
On the e�ieny of HIV transmission: Insights throughdisrete time HIV modelsShowa SP, Nyabadza F. and Hove-Musekwa SD.AppendixBasi properties of the ell free viral spread modelThe ell-free viral spread model is given by the following system of equations;
Dt+1 = β1Vt, (1)
Pt+1 = θ1Dt + θ3Pt, (2)
Qt+1 = θ2Pt + θ3Qt, (3)
Vt+1 = θ2φQtT

∗

t , (4)
Tt+1 = sT + γTt exp

(

−
Tt + T ∗

t

K
− β1Vt

)

, (5)
T ∗

t+1 = Tt[1− exp (−β1Vt)] + (1− µ)T ∗

t , (6)The system of equations (1)-(6) will be studied in a biologially feasible region. We beginby showing that the solutions of this system of equations are bounded.Proposition 1. The system of equations (1)-(6) is bounded.Proof. For any t0 ∈ Z
+, eq (5), gives

Tt0+1 ≤ sT + γTt0 exp

(

−
Tt0

K

)

, (7)
≤ sT + γK exp(−1),where we have used maxx∈R x exp(−x/K) = K exp(−1). We laim that

Tt ≤ sT + γK exp(−1) for t ≥ t0.We prove this by ontradition. Assume that there exist a number l̄0 > t0 suh that Tl̄0
>

sT + γK exp(−1). Then l̄0 ≥ t0 + 2. From the previous argument we have
Tl̄0

≤ sT + γTl̄0−1 exp

(

−
Tl̄0−1

K

)

, (8)
≤ sT + γK exp(−1),1



whih is a ontradition.From eq (6), it an be dedued that,
T ∗

t+1 ≤ Tt + (1− µ)T ∗

t

≤ sT + γK exp(−1) + (1− µ)T ∗

t .The solution of T ∗

t+1 = sT + γK exp(−1) + (1− µ)T ∗

t is given by
T ∗

t = (1− µ)tT ∗

0 + (sT + γK exp(−1))

t−1
∑

i=0

(1− µ)i.However, ∑t−1
i=0(1− µ)i is a geometri series suh that

T ∗

t =







(1− µ)tT ∗

0 + (sT + γK exp(−1))
(

1−(1−γT∗ )t

γT∗

)

if (1− µ) 6= 1,

T ∗

0 + (sT + γK exp(−1))t if (1− µ) = 1.The parameter µ 6= 0 and thus we have
T ∗

t ≤ (1− γT ∗)tT ∗

0 + (sT + γK exp(−1))

(

1− (1− µT ∗)t

µT ∗

)

.In this ase
lim sup

t→∞

T ∗

t ≤
sT + γK exp(−1)

µT ∗

.If we let
n(t) =

(

Tt T ∗

t

)

′

and n̂ =
(

sT + γK exp(−1) sT+γK exp(−1)
µT∗

)

′

,then
n(t) ≤ n̂ for all t.Observe that
N(t + 1) ≤ ÂN(t), (9)where

Â =

















0 0 0 β1

θ1 θ3 0 0

0 θ2 θ3 0

0 0 θ2φ
sT+γK exp(−1)

µT∗

0

















.De�ne
N1(t + 1) = ÂN1(t), t > 0, N1(0) = ÂN(0),then

N1(t) = ÂtN1(0).2



The spetral radius of Â, is less than 1, and thus N1(t), is dereasing sequene. This meansthat ÂtN1(0) → 0, as t → ∞, where 0 =
(

0 0 0 0
). We therefore get that

lim inf
t→∞

N1(t) ≥ 0 (10)From equality (9) and (10), it an be seen that 0 ≤ N(t) ≤ N1(0).We thus have the following proposition.Proposition 2. The set de�ned by
Ω = {N(t), n(t) ∈ R

4
+ × R

2
+ : 0 ≤ N(t) ≤ N1(0), 0̄ ≤ n(t) ≤ n̂},where 0̄ =

(

0 0
), is positively invariant under the �ows of the system of equations (1)-(6).Fixed pointsThe equilibrium points (�xed points) are obtained by equating the right hand side to theleft hand side of the system of equations (1)-(6). If we denote the equilibrium point by

