) PCR validation of the 125 bp deletion in *ERCC5*.







Supplementary Figure 24. Distribution of molecular length for the Bionano clean data.



Supplementary Figure 25. The 17-mer depth distribution curve. K-mer depth is  $45 \times$  (main peak: MP, vertical dashed line). Two secondary peaks (arrows) at X=1/2\*MP and 2\*MP coordinates, respectively, suggesting that rheMacS possess a high heterozygosity (arrow in blue) and high repeats (arrow in red).



Supplementary Figure 26. Genome-wide all-by-all chromosome heatmap of the Hi-C data aligned to the rheMacS chromosomes.



Supplementary Figure 27. Distribution of the subread lengths of the rheMacS Iso-Seq data.



Supplementary Figure 28. Distribution of the lncRNA length of rheMacS.

#### **Supplementary Tables**

| Data     | Sequencer | DNA resource               | Depth        | Read length | Total data<br>(G) |
|----------|-----------|----------------------------|--------------|-------------|-------------------|
| PacBio   | Sequal    | Blood                      | $100 \times$ | ~9.7 Kbp    | 299.6             |
| Illumina | X10       | Blood                      | 50 	imes     | 150 bp      | 162               |
| Bionano  | Saphyr    | Blood                      | $101 \times$ | ~8.6*       | 304               |
| Hi-C     | X10       | Fibroblast                 | 103×         | 150 bp      | 308               |
| Iso-Seq  | Sequal    | multi-tissues*             | -            | 2.8 Kbp     | 100               |
| RNA-seq  | X10       | multi-tissues <sup>§</sup> | -            | 150 bp      | 185               |

Supplementary Table 1. Data summary for this study.

\*: 10 tissues: Heart, liver, spleen, lung, kidney, stomach, muscle, brain (PFA), cerebellum, testis §: 16 tissues: large intestine, lung, epididymis, liver, testis, muscle, bladder, PFC, skin, spleen, kidney, stomach, small intestine, cerebellum, heart, pancreas.

\*: label per 100Kbp.

|             | Stat Type   | Contig<br>Length<br>(bp) | Contig<br>Number | Scaffold<br>Length<br>(bp) | Scaffold<br>Number |
|-------------|-------------|--------------------------|------------------|----------------------------|--------------------|
|             | N50         | 4,753,079                | 158              | -                          | -                  |
|             | N90         | 771,613                  | 669              | -                          | -                  |
| FALCON      | Longest     | 33,382,844               | 1                | -                          | -                  |
|             | Length>=5kb | 3,002,382,905            | 4,917            | -                          | -                  |
|             | Total       | 3,003,076,638            | 5,134            | -                          | -                  |
|             | N50         | 4,691,831                | 161              | 9,744,742                  | 87                 |
|             | N90         | 759,524                  | 677              | 1,265,461                  | 378                |
| Bionano     | Longest     | 33,382,844               | 1                | 49,445,782                 | 1                  |
|             | Length>=5kb | 3,002,320,278            | 4,943            | 3,008,819,668              | 4,560              |
|             | Total       | 3,003,014,011            | 5,160            | 3,009,513,401              | 4,777              |
|             | N50         | 8,096,761                | 100              | 13,609,070                 | 61                 |
|             | N90         | 1,100,637                | 444              | 1,634,467                  | 282                |
| PBJelly gap | Longest     | 45,328,419               | 1                | 64,745,855                 | 1                  |
| ming        | Length>=5kb | 3,023,027,334            | 4,544            | 3,025,829,092              | 4,336              |
|             | Total       | 3,023,694,962            | 4,751            | 3,026,496,720              | 4,543              |
|             | N50         | 8,187,147                | 99               | 13,638,801                 | 61                 |
| <b>A</b>    | N90         | 1,106,151                | 439              | 1,637,744                  | 283                |
| Arrow       | Longest     | 45,426,273               | 1                | 64,880,689                 | 1                  |
| adjusted    | Length>=5kb | 3,030,843,238            | 4,536            | 3,033,643,665              | 4,338              |
|             | Total       | 3,031,501,491            | 4,741            | 3,034,301,918              | 4,543              |
|             | N50         | 8,187,147                | 99               | 13,638,801                 | 61                 |
|             | N90         | 1,106,151                | 439              | 1,637,744                  | 283                |
| NGS data    | Longest     | 45,426,273               | 1                | 64,880,689                 | 1                  |
| polished    | Length>=5kb | 3,030,843,238            | 4,536            | 3,033,643,665              | 4,338              |
|             | Total       | 3,031,501,491            | 4,741            | 3,034,301,918              | 4,543              |

## Supplementary Table 2. Statistics of multiple assembled data.

| Droft                  | Total scaffolds                                   | 4,543         |
|------------------------|---------------------------------------------------|---------------|
| Drait                  | Total scaffolds length (bp)                       | 3,034,495,472 |
|                        | Total scaffolds                                   | 2,684         |
| Clustoring             | Proportion in total scaffolds (%)                 | 59.08         |
| Clustering             | Total scaffold length of scaffolds (bp)           | 2,952,828,605 |
|                        | Proportion of scaffold length in total length (%) | 97.31         |
|                        | Total scaffolds                                   | 2,684         |
|                        | Proportion in total scaffolds (%)                 | 100           |
| Ordering and orienting | Total scaffold length of scaffolds (bp)           | 2,952,828,605 |
|                        | Proportion of scaffold length in total length (%) | 100           |

Supplementary Table 3. Statistics of chromosome-level assembled using Hi-C data.

