SUPPLEMENTARY MATERIALS

Position	٩٩	^٥ С	HMBC ² J	HMBC ³ J	⁸ H [*] (500 MHz, CDCL ₃	⁸ C* (125 MHz CDCL ₃)
1	-	143.3				142.3
2	-	148.7				148.5
3	6.49 (1H, s, H-3)	97.8	C-2, C-4	C-1, C-5	6.49 (1H, dq, J = 11.4Hz and 1.83Hz, H-1')	97.4
4	-	150.6			-	151.5
5	-	118.9			-	118.0
6	6.94 (1H, s, H-6)	114.6	C-1, C-5	C-7, C-2, C-4	6.84 (1H, s, H-6)	114.1
7	6.66 (1H, s, H-7)	125.0			6.53 (1H, s, H-3)	125.8
8	6.13 (1H, m, H-8)	124.4	C-7	C-5	5.76 (1H, dq, J = 12.0 Hz and 6.8Hz, H- 2')	124.7
9	1.89 (3H, dd, J = 8.0, 8.5Hz, H-9)	18.8	C-8		1.84 (3H, dd, <i>J</i> = 7.3Hz and 1.8Hz,	18.6
10	3.86 (3H, s, H-10)	56.4	C-1		3.83 (3H, s, OCH3)	56.4
11	3.88 (3H, s, H-11)	56.1	C-2		3.89 (3H, s, OCH ₃)	56.0
12	3.82 (3H, s, H-12)	56.7	C-4		3.81 (3H, s, OCH3)	56.6

Table S1. Comparison of ¹H-NMR (500 MHz, CDCL₃) and ¹³C-NMR (125 MHz, CDCL₃) of compound (1) with literature values.

^{*}McGaw et al. (2002) & Dung et al (2007)

Figure S1. Structure and selected HMBC correlation of β-asarone isolated from *P. cubeba* L.

Figure S2. ¹H-NMR spectrum of β-asarone (500 MHz, CDCL₃).

Figure S3. ¹³C-NMR spectrum of β-asarone (125 MHz, CDCL₃).

Figure S4. Selected HSQC correlation spectrum of β-asarone.

Figure S5. Selected HMBC correlation spectrum of β -asarone.

Position	۶H	δC	HMBC ² J	HMBC ³ J	¹ H [*] 500 MHz	¹³ C [*] 125 MHz
1	-	117.5			-	117.3
2	-	143.5			-	143.6
3	6.49 (1H, s, H-3)	96.1	C-2, C-4		6.50 (1H, s, H-3)	96.0
4	-	158.9			-	158.6
5	-	156.8			-	155.7
6	7.33 (1H, s, H-6)	109.2	C-1, C-5	C-7	7.33(1H, s, H-6)	109.0
7	10.32 (1H, s, H-7)	188.3	C-1		10.32(1H, s, H-7)	187.9
8	3.97 (3H, s, H-8)	56.46	C-5		3.97 (3H, s, H-8)	56.1
9	3.92 (3H, s,H-9)	56.49			3.93 (3H, s, H-9)	56.2
10	3.88 (3H, s, H-10)	56.56	C-2		3.88 (3H, s, H-10)	56.2

Table S2. Comparison of ¹H-NMR (500 MHz, CDCL₃) and ¹³C-NMR (125 MHz, CDCL₃) of compound **(2)** with literature values.

*Dung et al. (2007)

Figure S6. Structure and selected HMBC correlation of asaronaldehyde isolated from *P. cubeba* L.

Figure S7. ¹H-NMR spectrum of asaronaldehyde (125 MHz, CDCL₃).

Figure S8. ¹³C-NMR spectrum of asaronaldehyde (125 MHz, CDCL3).

Figure S9. Selected HSQC correlation spectrum of asaronaldehyde.

Figure S10. Selected HMBC correlation spectrum of asaronaldehyde.