(

D∗, P ∗, Q∗, V ∗, T ∗, T ∗∗

)

′, we have the following system of equations
D∗ = β1V

∗, (11)
P ∗ = θ1D

∗ + θ3P
∗, (12)

Q∗ = θ2P
∗ + θ3Q

∗, (13)
V ∗ = θ2φQ

∗T ∗∗, (14)
T ∗ = sT + T ∗γ exp (−β1V

∗ −
T ∗ + T ∗∗

K
), (15)

T ∗∗ = T ∗(1− exp (−β1V
∗)) + (1− µ)T ∗∗. (16)Substituting eq (11) into eq (12) we have

P ∗ =
θ1

1− θ3
(β1V

∗). (17)Eq (17) into eq (13) result in
Q∗ =

θ1θ2
(1− θ3)2

(β1V
∗). (18)Substituting eq (18) into eq (14) we have

V ∗ =
θ1θ

2
2φ

(1− θ3)2
(β1V

∗)T ∗∗. (19)
3



0 50 100 150
−10

−5

0

5

10

Equilibrium value of uninfected CD4+ T cells (T*)

f(
T

* )

f(T*)
zero line

Figure 1: A graph of f(T ∗) against T ∗. The parameters used were sT = 10, K = 1500, γ =

2.7. It an be seen that the graph of f(T ∗) rosses the x-axis and thus there is solution forthis parameter set.From eq (19), we get V ∗ = 0, whih gives the disease free equilibrium point or T ∗∗ = (1−θ3)2

θ1θ
2

2
φβ1

.Substituting V ∗ = 0 into equations (11)-(16) we get the disease free equilibrium
E0 =

(

0, 0, 0, 0, T ∗, 0
)

′

,where T ∗ is a solution of
T ∗ − sT − T ∗γ exp (−

T ∗

K
) = 0. (20)The analytial solution to the eq (20) is omplex therefore, the graphial method is used toshow the existene of the solution. Let f(T ∗) = T ∗ − sT − T ∗γ exp (−T ∗

K
), then the graph of

f(T ∗) against T ∗ is given in Figure 1. It an be seen from Figure 1 that the graph of f(T ∗)rosses the x-axis and thus there is a solution to the eq (20) for this parameter set.
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From eq (16) we have
1−

µT ∗∗

T ∗
= exp(−β1V

∗). (21)Substituting eq (21) into (15) result in
sT − T ∗ + T ∗γ

(

1−
µT ∗∗

T ∗

)

exp (−
T ∗

K
) = 0, (22)whih an be simpli�ed to give

sT − T ∗ + γ (T ∗ − µT ∗∗) exp (−
T ∗ + T ∗∗

K
) = 0, (23)where T ∗∗ = (1−θ3)2

θ1θ
2

2
φβ1

.Stability of �xed pointsThe following theorem in [1℄ is used to study stability of the equilibrium points.Theorem 1. A �xed point x∗ of a funtion f(x) is asymptotially stable if all the eigenvalues
µ of the �rst derivative, Df(x) of f(x) at x∗ satisfy |µ| < 1. The �xed point x∗ is unstableif there exists an eigenvalue µ suh that |µ| > 1.Proposition 3. The disease free equilibrium point

E0 =
(

0, 0, 0, 0, T ∗, 0
)

′

,exist and is loally asymptotially stable when
∣

∣

∣

∣

γ

(

1−
T ∗

K

)

exp

(

−
T ∗

K

)∣

∣

∣

∣

< 1,where T ∗ is the solution of eq (20).Proof. Existene has been proved in the previous setion. The Jaobian matrix at thisequilibrium is given by
J0 =





























0 0 0 β1 0 0

θ1 θ3 0 0 0 0

0 θ2 θ3 0 0 0

0 0 0 0 0 0

0 0 0 M G1 0

0 0 0 −β1T
∗ 0 1− µ





























,
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where
M = −β1γT

∗ exp

(

−
T ∗

K

)