|            |               | whemese whemese rough |                |                    |                   |              | Anno   | Annotation |          |            |
|------------|---------------|-----------------------|----------------|--------------------|-------------------|--------------|--------|------------|----------|------------|
| Chromosome | rhe           | MacS                  | S memaco       |                    | Filled<br>gaps in | Total length |        |            | Function |            |
|            | Gap<br>number | Gap length<br>(bp)    | Gap<br>number  | Gap length<br>(bp) | rheMac8           | Ũ            | Repeat | Exon       | Intron   | Intergenic |
| Chr1       | 119           | 332097                | 3949           | 5462089            | 1867              | 1541510      | 1531   | 0          | 662      | 1298       |
| Chr2       | 126           | 150886                | 2908           | 5229210            | 780               | 4095409      | 611    | 2          | 467      | 585        |
| Chr3       | 126           | 437641                | 3207           | 4755371            | 928               | 11231745     | 776    | 4          | 467      | 667        |
| Chr4       | 186           | 436804                | 2623           | 4914955            | 914               | 2097959      | 734    | 3          | 333      | 620        |
| Chr5       | 87            | 249253                | 2586           | 5681984            | 906               | 1946801      | 756    | 1          | 278      | 584        |
| Chr6       | 108           | 176006                | 2536           | 4675540            | 603               | 944459       | 469    | 3          | 330      | 468        |
| Chr7       | 145           | 201289                | 2964           | 3958247            | 453               | 4968412      | 332    | 3          | 539      | 332        |
| Chr8       | 176           | 193645                | 2066           | 3782360            | 877               | 1225108      | 776    | 2          | 239      | 624        |
| Chr9       | 219           | 381455                | 2004           | 3057750            | 740               | 1489258      | 622    | 1          | 322      | 514        |
| Chr10      | 78            | 260712                | 2038           | 1705315            | 1350              | 1931718      | 984    | 1          | 363      | 912        |
| Chr11      | 136           | 216499                | 2486           | 3937035            | 1509              | 1670980      | 1043   | 3          | 427      | 1071       |
| Chr12      | 196           | 301052                | 1721           | 3731779            | 1174              | 586020       | 904    | 1          | 240      | 855        |
| Chr13      | 154           | 244648                | 1771           | 2354883            | 1189              | 853721       | 878    | 2          | 230      | 939        |
| Chr14      | 90            | 221197                | 1979           | 3120660            | 1180              | 946690       | 984    | 2          | 300      | 853        |
| Chr15      | 124           | 227786                | 1949           | 2420094            | 1431              | 994657       | 1013   | 1          | 328      | 951        |
| Chr16      | 106           | 154902                | 2100           | 2037118            | 943               | 4815881      | 743    | 2          | 371      | 722        |
| Chr17      | 131           | 246193                | 1415           | 2670670            | 971               | 4399014      | 720    | 0          | 141      | 680        |
| Chr18      | 163           | 166407                | 929            | 1769440            | 939               | 2240027      | 793    | 2          | 117      | 643        |
| Chr19      | 71            | 365595                | 2502           | 1467830            | 1161              | 962532       | 997    | 6          | 368      | 772        |
| Chr20      | 122           | 156949                | 1632           | 1748847            | 809               | 1130777      | 662    | 1          | 279      | 618        |
| ChrX       | 135           | 283211                | 2515           | 3468578            | 1214              | 10659414     | 1042   | 1          | 302      | 908        |
| ChrY       | 60            | 60060                 | 2              | 100002             | 2                 | 75769        | 1      | 0          | 2        | 1          |
| Total      | 2858          | 5464287               | 47882          | 72049757           | 21940             | 60807861     | 17371  | 41         | 7105     | 14794      |
| Total      | 2050          | 2030 3404287          | 47002 72049737 | 21940 008          | 00007001          | 17571        |        | 21940      |          |            |

## Supplementary Table 4. Summary of gaps and filled gaps in rheMac8 by rheMacS.

| rheMac8 information |           |           | rheMacS information |           |           |             |                 |             |
|---------------------|-----------|-----------|---------------------|-----------|-----------|-------------|-----------------|-------------|
| Chrom               | Start     | End       | Chrom               | Start     | End       | Length (bp) | Gene ID         | Gene Symbol |
| chr2                | 50874271  | 50874297  | chr2                | 49677422  | 49678035  | 613         | Macaca.07932-RA | PLXND1      |
| chr2                | 89978933  | 89979388  | chr2                | 88469107  | 88469448  | 341         | Macaca.19169-RA | PPM1M       |
| chr3                | 36379599  | 36379620  | chr3                | 36310345  | 36310575  | 230         | Macaca.10369-RA | KIF19       |
| chr3                | 12681166  | 12681192  | chr3                | 13083532  | 13084016  | 484         | Macaca.06098-RA | PPIA        |
| chr3                | 40197809  | 40197830  | chr3                | 40436743  | 40436766  | 23          | Macaca.10756-RA | GRID2IP     |
| chr3                | 149866119 | 149866140 | chr3                | 154328722 | 154328783 | 61          | Macaca.16344-RA | r3          |
| chr4                | 98119128  | 98119149  | chr4                | 98892363  | 98892620  | 257         | Macaca.14164-RA | PRDM13      |
| chr4                | 32699085  | 32699111  | chr4                | 34291706  | 34292059  | 353         | Macaca.04827-RA | HSPA1       |
| chr4                | 43097732  | 43097753  | chr4                | 44904905  | 44904907  | 2           | Macaca.10570-RA | C6orf132    |
| chr5                | 77708777  | 77708798  | chr5                | 78418499  | 78418523  | 24          | Macaca.17721-RA | REST        |
| chr6                | 98686575  | 98686596  | chr6                | 99989780  | 99989830  | 50          | Macaca.19403-RA | CTAGE15     |
| chr6                | 170969385 | 170969406 | chr6                | 173689402 | 173689519 | 117         | Macaca.09283-RA | NA          |
| chr6                | 630213    | 630234    | chr6                | 933247    | 933409    | 162         | Macaca.09100-RA | NA          |
| chr7                | 95876589  | 95877154  | chr7                | 97944361  | 97945076  | 715         | Macaca.13115-RA | HNRNPC      |
| chr7                | 157758871 | 157758892 | chr7                | 144424251 | 144424399 | 148         | Macaca.12846-RA | SYNE3       |
| chr7                | 69077218  | 69078067  | chr7                | 70979517  | 70979828  | 311         | Macaca.03402-RA | UNC45A      |
| chr8                | 16707186  | 16707207  | chr8                | 17629235  | 17629304  | 69          | Macaca.00703-RA | MICU3       |
| chr8                | 116588881 | 116589318 | chr8                | 119532937 | 119533272 | 335         | Macaca.18717-RA | FAM133B     |
| chr9                | 63736731  | 63737033  | chr9                | 77117055  | 77117422  | 367         | Macaca.05565-RA | STOX1       |
| chr10               | 19268240  | 19268266  | chr10               | 20785602  | 20786114  | 512         | Macaca.10804-RA | SEMG2       |

Supplementary Table 5. 41 filled gaps interacted with exons in rheMac8 by rheMac8.

| chr11 | 7437943  | 7438747  | chr11 | 7639036  | 7639915  | 879 | Macaca.00328-RA | C1S       |
|-------|----------|----------|-------|----------|----------|-----|-----------------|-----------|
| chr11 | 36744458 | 36744479 | chr11 | 39466973 | 39466988 | 15  | Macaca.05086-RA | HERVK_113 |
| chr11 | 22605505 | 22605507 | chr11 | 23575051 | 23575053 | 2   | Macaca.05445-RA | ABCC9     |
| chr12 | 63130587 | 63130608 | chr12 | 70402074 | 70402427 | 353 | Macaca.00050-RA | HOXD11    |
| chr13 | 87180048 | 87180069 | chr13 | 86458273 | 86458403 | 130 | Macaca.01673-RA | SH2D6     |
| chr13 | 45690208 | 45690229 | chr13 | 45439090 | 45439384 | 294 | Macaca.18887-RA | SIX3      |
| chr14 | 16873643 | 16873664 | chr14 | 17974350 | 17974367 | 17  | Macaca.11450-RA | Olfr1030  |
| chr14 | 32211864 | 32211885 | chr14 | 33055812 | 33055893 | 81  | Macaca.11578-RA | C11orf91  |
| chr15 | 27060631 | 27060652 | chr15 | 30097913 | 30098040 | 127 | Macaca.02577-RA | PTBP3     |
| chr16 | 57619278 | 57619299 | chr16 | 61638705 | 61638847 | 142 | Macaca.02266-RA | PRR29     |
| chr16 | 4466922  | 4467121  | chr16 | 4687007  | 4687968  | 961 | Macaca.13950-RA | GGT6      |
| chr18 | 46890126 | 46890147 | chr18 | 56801620 | 56801631 | 11  | Macaca.00850-RA | ONECUT2   |
| chr18 | 11630061 | 11630510 | chr18 | 15717937 | 15718683 | 746 | Macaca.13543-RA | CABLES1   |
| chr19 | 39880610 | 39880631 | chr19 | 40869705 | 40869803 | 98  | Macaca.04259-RA | PVR       |
| chr19 | 39880610 | 39880631 | chr19 | 40869705 | 40869803 | 98  | Macaca.04258-RA | PVR       |
| chr19 | 1577748  | 1578223  | chr19 | 1660373  | 1660994  | 621 | Macaca.11620-RA | ONECUT3   |
| chr19 | 17482613 | 17483313 | chr19 | 17654108 | 17654260 | 152 | Macaca.14748-RA | FAM129C   |
| chr19 | 31647995 | 31648017 | chr19 | 32269422 | 32269424 | 2   | Macaca.02796-RA | KMT2B     |
| chr19 | 43865203 | 43865224 | chr19 | 44875849 | 44875950 | 101 | Macaca.19101-RA | LMTK3     |
| chr20 | 34563526 | 34563547 | chr20 | 37088966 | 37089002 | 36  | Macaca.01875-RA | NKD1      |
| chrX  | 2090280  | 2090301  | chrX  | 3384624  | 3384754  | 130 | Macaca.18258-RA | ARSF      |

