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I. SURFACE IMPEDANCE DERIVATION

Perfectly rigid cylinder

Let us assume that a harmonic incident field P0 = P0(r, ω) impinges an acoustically thin

surface located at r = b surrounding a perfectly rigid cylindrical obstacle with radius r = a.

P+in

P+sc

P-
in

P-
sc

b

a x

y

FIG. 1. Geometry of the metasurface cloak including the incoming and scattered wave components.

The aim is to derive the necessary surface impedance for which no scattering is permitted.

In the region r > b the total acoustic pressure reads

P+ = P+
in + P+

sc . (1)

In the absence of back scattering where P+
sc = 0, the total pressure thus becomes

P+(r, ω) = P0(r, ω) =
∑
q

A0
qJq(kr)e

iqθ. (2)

In the gap region a ≤ r ≤ b, sound is confined between the metasurface and the rigid

obstacle at which the normal velocity has to vanish. In this event, we can write the total

acoustic pressure in the following form

P−(r, ω) =
∑
q

Bq

[
Jq(kr)Y

′
q (ka)− J ′q(ka)Yq(kr)

]
eiqθ. (3)
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We are able to express the gap scattering amplitude Bq via the incoming one A0 when

imposing pressure continuity at r = b. In doing so, P−(r, ω) equates to

P−(r, ω) =
∑
q

A0
qJq(kb)

Y ′q (ka)Jq(kr)− J ′q(ka)Yq(kr)

Y ′q (ka)Jq(kb)− J ′q(ka)Yq(kb)
eiqθ. (4)

The jump discontinuity at the zero-thickness interface at r = b, leads to a surface

impedance written as

Zs =
P+

v−⊥ − v
+
⊥
, (5)

hence, we express the respective normal components of the particle velocity v⊥ as follows:

v+⊥ = − 1

iωρ

∂P+

∂r

∣∣∣∣
r=b

= − k

iωρ

∑
q

A0
qJ
′
q(kb)e

iqθ,

v−⊥ = − 1

iωρ

∂P−

∂r

∣∣∣∣
r=b

= − k

iωρ

∑
q

A0
qJq(kb)

Y ′q (ka)J ′q(kb)− J ′q(ka)Y ′q (kb)

Y ′q (ka)Jq(kb)− J ′q(ka)Yq(kb)
eiqθ.

(6)

Conclusively, the surface impedance at the interface r = b can thus be expressed as:

Zs =
−P0(b, ω)

− k
iωρ

∑
q A

0
qJ
′
q(ka)

[
Jq(kb)Y ′

q (kb)−J ′
q(kb)Yq(kb)

Y ′
q (ka)Jq(kb)−J ′

q(ka)Yq(kb)

]
eiqθ

. (7)

By using the Wronskian

Jq(kb)Y
′
q (kb)− J ′q(kb)Yq(kb) =

2

πkb
, (8)

and Taylor expanding Jq(kb) and Yq(kb) around a as follows

Jq(kb) ≈ Jq(ka) + (b− a)J ′q(ka)

Yq(kb) ≈ Yq(ka) + (b− a)Y ′q (ka),
(9)

Eq. (7) simplifies to

Zs = iZ0
b

a

P0(b, ω)
∂P0(r,ω)
∂(kr)

∣∣∣
r=a

, (10)

where the free space impedance Z0 = ρ0c0.
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Specifically, we will examine the case of a plane wave of unitary real amplitude propa-

gating parallel to the x-axis. Thus we can write

P0(r, ω) = eik(r cos θ), (11)

where θ is the angle in polar coordinates. Hence, when substituting Eq. (11) into Eq.

(10) to derive the surface impedance for the example of a plane wave

Zs = Z0
b

a

eik(b−a)·cos θ

cos θ
. (12)

Under the assumption of a deeply subwavelengh air gap separating the ultrathin metasur-

face cloak from the rigid cylinder, i.e., k(b−a)� 1, we split the complex surface impedance

Zs into its real and imaginary components

Re(Zs) ≈ Z0
b

a

1

cos θ

Im(Zs) ≈ Z0
b

a
k(b− a).