,and
G1 = γ

(

1−
T ∗

K

)

exp

(

−
T ∗

K

)

.All the eigenvalues J0 (0 twice, θ3 twice, G1 and 1 − µ) have magnitudes less than one if
|G1| < 1. This ompletes the proof.Proposition 4. The system of equations (1)-(6), does not have an endermi equilibriumpoint for biologially feasible parameters.Basi properties of the ell-assoiated viral spread modelThe ell-assoiated viral spread model is given by the following system of equations;

Dt+1 = β2T
∗

t , (24)
Pt+1 = θ1Dt + θ3Pt, (25)
Qt+1 = θ2Pt + θ3Qt, (26)
Vt+1 = θ2φQtT

∗

t , (27)
Tt+1 = sT + γTt exp

(

−β2T
∗

t −
Tt + T ∗

t

K

)

, (28)
T ∗

t+1 = Tt (1− exp (−β2T
∗

t )) + (1− µ)T ∗

t . (29)Proposition 5. The solutions of the system of equations (24)-(29) remain non negative andare bounded. The set Θ de�ned by Θ = {N(t), n(t)) ∈ R
4×R

2 : 0 ≤ N(t) ≤ (I−Ḡ)−1Bn̄, 0̄ ≤

n(t) ≤ n̄}, where n̄ =
(

sT + γK exp(−1) sT+γK exp(−1)
µ

)

′, 0 =
(

0, 0, 0, 0
)

′, Ḡ =
















0 0 0 0

θ1 θ3 0 0

0 θ2 θ3 0

0 0 θ2φ
sT+γK exp(−1)

µ
0

















and 0̄ =
(

0, 0
)

′ is positively invariant with respet tothe �ows of the system of equations (24)-(29).Proof. Using the proedure used to prove Proposition 1, it an easily be shown that
n(t) ≤ n̄where

n̄ =
(

sT + γK exp(−1) sT+γK exp(−1)
µ

)

′

.6



Substituting inequality (9) and n̄ into equation of the virus at its di�erent stages of the lifeyle, yields
N(t + 1) ≤ ḠN(t) +Bn̄. (30)We an prove by indution that N(t) ≤ ḠtN(0) +

∑t−1
i=0(Ḡ

iBn̄). It an then be shown that
lim sup
t→∞

N(t) ≤ (I − Ḡ)−1Bn̄.

Equilibrium pointsThe equilibrium points (�xed points) are obtained by equating the right hand side to theleft hand side of the system of equations (24)-(29). If we denote the equilibrium point by
(

D, P, Q, V, T, T ∗

)

′, we have the following system of equations
D = β2T

∗, (31)
P = θ1D + θ3P, (32)
Q = θ2P + θ3Q, (33)
V = θ2φQT ∗, (34)
T = sT + Tγ exp (−β2T

∗ −
T + T ∗

K
), (35)

T ∗ = T (1− exp (−β2T
∗)) + (1− µ)T ∗. (36)Substituting eq (31) into eq (32) we have

P =
θ1

1− θ3
(β2T

∗). (37)Eq (37) into eq (33) result in
Q =

θ1θ2
(1− θ3)2

(β2T
∗). (38)Substituting eq (38) into eq (34) we have

V =
θ1θ

2
2φ

(1− θ3)2
(β2T

∗)T ∗. (39)
V = 0 in (39) implies T ∗ = Q = P = 0. Substituting T ∗ = 0 into equations (35) and (36)and solving the two equation for T , we get T whih is a solution of equation

T − sT − Tγ exp (−
T

K
) = 0. (40)7



Proposition 6. The disease free equilibrium point exist and is loally asymptotially stablefor
∣

∣

∣

∣

γ

(

1−
T

K

)

exp

(

−
T

K

)∣

∣

∣

∣

< 1and
|−β2T + 1− µT | < 1where T is a solution of eq (40).Proof. The disease free equilibrium is given by

E1 =
(

0, 0, 0, 0, T, 0
)

′

,where T is a solution of eq (40).The Jaobian at E1 is given by
JE1

=





























0 0 0 0 0 β2

θ1 θ3 0 0 0 0

0 θ2 θ3 0 0 0

0 0 0 0 0 0

0 0 0 0 G1 −γβ2T exp(− T
K
)

0 0 0 0 0 −β2T + 1− µT





























.