| Rep       | eat elements | Count | Average   | Standard  | Total     | Percent |
|-----------|--------------|-------|-----------|-----------|-----------|---------|
| DNA       |              | 286   | 135.591   | 124.778   | 38,779    | 7.181   |
|           | CR1          | 7     | 320.286   | 238.113   | 2,242     | 0.176   |
|           | Ι            | 3     | 45.000    | 21.517    | 135       | 0.075   |
|           | I-Jockey     | 2     | 34.500    | 16.263    | 69        | 0.050   |
|           | L1           | 969   | 1,492.235 | 1,890.571 | 1,445,976 | 24.32   |
|           | L1-Tx1       | 1     | 33.000    | 0.000     | 33        | 0.025   |
| LINE      | L2           | 123   | 180.545   | 187.796   | 22,207    | 3.088   |
|           | Penelope     | 2     | 41.000    | 19.799    | 82        | 0.050   |
|           | R1           | 0     | NA        | NA        | NA        | NA      |
|           | R2           | 1     | 40.000    | 0         | 40        | 0.025   |
|           | Rex          | 1     | 83.000    | 0         | 83        | 0.025   |
|           | RTE          | 3     | 114.667   | 122.647   | 344       | 0.075   |
| Low       |              | 14    | 119.214   | 24.370    | 1669      | 0.351   |
|           | Copia        | 1     | 37.000    | 0         | 37        | 0.025   |
|           | DIRS         | 0     | NA        | NA        | NA        | NA      |
|           | ERV1         | 71    | 730.704   | 1,011.284 | 51,880    | 1.783   |
| I TR      | ERVK         | 12    | 185.500   | 257.986   | 2,226     | 0.301   |
| LIK       | ERVL         | 201   | 243.090   | 260.651   | 48,861    | 5.046   |
|           | ERVL-MaLR    | 85    | 220.412   | 126.773   | 18,735    | 2.134   |
|           | Gypsy        | 20    | 117.050   | 75.577    | 2,341     | 0.502   |
|           | non          | 134   | 2,908.246 |           | 389,705   | 3.364   |
| RC        | Helitron     | 6     | 78.500    | 27.399    | 471       | 0.151   |
| Retroposo | SVA          | 67    | 99.149    | 95.874    | 6,643     | 1.682   |
|           | acro         | 3     | 142.667   | 79.387    | 428       | 0.075   |
|           | centr        | 2     | 203.500   | 3.536     | 407       | 0.050   |
| Satellite | non          | 14    | 156.286   | 94.499    | 2,188     | 0.351   |
|           | telo         | 0     | NA        | NA        | NA        | NA      |
|           | Y-chromosome | 0     | NA        | NA        | NA        | NA      |
| Simple    |              | 883   | 792.270   | 10,759.26 | 699,574   | 22.16   |
|           | Alu          | 898   | 244.157   | 117.122   | 219,253   | 22.54   |
|           | MIR          | 119   | 119.798   | 55.677    | 14,256    | 2.988   |
| SINE      | tRNA-7SL     | 8     | 32.125    | 25.554    | 257       | 0.201   |
|           | tRNA-Deu     | 1     | 206.000   | 0.000     | 206       | 0.025   |
|           | 7SL          | 16    | 38.938    | 20.879    | 623       | 0.402   |
| Unknown   |              | 30    | 179.167   | 278.797   | 5,375     | 0.753   |

Supplementary Table 6. Repeat analysis of filled gaps for rheMac8.

| Chromosome | Length(bp)    | Consistency with rheMac8 (%) |
|------------|---------------|------------------------------|
| Chr1       | 227,617,462   | 98.70                        |
| Chr2       | 203,273,356   | 98.64                        |
| Chr3       | 189,974,636   | 98.72                        |
| Chr4       | 177,000,330   | 98.70                        |
| Chr5       | 190,508,718   | 98.64                        |
| Chr6       | 183,305,545   | 98.54                        |
| Chr7       | 175,094,158   | 98.66                        |
| Chr8       | 148,403,059   | 98.61                        |
| Chr9       | 142,822,578   | 98.77                        |
| Chr10      | 98,845,734    | 98.87                        |
| Chr11      | 136,270,821   | 98.71                        |
| Chr12      | 137,731,144   | 98.76                        |
| Chr13      | 114,312,528   | 98.90                        |
| Chr14      | 133,980,097   | 98.74                        |
| Chr15      | 116,006,700   | 98.70                        |
| Chr16      | 83,193,081    | 98.87                        |
| Chr17      | 100,348,525   | 98.75                        |
| Chr18      | 89,280,157    | 98.86                        |
| Chr19      | 55,557,796    | 98.59                        |
| Chr20      | 86,713,556    | 98.86                        |
| ChrX       | 152,195,021   | 98.28                        |
| ChrY       | 13,055,603    | 92.14                        |
| Total      | 2,955,490,605 | 98.41                        |