(13)

Pressure release cylinder

In the following we derive the surface admittance expression for the same scenario as

above, however for a sound soft cylinder. We aim at expressing the admittance to find its

equivalence to the microwave analogue system comprising TM waves irradiating a perfect

electric conductor1.

Pressure insonifying a pressure release body vanishes at its surface, P = 0. Hence, the

total acoustic pressure in the region a ≤ r ≤ b can be written in the following way:

P−(r, ω) =
∑
q

Bq

[
Jq(kr)Yq(ka)− Jq(ka)Yq(kr)

]
eiqθ. (14)

From Eq. (14) it can be clearly seen that the pressure release condition is fulfilled at the

boundary of the soft cylinder P−(a, ω) = 0. As we did above, the gap scattering amplitude

Bq is expressed in terms of the incoming one A0
q :

P−(r, ω) =
∑
q

A0
qJq(kb)

Jq(kr)Yq(ka)− Jq(ka)Yq(kr)

Jq(kb)Yq(ka)− Jq(ka)Yq(kb)
eiqθ. (15)
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The surface admittance at a jump discontinuity, similar to Eq. (5), is written as

Ys =
v−⊥ − v

+
⊥

P+
, (16)

thus the particle velocities across that interface, slightly modified compared to the rigid case,

read

v+⊥ =
1

iωρ

∂P+

∂r

∣∣∣∣
r=b

=
k

iωρ

∑
q

A0
qJ
′
q(kb)e

iqθ,

v−⊥ =
1

iωρ

∂P−

∂r

∣∣∣∣
r=b

=
k

iωρ

∑
q

A0
qJq(kb)

J ′q(kb)Yq(ka)− Jq(ka)Y ′q (kb)

Jq(kb)Yq(ka)− Jq(ka)Yq(kb)
eiqθ.

(17)

Conclusively, we can express Eq. (16) in the following form:

Ys = − 1

P0(b, θ)

k

iωρ

∑
q

A0
qJq(ka)

[ Jq(kb)Y ′q (kb)− J ′q(kb)Yq(kb)
Jq(kb)Yq(ka)− Jq(ka)Yq(kb)

]
eiqθ. (18)

As in the previous subsection, we employ the Wronskian, take A0
q = iq for a plane wave

of the following form P0(b, θ) = eikb cos θ and use the free-space admittance Y0 = k
ωρ

to obtain

Ys = iY0
2

πkb
e−ikb cos θ

∑
q

iq
Jq(ka)

Jq(kb)Yq(ka)− Jq(ka)Yq(kb)
eiqθ. (19)

Interestingly, the necessary surface admittance to remove back-scattering of an insonified

soft cylinder as expressed in Eq. (19) is equivalent to the one for TM microwaves impinging

a perfect conducting wire (Eq. (2) in ref. 1).

II. PT -SYMMETRIC FIELDS

Here we are studying the PT symmetry properties of the sound fields surrounding

the cloak. We take reference from the angular convention presented in Fig. 3(a) of the

manuscript. Considering both the polar parity and time reversal operation for the pressure,

we define

P [P (π + θ, t)] = P (θ, t),

T [P (π + θ, t)] = P ∗(π + θ,−t).
(20)

Explicitly we can write the expression of the pressure plane wave of complex amplitude

B that impinges the loss semi-circle at r = b

P (π ± θ) = Be−ikb cos(π±θ). (21)
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By applying the parity inversion on the pressure, that is, transforming Eq. (21) to its

mirror image in polar coordinates and further employing a time-reversal operation, we obtain

the pressure at the gain semi-circle. Here we can employ either the + or the −sign in the

angular position thanks to the symmetry of the geometry. We choose to derive the pressure

via the surface impedance and the velocities across the jump discontinuity from Eq. (5) as

follows

P (θ) = PT [P (π + θ)] = −PT [Zs(π + θ)]
(
PT [v+⊥(π + θ)]− PT [v−⊥(π + θ)]