All the eigenvalues of JE1
, (0 (twice), G1, θ3 (twice) and − β2T

∗ + 1− µ) have magnitudesless than one if and only if |G1| < 1 and |−β2T + 1− µT | < 1.The disease equilibrium point is obtained by equating the right hand side to the left hand sideof the system of equations (24)-(29). If we denote the equilibrium point by ( D∗, P ∗, Q∗, V ∗, T ∗, Twe have the following system of equations
D∗ = β2T

∗∗, (41)
P ∗ = θ1D

∗ + θ3P
∗, (42)

Q∗ = θ2P
∗ + θ3Q

∗, (43)
V ∗ = θ2φQ

∗T ∗∗, (44)
T ∗ = sT + T ∗γ exp

(

−β2T
∗∗ −

T ∗ + T ∗∗

K

)

, (45)
T ∗∗ = T ∗(1− exp (−β2T

∗∗)) + (1− µ)T ∗∗. (46)Substituting eq (41) into eq (42) we have
P ∗ =

θ1
1− θ3

(β2T
∗∗). (47)8



Substituting eq (47) into eq (43) result in
Q∗ =

θ1θ2
(1− θ3)2

(β2T
∗∗). (48)Substituting eq (48) into eq (44) we have

V ∗ =
θ1θ

2
2φ

(1− θ3)2
(β2T

∗∗)T ∗∗. (49)Making T ∗ subjet of formula in eq (46) we get
T ∗ =

µT ∗∗

1− exp(−β2T ∗∗)
. (50)Substituting this expression of T ∗ into eq (45) and simplifying the resulting equation we get

µT ∗∗ − sT (1− exp(−β2T
∗∗))− γµT ∗∗ exp

(

−β2T
∗∗ −

µT ∗∗

K(1− exp(−β2T ∗∗))
−

T ∗∗

K

)

= 0.(51)Solving for T ∗∗ is omplex and we resort to graphial solutions. We let
f(T ∗∗) = µT ∗∗−sT (1−exp(−β2T

∗∗))−γµT ∗∗ exp

(

−β2T
∗∗ −

µT ∗∗

K(1− exp(−β2T ∗∗))
−

T ∗∗

K

)

.(52)The ell-free and ell-assoiated viral spread modelThe model that onsiders both forms transmission takes the form;
Dt+1 = β1Vt + β2T

∗

t , (53)
Pt+1 = θ1Dt + θ3Pt, (54)
Qt+1 = θ2Pt + θ3Qt, (55)
Vt+1 = θ2φQtT

∗

t , (56)
Tt+1 = sT + γTt exp

(

−β1Vt − β2T
∗

t −
Tt + T ∗

t

K

)

, (57)
T ∗

t+1 = Tt (1− exp (−β1Vt − β2T
∗

t )) + (1− µ)T ∗

t . (58)Proposition 7. The system of equations (53)-(58) has a disease free equilibrium point givenby
E3 =

(

0, 0, 0, 0, T ∗, 0
)

′

,where T ∗ is a solution of eq (20).
9



The Jaobian matrix at E3 is given by
JE3

=





























0 0 0 β1 0 β2

θ1 θ3 0 0 0 0

0 θ2 θ3 0 0 0

0 0 0 0 0 0

0 0 0 −γβ1T
∗ exp

(

−T ∗

K

)

G1 −γβ2T
∗ exp

(

−T ∗

K

)

0 0 0 −β1T
∗ 0 −β2T

∗ + 1− µ





























.