Supplementary Table 7. Statistics of assembled chromosomes

| CHD   | Homozygous* |        | Heteroz   | ygous     | D                 | 01/8            |
|-------|-------------|--------|-----------|-----------|-------------------|-----------------|
| Снк - | SNPs        | INDELs | SNPs      | INDELs    | - Base error rate | QV <sup>s</sup> |
| 1     | 586         | 1,958  | 409,987   | 87,845    | 1.1177E-05        | 50              |
| 2     | 436         | 1,525  | 377,290   | 80,593    | 9.6471E-06        | 50              |
| 3     | 418         | 1,791  | 360,867   | 79,254    | 1.1628E-05        | 49              |
| 4     | 545         | 1,528  | 346,611   | 74,574    | 1.1712E-05        | 49              |
| 5     | 359         | 1,517  | 390,748   | 85,285    | 9.8473E-06        | 50              |
| 6     | 452         | 1,301  | 346,872   | 74,756    | 9.5633E-06        | 50              |
| 7     | 431         | 1,440  | 315,745   | 66,215    | 1.0686E-05        | 50              |
| 8     | 469         | 1,250  | 272,645   | 58,046    | 1.1583E-05        | 49              |
| 9     | 674         | 1,374  | 255,053   | 53,545    | 1.4339E-05        | 48              |
| 10    | 300         | 944    | 179,363   | 35,988    | 1.2585E-05        | 49              |
| 11    | 385         | 1,276  | 248,785   | 53,908    | 1.2189E-05        | 49              |
| 12    | 326         | 1,011  | 243,045   | 52,391    | 9.7073E-06        | 50              |
| 13    | 400         | 919    | 203,625   | 42,696    | 1.1539E-05        | 49              |
| 14    | 291         | 1,059  | 236,280   | 51,135    | 1.0076E-05        | 50              |
| 15    | 299         | 1,021  | 201,263   | 43,003    | 1.1379E-05        | 49              |
| 16    | 294         | 906    | 140,540   | 30,393    | 1.4424E-05        | 48              |
| 17    | 320         | 821    | 208,902   | 45,775    | 1.1370E-05        | 49              |
| 18    | 302         | 694    | 156,999   | 34,263    | 1.1156E-05        | 50              |
| 19    | 279         | 1,089  | 94,092    | 20,434    | 2.4623E-05        | 46              |
| 20    | 339         | 817    | 154,434   | 30,863    | 1.3331E-05        | 49              |
| Х     | 140         | 581    | 6,639     | 1,425     | 4.7373E-06        | 53              |
| Y     | 71          | 148    | 2,725     | 535       | 1.6774E-05        | 48              |
| Total | 8.116       | 24,970 | 5,152,510 | 1,102,922 | 1.1195E-05        | 50              |

Supplementary Table 8. Statistics of SNVs calling by NGS reads mapped to rheMacS assembly.

\*Homozygous SNVs represent the site with both of the alleles that are different from the nucleotide on the rheMacS assembly.

QV (quality value) represents a per-base. Estimate of accuracy and is calculated as  $QV = -10\log_{10}(P)$  where P is the probability of error.

|      | Sample_ID       | ind01      | ind02      | ind03      | ind04      | ind05       | Average    |
|------|-----------------|------------|------------|------------|------------|-------------|------------|
|      | Reads(R1)       | 466857306  | 470771424  | 470068763  | 470697093  | 437754192   | 46322      |
|      | Reads(R2)       | 466857306  | 470771424  | 470068763  | 470697093  | 437754192   | 46322      |
|      | Q30(R1)         | 6609135886 | 6681546654 | 6649554276 | 6665289515 | 6001294348  | 6521364136 |
| Q    | 30percent(R1)   | 94.3776724 | 94.6184115 | 94.3061214 | 94.4030972 | 91.3951932  | 93.8200992 |
|      | Q30(R2)         | 6247352153 | 6312226386 | 6103149202 | 6283342157 | 5315916498  | 6052397279 |
| Q    | 30percent(R2)   | 89.2114438 | 89.3884103 | 86.5568286 | 88.9934277 | 80.9574048  | 87.0215030 |
| me   | eanQ30percent   | 91.7945581 | 92.0034109 | 90.4314750 | 91.6982624 | 86.1762990  | 90.4208011 |
|      | rawDepth        | 49.33      | 49.79      | 48.96      | 49.71      | 45.81       | 48.72      |
|      | eDPmean*        | 43.88      | 44.72      | 42.88      | 43.54      | 40.1        | 43.024     |
|      | PercentDup(%)   | 11.21      | 10.36      | 12.69      | 12.67      | 12.82       | 11.95      |
|      | Unmapped        | 7287928    | 7256120    | 7439753    | 6833332    | 7300353     | 7223497.2  |
| 1ac8 | mapped          | 935067171  | 942772195  | 941199697  | 943290162  | 876917653   | 92784      |
| rheN | Mapped rate(%)  | 0.992      | 0.992      | 0.992      | 0.993      | 0.992       | 0.992      |
| -    | ProperlyPaired( | 96.29      | 96.34      | 96.14      | 96.21      | 96.15       | 96.226     |
|      | ISmedian§       | 414        | 417        | 400        | 422        | 400         | 410.6      |
|      | ISmean          | 421.942201 | 424.746374 | 406.829866 | 429.041836 | 403.416798  | 417.195415 |
|      | ISsd            | 103.434228 | 104.774544 | 101.548837 | 107.607837 | 96.347229   | 102.742535 |
|      | rawDepth        | 46.63      | 47.07      | 46.3       | 46.98      | 43.391858   | 46.0743716 |
|      | eDPmean         | 43.27      | 44.19      | 43.24      | 43.89      | 41.644      | 43.2468    |
|      | PercentDup(%)   | 0.072005   | 0.061006   | 0.066035   | 0.065704   | 0.06645925  | 0.06624185 |
|      | Unmapped        | 3936674    | 3830300    | 3910183    | 3577036    | 387 0,633.8 | 382        |
| lacS | mapped          | 935541266  | 943259959  | 942025822  | 943845904  | 87568       | 92807      |
| rheN | Mapped rate(%)  | 0.99580972 | 0.99595571 | 0.99586633 | 0.99622445 | 0.99560587  | 0.99589242 |
| -    | ProperlyPaired( | 97.6       | 97.64      | 97.33      | 97.34      | 97.2755     | 97.4371    |
|      | ISmedian        | 415        | 418        | 401        | 423        | 401         | 411.6      |
|      | ISmean          | 423.504241 | 426.444567 | 408.631068 | 431.100473 | 405.066882  | 418.949446 |
|      | ISsd            | 103.102195 | 104.395091 | 101.313405 | 107.697082 | 95.6837696  | 102.438308 |

Supplementary Table 9. Summary of five macaques Illumina WGS reads mapped to rheMac8 and rheMacS.

\*: eDP-effective depth; §: IS-insert size.

| Vori    | Variant type |          | Reference  | based on   |
|---------|--------------|----------|------------|------------|
| v aria  | int type     | 1 0018   | rheMac8    | rheMacS    |
|         | SND          | GATK     | 19,474,353 | 19,172,495 |
| CNIV    | SINPS        | Samtools | 18,661,340 | 19,124,913 |
| 51N V S |              | GATK     | 4,523,318  | 3,957,728  |
|         | INDELS       | Samtools | 4,823,333  | 5,615,821  |
|         | Deletions    | Delly    | 147,931    | 135,218    |
| SVa     | Insertions   | Delly    | 35,067     | 33,823     |
| 3 V 8   | Duplications | Delly    | 42,512     | 44,246     |
|         | Inversions   | Delly    | 46,629     | 33,691     |
|         | Total        |          | 24,269,810 | 23,377,201 |

| Supplementary Table 10. | Summary of detected variants by rhesus Illumina |
|-------------------------|-------------------------------------------------|
| WGS data.               |                                                 |

| Items                             | rheMac8   | rheMacS   |
|-----------------------------------|-----------|-----------|
| Total number                      | 1,267,315 | 1,267,862 |
| Total mapped number               | 1,255,469 | 1,257,845 |
| Total mapped rate                 | 0.9907    | 0.9921    |
| Number of identity filtered       | 133,686   | 125,534   |
| Number of coverage filtered       | 434,978   | 406,455   |
| Total filter rate                 | 0.4581    | 0.4275    |
| Mean consensus number per isoform | 2.48      | 2.51      |
| Collapse isoforms                 | 276,600   | 288,773   |

Supplementary Table 11. Iso-seq subreads mappablity for rheMacS and rheMac8.