)
. (22)

The individual PT operations in Eq. (22) result in

PT [Zs(π + θ)] = − b
a

Z0

cos(θ)
−kZ0

b

a
(b− a)i = −Zs(π + θ), (23)

while the velocities from Eq. (6), with the new angular convention however, read

PT [v+⊥(π + θ)] =
k

iωρ

∑
q

(A0
q)
∗J ′q(kb)e

−iqθ,

PT [v−⊥(π + θ)] =
k

iωρ

∑
q

(A0
q)
∗Jq(kb)

Y ′q (ka)J ′q(kb)− J ′q(ka)Y ′q (kb)

Y ′q (ka)Jq(kb)− J ′q(ka)Yq(kb)
e−iqθ.

(24)

Finally, the pressure P (θ) emitting the gain metasurface in Eq. (22) is written as

P (θ) =
( b
a

Z0

cos(θ)
+ kZ0

b

a
(b− a)i

)( k

iωρ

2

πka

πkb

2
PT

[
∂P0(r, ω)

∂(kr)

∣∣∣∣
r=a

])
=
( b
a

Z0

cos(θ)
+ kZ0

b

a
(b− a)i

)( k

iωρ

2

πka

πkb

2
i cos θB∗eika cos θ

)
,

(25)

which can be reduced to

P (θ) = B∗eikb cos θ. (26)

The acoustic intensities I(θ) = |P (θ)|2 at the respective sides of the cloak, i.e., the absolute

squares of Eq. (21) and Eq. (26) thus suggest a symmetric profile

I(θ) = I(π ± θ). (27)
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III. ONE-WAY CLOAK AND ANGULAR SENSITIVITY

���

��

FIG. 2. Numerical simulation of the PT symmetry cloak when insonified from the gain side (right

to left).

To confirm that our design in fact only supports one-way unhearability, we conducted

simulations as depicted in Fig. 2 at which sound is incident from the opposite side producing

massive back-reflection from the insonified gain semi-shell. Also, as simulations depict in

Fig. 3, sound coming in toward the loss semi-shell, i.e., from left to right, yield only perfect

cloaking at normal incidence. For other angles of incidence, Fig. 3 depicts strong forward

scattering.
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FIG. 3. Numerical simulation of the PT symmetry cloak when insonified from the loss side (left

to right) at various angles of incidence, θ = 0− 15◦.
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IV. EXPERIMENTAL IMPLEMENTATION

Helmholtz resonators

In Table I the geometrical parameters for the Helmholtz resonator array are listed.

TABLE I. Geometrical parameters of the Helmholtz resonators

Element (i) 1 2 3 4 5 6 7 8

Angle (◦) 0 12 24 36 48 60 72 84

w (mm) 0.08 0.08 0.08 0.08 0.08 0.06 0.06 0.06

t (mm) 0.096 0.098 0.099 0.104 0.144 0.090 0.132 0.540

Experimental setup

The experiment is carried out in a two dimensional waveguide with a uniform height of 6

cm. As can be seen in the illustration below, a line speaker array was employed to launch an

FIG. 4. Experimental implementation of the parity-time symmetric metasurface cloak.

incoming plane wave. In order to reduce unwanted reflections we covered the inner walls of

the waveguide with sound-absorbing cotton. The experimental implementation is detailed

in the supplementary information.
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Active loudspeaker system

In this section we discuss the implementation of the active component of the metasurface

cloak. In Fig. 5 we present the schematic of the circuit implemented to control the active

gain component of the metasurface cloak.

FIG. 5. Electrical circuits controlling the gain component of the metasurface cloak.

A microphone is placed in the nearest proximity to the Helmholtz resonators to record

the incoming sound field. The signal is then connected to a phase shifting circuit, in which

the Rx resistance controls a phase lead from the 0 to 180◦ and the Ry resistance controls

and equivalent but lagging phase. With the right phase and increased amplitude, sound is

re-emitted through the loudspeakers into the far-field.
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