Total number: the total Iso-seq transcripts number filtered fusion genes

Total mapped number: the total number of mapped Iso-seq transcripts

Total mapped rate: the proportion of mappped Iso-seq transcripts for total number

Number of identity filtered: the number of Iso-seq transcripts passed identity filtering

Number of coverage filtered: the number of Iso-seq transcripts passed coverage filtering

Total filter rate: the proportion of filtered Iso-seq transcripts for total number

Mean consensus number per isoform: the average number of consensus sequence in an isoform Number of collapse isoforms: the isoform number after pruning redundance

| Smaata    | <b>T</b> 7       | Comos  | Gene      | CDS      | E     | Exon   | Intron   |
|-----------|------------------|--------|-----------|----------|-------|--------|----------|
| Specie    | version          | Genes  | length    | length   | Exons | length | length   |
| Human     | GRCh38.p12       | 20,022 | 50,541.15 | 1,722.17 | 9.88  | 174.27 | 5,496.22 |
| Chimp     | Clint_PTRv2      | 18,269 | 48,278.78 | 1,619.01 | 9.83  | 164.77 | 5,286.83 |
| Gorilla   | gorGor4          | 20,920 | 40,770.71 | 1,513.78 | 9.27  | 163.38 | 4,749.58 |
| Orangutan | P_pygmaeus_2.0.2 | 20,424 | 45,357.04 | 1,490.71 | 9.56  | 155.91 | 5,123.82 |
| Gibbon    | Nleu_3.0         | 19,978 | 47,585.41 | 1,531.21 | 9.39  | 163.10 | 5,490.26 |
| Macaque   | rheMac8          | 20,605 | 45,285.37 | 1,489.06 | 8.89  | 167.48 | 5,550.02 |
| Macaque   | rheMacS          | 20,389 | 44,276.53 | 1,564.38 | 8.88  | 176.24 | 5,422.77 |
| Mouse     | GRCm38.p6        | 22,094 | 38,075.20 | 1,563.10 | 8.82  | 177.15 | 4,666.83 |

Supplementary Table 12. Comparison of gene statistics of rheMacS and other species.

Genes: total number of gene

Gene length: average gene length (bp)

CDS length: Average CDS length (bp)

Exon: Average exons number per gene

Exon length: Average exon length (bp)

Intron length: Average intron length (bp)

|                    | Macaque | Macaque | Orangutan | Gorilla | Chimpanzee | Human |
|--------------------|---------|---------|-----------|---------|------------|-------|
| Terms              | (RM8)   | (RMS)   | (OSP)     | (GS3)   | (CCP)      | (ZF1) |
| Total (%)          | 52.24   | 54.04   | 53.19     | 52.8    | 52.7       | 54.07 |
| srpRNA (%)         | 0.01    | 0.01    | 0.01      | 0.01    | 0.01       | 0.01  |
| LTR (%)            | 10.21   | 9.94    | 10.39     | 10.41   | 10.42      | 10.43 |
| SSR (%)            | 1.16    | 1.18    | 1.02      | 1.05    | 1.01       | 1.22  |
| SINE (%)           | 13.75   | 13.29   | 12.8      | 13.02   | 13.04      | 13.01 |
| DNA (%)            | 4.05    | 3.89    | 4.11      | 4.13    | 4.13       | 4.1   |
| Simple repeat (%)  | 1.2     | 1.22    | 1.21      | 1.23    | 1.19       | 1.96  |
| Unknown (%)        | 0.05    | 0.05    | 0.05      | 0.05    | 0.05       | 0.05  |
| scRNA (%)          | 0.01    | 0.01    | 0.01      | 0.01    | 0.01       | 0.01  |
| snRNA (%)          | 0.01    | 0.01    | 0.01      | 0.01    | 0.01       | 0.01  |
| rRNA (%)           | 0       | 0.01    | 0         | 0       | 0.01       | 0.01  |
| tRNA (%)           | 0       | 0       | 0         | 0       | 0          | 0     |
| RC (%)             | 0.02    | 0.02    | 0.02      | 0.02    | 0.02       | 0.02  |
| LINE (%)           | 22.49   | 21.94   | 23.97     | 23.13   | 23.09      | 23.05 |
| RNA (%)            | 0.01    | 0.01    | 0.01      | 0.01    | 0.01       | 0.01  |
| Retroposon (%)     | 0       | 0       | 0.1       | 0.14    | 0.13       | 0.12  |
| Low complexity (%) | 0.21    | 0.22    | 0.21      | 0.20    | 0.20       | 0.21  |

Supplementary Table 13. Summary of repeat content of rheMacS.

| Turne                           | rhe    | eMacS       | rheMac8 |             |  |
|---------------------------------|--------|-------------|---------|-------------|--|
| Гуре                            | Number | Percent (%) | Number  | Percent (%) |  |
| Complete BUSCOs                 | 3,836  | 93.5        | 3,867   | 94.2        |  |
| Complete and single-copy BUSCOs | 3,745  | 91.3        | 3,842   | 93.2        |  |
| Complete and duplicated BUSCOs  | 91     | 2.2         | 43      | 1           |  |
| Fragmented BUSCOs               | 191    | 4.7         | 112     | 2.7         |  |
| Missing BUSCOs                  | 77     | 1.8         | 125     | 3.1         |  |
| Total BUSCO groups searched     | 4,104  | -           | 4,104   | -           |  |

## Supplementary Table 14. Summary of BUSCO prediction.

| <br>    | Туре     |        | Average Length | Total Length  | Percentage of |
|---------|----------|--------|----------------|---------------|---------------|
| 1 yı    |          |        | (bp)           | ( <b>bp</b> ) | genome (%)    |
|         | rRNA     | 544    | 168.54         | 91,685        | 0.001828      |
|         | 18S      | 1      | 1,868.00       | 1,868         | 0.000037      |
| rRNA    | 28S      | 4      | 7,414.75       | 29,659        | 0.000591      |
|         | 5.8S     | 4      | 151.5          | 606           | 0.000012      |
|         | 5S       | 535    | 111.31         | 59,552        | 0.001188      |
|         | snRNA    | 2,373  | 112.68         | 267,378       | 0.005332      |
| on DNA  | CD-box   | 496    | 96.41          | 47,820        | 0.000954      |
| SIIKINA | HACA-box | 379    | 131.67         | 49,903        | 0.000995      |
|         | splicing | 1,498  | 113.25         | 169,655       | 0.003383      |
| miRl    | miRNA    |        | 247.37         | 2,729,689     | 0.054434      |
| tRN     | A        | 718    | 73.67          | 52,894        | 0.001055      |
| lncRNA  |          | 49,698 | 2,582.25       | 128,332,745   | 4.3421807     |

Supplementary Table 15. Statistics of ncRNA annotation of rheMacS.

| Assembly name           | Species                 | Common name                   | Database | Accession   | Alias in this study | PacBio based |
|-------------------------|-------------------------|-------------------------------|----------|-------------|---------------------|--------------|
| rheMacS                 | Macaca mulatta          | Rhesus monkey                 | NCBI     | PRJNA514196 | RMS                 | TURE         |
| rheMac8 (Mmul_8.0.1)    | Macaca mulatta          | Rhesus monkey                 | NCBI     | PRJNA214746 | RM8                 | FALSE        |
| ZF1                     | Homo sapiens            | Human                         | GSA      | PRJCA000936 | ZF1                 | TURE         |
| GRCh38.p12              | Homo sapiens            | Human                         | NCBI     | PRJNA31257  | V38                 | FALSE        |
| panpan1.1               | Pan paniscus            | Bonobo                        | NCBI     | PRJNA49285  | -                   | FALSE        |
| Clint_PTRv2             | Pan troglodytes         | Chimpanzee                    | NCBI     | PRJNA369439 | CCP                 | TURE         |
| Pan_tro 3.0             | Pan troglodytes         | Chimpanzee                    | NCBI     | PRJNA13184  | -                   | FALSE        |
| Susie3                  | Gorilla gorilla gorilla | Western lowland gorilla       | NCBI     | PRJEB10880  | GS3                 | TURE         |
| gorGor4                 | Gorilla gorilla gorilla | Western lowland gorilla       | NCBI     | PRJEA31265  | -                   | FALSE        |
| Susie_PABv2             | Pongo abelii            | Sumatran orangutan            | NCBI     | PRJNA369439 | OSP                 | TURE         |
| P_pygmaeus_2.0.2        | Pongo abelii            | Sumatran orangutan            | NCBI     | PRJNA20869  | -                   | FALSE        |
| Nleu_3.0                | Nomascus leucogenys     | Northern white-cheeked gibbon | NCBI     | PRJNA13975  | GN3                 | FALSE        |
| Chlorocebus_sabeus 1.1  | Chlorocebus sabaeus     | Green monkey                  | NCBI     | PRJNA168621 | -                   | FALSE        |
| Macaca_fascicularis_5.0 | Macaca fascicularis     | Crab-eating macaque           | NCBI     | PRJNA20409  | -                   | FALSE        |
| Panu_3.0                | Papio anubis            | Baboon                        | NCBI     | PRJNA54005  | -                   | FALSE        |
| Callithrix jacchus-3.2  | Callithrix jacchus      | Common marmoset               | NCBI     | PRJNA20401  | -                   | FALSE        |
| ASM83236v1              | Callithrix jacchus      | Common marmoset               | NCBI     | PRJNA246742 | ASM                 | FALSE        |
| GRCm38 (p6)             | Mus musculus            | House mouse                   | NCBI     | PRJNA20689  | -                   | FALSE        |

Supplementary Table 16. Information of assemblies used in this study.

|              |        |        | Insertions | 5          |        | Deletions |            |
|--------------|--------|--------|------------|------------|--------|-----------|------------|
| ASSV         |        |        | 3,544      |            |        | 13,456    |            |
| Total base   |        |        | 2,139,296  | i          |        | 5,830,871 |            |
| Masked       |        |        | 1,614,579  | 1          |        | 4,700,799 |            |
| Percentage   |        |        | 75.47      |            |        | 80.62     |            |
|              |        | number | length     | percentage | number | length    | percentage |
| SINEs:       |        | 2,126  | 470,389    | 21.99      | 10,074 | 2,366,221 | 40.58      |
|              | ALUs   | 1,966  | 450,009    | 21.04      | 9,813  | 2,332,824 | 40.01      |
|              | MIRs   | 160    | 20,380     | 0.95       | 260    | 33,312    | 0.57       |
| LINEs:       |        | 1,080  | 677,585    | 31.67      | 2,017  | 1,534,500 | 26.32      |
|              | LINE1  | 933    | 645,236    | 30.16      | 1,800  | 1,493,075 | 25.61      |
|              | LINE2  | 136    | 30,030     | 1.4        | 200    | 39,329    | 0.67       |
|              | L3/CR1 | 9      | 1,493      | 0.07       | 12     | 1,651     | 0.03       |
| LTR          |        | 578    | 386,355    | 18.06      | 1,056  | 577,699   | 9.91       |
|              | ERVL   | 73     | 25,585     | 1.2        | 137    | 49,418    | 0.85       |
|              | ERVL   | 195    | 63,345     | 2.96       | 301    | 76,188    | 1.31       |
|              | ERV    | 245    | 238,640    | 11.16      | 425    | 290,148   | 4.98       |
|              | ERV    | 57     | 57,095     | 2.67       | 180    | 159,179   | 2.73       |
| DNA          |        | 219    | 42,877     | 2          | 311    | 55,328    | 0.95       |
|              | hAT    | 105    | 18,104     | 0.85       | 155    | 21,965    | 0.38       |
|              | TcMar  | 54     | 13,260     | 0.62       | 91     | 20,843    | 0.36       |
| Unclassified |        | 9      | 3,064      | 0.14       | 1      | 467       | 0.01       |
| Small RNA    |        | 19     | 1,483      | 0.07       | 32     | 3,504     | 0.06       |
| Satellites   |        | 18     | 1,486      | 0.07       | 2      | 530       | 0.01       |
| Simple       |        | 483    | 28,221     | 1.32       | 2,169  | 145,832   | 2.5        |
| Low          |        | 45     | 3,119      | 0.15       | 172    | 16,771    | 0.29       |

## Supplementary Table 17. Repeat annotation of ASSVs.

| RMS   | ZF1      | GS3        | OP3      | ССР      | V38      |
|-------|----------|------------|----------|----------|----------|
| chr1  | chr1     | chr1       | chr1     | chr1     | chr1     |
| chr2  | chr3     | chr3       | chr3     | chr3     | chr3     |
| chr3  | chr7/21  | chr7/21    | chr7/21  | chr7/21  | chr7/21  |
| chr4  | chr6     | chr6       | chr6     | chr6     | chr6     |
| chr5  | chr4     | chr4       | chr4     | chr4     | chr4     |
| chr6  | chr5     | chr5       | chr5     | chr5     | chr5     |
| chr7  | chr14/15 | chr14/15   | chr14/15 | chr14/15 | chr14/15 |
| chr8  | chr8     | chr8       | chr8     | chr8     | chr8     |
| chr9  | chr10    | chr10      | chr10    | chr10    | chr10    |
| chr10 | chr20/22 | chr20/22   | chr20/22 | chr20/22 | chr20/22 |
| chr11 | chr12    | chr12      | chr12    | chr12    | chr12    |
| chr12 | chr2     | chr2b      | chr2B    | chr2B    | chr2     |
| chr13 | chr2     | chr2a      | chr2A    | chr2A    | chr2     |
| chr14 | chr11    | chr11      | chr11    | chr11    | chr11    |
| chr15 | chr9     | chr9       | chr9     | chr9     | chr9     |
| chr16 | chr17    | chr/5chr17 | chr17    | chr17    | chr17    |
| chr17 | chr13    | chr13      | chr13    | chr13    | chr13    |
| chr18 | chr18    | chr18      | chr18    | chr18    | chr18    |
| chr19 | chr19    | chr19      | chr19    | chr19    | chr19    |
| chr20 | chr16    | chr16      | chr16    | chr16    | chr16    |
| chrX  | chrX     | chrX       | chrX     | chrX     | chrX     |

Supplementary Table 18. The SVs sequence synteny of each chromosome between rhesus monkey and apes.

## Supplementary Table 19. Gene list for related to ASPs and GASPs.

| Functions    | Gene list*                                                                                           |
|--------------|------------------------------------------------------------------------------------------------------|
|              | ACAN, ADM, AHR, ANKRD13A, APC, AXINI, BMP11, BMP2, BMP4, BMP5, BMPER, BMPR1A, BW19, CAT,             |
|              | CDH8, CDX1, CDX2, CDX4, CENPJ, CER1, CHUK, COL11A2, CREB1, CTNNB1, CYP26A1, CYP51A1,                 |
|              | DACT1, DKK1, DLL1, DLL3, DMPK, DUSP4, DVL2, DVL3, EPHA2, ETN2, EVX1, EVX2, FGF10, FGF17,             |
|              | FGF3, FGF4, FGF8, FGF9, FGFR1, FGFR3, FOXA1, FOXA2, FZD7, G3BP1, GDF11, GFAP, GUSB,                  |
| T. 11        | HBEGF, HES7, HLXB9, HMGA2, HOXA11, HOXA5, HOXB1, HOXB13, HOXB8, HOXC13, HOXD11, IGF2R,               |
| 1 all        | IHH, KTN1, LEF1, LEPR, LFNG, LMX1A, LRP6, MAP3K7, MEA1, MEOX1, MEOX2, MESP2, MNX1, MSGN1,            |
| development  | MTA1, MTHFR, MUT, MYSM1, NOG, NOTCH1, NOTCH2, NOTO, NPPC, NPR2, NPR3, NRARP, PARD3,                  |
|              | PAX1, PCSK5, PHEX, PLXND1, POFUT1, POR, PORCN, <b>PPP5C</b> , PSEN1, PTCH1, PTEN, PTF1A, PTK7,       |
|              | RARG, RIPPLY2, ROR2, RPL24, RPL38, RPS7, SFN, SFXN1, SHH, SLX4, SOX5, SOX6, SOX9, SP8, SULF1,        |
|              | SULF2, TACC3, TACR3, TBX6, TCF1, TCF15, TRIP13, TWSG1, VANGL1, VANGL2, VCL, WNT3A, WNT5A,            |
|              | WNT5B, XRCC2, ZBTB16, ZIC3                                                                           |
| Primary      | MCPH1 WDR62 CDK5RAP2 CASC5 ASPM CENP7 CPAP CEP135 CEP152 7NF335 PHC1 CDK6                            |
| microcenhaly | CENPE SASS6 MESD2A ANKLE2 CTT WDEY3 ALEY <b>TRNP1</b>                                                |
| merocephary  |                                                                                                      |
| Adjusted     | TPM2, LIFR, COL6A1, COL6A2, COL6A3, MYH3, SEMA3D, SEMA3C, LIMK1, ERCC1, UBA1, COL12A1,               |
|              | FBN1, FBN2, GTF21, CRLF1, TAPT1, NUP107, NALCN, CHST14, CLIP2, NRTN, KCNH1, LICAM, TPRKB,            |
| thumbs       | BAZIB, ALDH18A1, ISPD, LAGE3, WDR73, ALG3, ECEL1, RBM8A, ELN, RET, TP53RK, AP4M1, OSGEP,             |
| ulullos      | RFT1, RFC2, TNNI2, ECE1, GTF2IRD1, TNNT3, ANKLE2, NEK9, GDNF, SLC9A6, TBL2, PHGDH, DSE,              |
|              | EDN3, EDNRB, ADGRG6, MYBPC1, ALG13                                                                   |
|              | ACAN, ACTB, ADAMTS10, ANKRD11, ANKRD26, ARG, ARHGAP18, ARID1B, ARSE, ASN540SER, B4GALT7,             |
|              | BDLN1, BDLN3, BDLN4, BDLN5, BDLN6, BDNF, BGN, BMP2, BRF1, BTF2, BZW2, C5, CANT1, CBX7,               |
|              | CCDC8, CDMP1, CEP19, CGH, CHK1, CNP, COA3, COL11A2, COL1A1, COL2A1, COL9A2, COL9A3,                  |
|              | COMP, CPE, CPHD, CREB, CRIPT, CRTL1, CRTM, CSA, CSB, CSH1, CTLP, CUL7, CYP21A2, DACHS,               |
|              | DDR2, DENNDIB, DENV, DMBX1, DMM, DNAJB3, DPH1, DUOX2, DUOXA2, DVL3, DXYS15, EED,                     |
|              | EIF2AK3, EPHA5, ERCC2, ERCC3, ERCC5, ERCC6, ERCC8, ESR1, ESR2, EXOSC2, FAHD2A, FAM111A,              |
|              | FBN1, FGD1, <b>FGF21</b> , FGFR3, FGL1, FMR1, FOXO1, GCG, GDF5, GH, GHR , GHRD3, <b>GHRH</b> , GHSR, |
|              | GIMAP8, GLIS3, GMNN, GON4L, GPC3, GPD1, GPS, HESX1, HMGA2, HOS, HOXA5, HRAS, HSPB1,                  |
|              | HTR3B, IARS2, IGF1, IGF1R, IGF2, IGFALS, IGSF1, IHH, IL1R1, INO80, IQCE, IRF6, IRS2, JAK, JARID2,    |
| Body size    | K644M, KAT6B, KATNB1, <b>KDM4B</b> , KNG1, LARP7, LEP, LEPR, LHX3, LHX4, LIMBIN, LMNA, LOXL1, LTA,   |
| 2            | LTBP3, MC4R, MCM9, MEF2C , MLH, MOPD, <b>MOSPD1</b> , MRAP2, NDUFB3, NF1, NKX2, NMDA, NOS1AP,        |
|              | NPPC, NPR2, NPR3, NPRB, NR3C1, OBSL1, OTX1, PAPPA2, PAX8, PCNT, PIK3R1, PIT1, PLK4, PNKP,            |
|              | POC1A, POLD1, POMC, POP1, POU, POU1F1, PPP1R15B, PPP1R3A, PREDICT, PRKG2, PRLHR, PROP1,              |
|              | PSMD14, PTEN, PTEN, PTHLH, PTHRP, PTH, <b>PTPN11</b> , PYCR1, RAB33B, RAD26, RASA1, RDH16, RICTOR,   |
|              | RIOX1, RMRP, RNU4ATAC, ROR2, RSPRY1, RTTN, SBBYSS , SEMA3A, SEMD, SHOT, SHOX, SHOX, SIM1,            |
|              | SLC26A2, SLC29A3, SLC39A8, SMG1, SMPD3, SOCS1, SOCS2, SOCS3, SOX9, SQSTM1, STAT, STAT3,              |
|              | STAT5B, STC2, T354P, TALS, TANK, TBR1, TFIIH, THOX2, THRA, TITF1, TPO, TRH, TRHR, TRIM37,            |
|              | TRPV4, TSHR, TSP5, TSSK5, TTF1, TXNDC2, UBR1, VDR, WNT5A, XIST, XPBC, XPD, XPG, XRCC4, XYLT1,        |
|              | ZFP14, ZHX3                                                                                          |

\*The genes involving ASSVs are marked in bold.

|                | Read Length (bp)                         | 100             |
|----------------|------------------------------------------|-----------------|
|                | Raw Paired-end Reads                     | 947,019,703     |
|                | Clean Paired-end Reads                   | 945,469,044     |
| NGS-Filtering  | Clean Bases(bp)                          | 189,093,808,800 |
|                | Clean Paired-end Reads Rate (%)          | 99.80%          |
|                | Clean Q30 Bases Rate (%)                 | 95%             |
|                | Clean Paired-end Reads                   | 945,469,044     |
|                | Unmapped Paired-end Reads                | 7,770,861       |
|                | Unmapped Paired-end Reads Rate (%)       | 0.82            |
|                | Paired-end Reads with Singleton          | 68,611,114      |
| Mapping        | Paired-end Reads with Singleton Rate (%) | 7.3             |
|                | Multi Mapped Paired-end Reads            | 244,929,618     |
|                | Multi Mapped Ratio (%)                   | 25.91           |
|                | Unique Mapped Paired-end Reads           | 624,157,451     |
|                | Unique Mapped Ratio (%)                  | 66.02           |
|                | Unique Mapped Paired-end Reads           | 624,157,451     |
|                | Dangling End Paired-end Reads            | 13,005,404      |
|                | Dangling End Rate (%)                    | 2.08            |
|                | Self Circle Paired-end Reads             | 1,095,487       |
| Hi-C filtering | Self Circle Rate (%)                     | 0.18            |
|                | Dumped Paired-end Reads                  | 29,126,839      |
|                | Dumped Rate (%)                          | 4.67            |
|                | Valid Paired-end Reads                   | 579,564,619     |
|                | Valid Rate (%)                           | 92.86%          |

## Supplementary Table 20. Quality control and statistics for Hi-C data.

|           |         | Algorithm | Version                                                                                                                                                        | Command line                                                                  |  |
|-----------|---------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
|           | BWA-MEM |           | 0.7.12                                                                                                                                                         | bwa mem ref.fa read1.fq read2.fq                                              |  |
| Variant   |         | CATK      | 36                                                                                                                                                             | java -jar GenomeAnalysisTK.jar -T                                             |  |
|           | SNVs    | UAIK      | 0.0                                                                                                                                                            | -I dedup.bamemitRefConfidence GVCF -o                                         |  |
|           |         | Samtools  | 1.3.1                                                                                                                                                          | Samtools mpileup -go 10macaque.by120.bcf -uf                                  |  |
| Calling   |         |           |                                                                                                                                                                | delly call -t DEL -ref.fa dedup.bam -o DEL.bcf                                |  |
|           | SVe     | Dally     | 077                                                                                                                                                            | delly call -t DUP -ref.fa dedup.bam -o DUP.bcf                                |  |
|           | 3 V S   | Deny      | 0.7.7                                                                                                                                                          | delly call -t INS -ref.fa dedup.bam -o INS.bcf                                |  |
|           |         |           |                                                                                                                                                                | delly call -t INV -ref.fa dedup.bam -o INV.bcf                                |  |
|           |         | Tools     | Site Filtering                                                                                                                                                 | Genotype Filtering                                                            |  |
|           |         |           | java -jar GenomeAnalysisTK.jar \                                                                                                                               |                                                                               |  |
|           | SNPs    | GATK      | -T VariantFiltration \                                                                                                                                         |                                                                               |  |
|           |         |           | -R ref.fa \                                                                                                                                                    | python genotype_filter.py "DP:15-100"<br>"GQ>30" VariantCalls.filtered.vcf.gz |  |
|           |         |           | -V VariantCalls.SNP.vcf \                                                                                                                                      |                                                                               |  |
|           |         |           | filterExpression "QD $<$ 2.0 $\parallel$ FS $>$ 60.0 $\parallel$ MQ $<$ 30.0 $\parallel$ MQRankSum $<$ -12.5 $\parallel$ ReadPosRankSum $<$ -8.0 " $\setminus$ |                                                                               |  |
|           |         |           | filterName "my_snp_filter" \                                                                                                                                   |                                                                               |  |
| Variant   |         |           | -o VariantCalls.filtered.SNP.vcf                                                                                                                               |                                                                               |  |
|           |         | Samtools  | vcffilter -f "MQ >30 & RPB >0.001 & MQB >0.001 & BQB >0.001 & MQSB >0.001 " VariantCalls.SNP.vcf.gz                                                            | -                                                                             |  |
| Filtering |         |           | java -jar GenomeAnalysisTK.jar \                                                                                                                               |                                                                               |  |
|           |         |           | -T VariantFiltration \                                                                                                                                         |                                                                               |  |
|           |         |           | -R ref.fa \                                                                                                                                                    | python genotype filter.py "GO>30"                                             |  |
|           | INDEL 6 | GATK      | -V VariantCalls_chr\$i.INDELS.vcf \                                                                                                                            | Variant Calla filtared vaf er                                                 |  |
|           | INDELS  |           | filterExpression "QD $<$ 2.0 $\parallel$ FS $>$ 200.0 $\parallel$ ReadPosRankSum $<$ -20.0" $\setminus$                                                        | varianceans.intered.vci.gz                                                    |  |
|           |         |           | filterName "my_indel_filter" \                                                                                                                                 |                                                                               |  |
|           |         |           | -o VariantCalls.filtered.INDELs.vcf                                                                                                                            |                                                                               |  |
|           |         | Samtools  | vcffilter -f "MQ >30 & MQSB >0.001" VariantCalls_chr\$i.INDELS.vcf.gz   bgzip > hardfilter.INDELS.vcf.gz                                                       | -                                                                             |  |
|           | SVs     | Delly     | QUAL >=20; SR >0; DP>3; marked PASS and PRECISE tag;                                                                                                           | -                                                                             |  |

### Supplementary Table 21. Arguments and command lines of variants calling and filtering for WGS data.

| Su   | pplemer       | itary [ | <b>Table</b> | 22. | ICE | clustering. |
|------|---------------|---------|--------------|-----|-----|-------------|
| ~ •- | p p r v m v r |         |              |     |     |             |

| Term                                                        | Value         |
|-------------------------------------------------------------|---------------|
| Total number of insert reads                                | 5,232,764     |
| Total number of 3'-primer reads                             | 3,263,628     |
| Total number of 5'-primer reads                             | 3,401,423     |
| Total number of poly-A reads                                | 3,213,332     |
| Total number of filtered short reads                        | 1,438         |
| Total number of non-full-length reads                       | 2,607,116     |
| Total number of full-length reads                           | 2,624,210     |
| Total number of full-length non-chimeric (FLNC) reads       | 2,468,473     |
| Total base of number of full-length non-chimeric reads (bp) | 6,809,351,534 |
| Mean length of full-length non-chimeric read (bp)           | 2,759         |
| Total number of raw consensus reads                         | 1,275,860     |
| Total bases of raw consensus reads (bp)                     | 3,533,020,845 |
| Total number of raw consensus reads                         | 2,769         |
| Total number of HQ>99% consensus reads                      | 143,341       |
| Total bases of HQ>99% consensus reads (bp)                  | 396,323,333   |
| Mean length of HQ>99% consensus reads (bp)                  | 2,764         |
| Total number of NGS_corrected reads                         | 1,275,860     |
| Total bases of NGS_corrected reads (bp)                     | 3,561,028,798 |
| Mean length of NGS_corrected reads (bp)                     | 2,791         |