The eigenvalues are 0 (twie), θ3 (twie), G1, and −β2T
∗ + 1− µ. All the eigenvalues havemagnitudes less than one if and only if |G1| < 1 and | − β2T

∗ + 1 − µ| < 1. Showingthat the system of equations (53)-(58) has an endemi equilibrium is maybe di�ult, we usepermanene to show the existene of the disease equilibrium.De�nition 1. The system (53)-(58) is permanent if there exist positive onstants m and Mwhih are independent of the solution of system (53)-(58), suh that any positive solution
{Dt, Pt, Qt, Vt, Tt, T

∗

t } of system (53)-(58) satis�es
m ≤ lim inf

t→∞

{Dt, Pt, Qt, Vt, Tt, T
∗

t } ≤ lim sup
t→∞

{Dt, Pt, Qt, Vt, Tt, T
∗

t } ≤ M.Lemma 1. Every solution {Dt, Pt, Qt, Vt, Tt, T
∗

t } of system (53)-(58) satis�es lim supt→∞
n(t) ≤

n̄ and lim supt→∞
N(t) ≤ (I − Ḡ)−1Bn̄, where n̄, Ḡ are as previously de�ned.Proof. From the proof of Proposition 1 we get that

lim sup
t→∞

Tt ≤ sT + γK exp(−1).Using the same proedure as the one used in proving Proposition 1, we get
lim sup
t→∞

T ∗

t ≤
sT + γK exp(−1)

µand
lim sup
t→∞

N(t) ≤ (I − Ḡ)−1Bn̄,where n̄, Ḡ are as previously de�ned.Lemma 2. Every solution {Dt, Pt, Qt, Vt, Tt, T
∗

t } of system (53)-(58) satis�es h ≤ lim inft→∞ n(t)and H ≤ lim inft→∞N(t) where h = (H1 H2), H = (1−G̃)Bh, G̃ =

















0 0 0 0

θ1 θ3 0 0

0 θ2 θ3 0

0 0 θ2φH2 0

















,
H1 = γK exp(−β1V̄ − β2T̄ ∗ − 1) and

H2 = γK exp(−β1V̄ − β2T̄ ∗ − 1)

(

1− ln

(

µ

β2H1

))

+
µ

β2

ln

(

µ

β2H1

)

.10



Proof. Aording to Lemma 1, there exist a t∗ ∈ Z
+, suh that

n(t) < n̄ + (ǫ, ǫ)′, N(t) < N̄ + (ǫ, ǫ, ǫ, ǫ)′, t ≥ t∗where N̄ = (I − Ḡ)−1Bn̄. We �rst show that lim inft→∞ Tt ≥ H1, where H1 is to bedetermined. Assume that there exist a t0 ≥ t∗ suh that
Tt0+1 ≥ sT + γTt0 exp

(

−β1(V̄ + ǫ)− β2(T̄ ∗ + ǫ)−
Tt0

K

)

,

≥ sT + γTt0 exp

(

−F −
Tt0

K

)

,

≥ γTt0 exp

(

−F −
Tt0

K

)

,

≥ γK exp(−F − 1),where −β1(V̄ + ǫ)− β2(T̄ ∗ + ǫ) = F. We laim that
Tt ≥ K exp(−F − 1), for t ≥ t0.By way of ontradition, assume there exist a τ0 > t0 suh that Tτ0 < γK exp(−F − 1).Let τ̄0 = t0 + 2 be the smallest number suh that Tτ̄0 < γK exp(−F − 1). The argumentpresented above produes a ontradition and this proves the laim. Thus
lim inf
t→∞

Tt ≥ γK exp(−F − 1).Setting ǫ → 0 leads to
lim inf
t→∞

Tt ≥ H1 = γK exp(−β1V̄ − β2T̄ ∗ − 1).We now need to show that lim inft→∞ T ∗

t ≥ H2, where H2 is to be determined. From theabove steps we have that for t∗ ∈ Z
+,

n(t) < n̄ + (ǫ, ǫ)′, N(t) < N̄ + (ǫ, ǫ, ǫ, ǫ)′,and Tt ≥ H1 − ǫ, t ≥ t∗. Assume that there exist t0 ≥ t∗ suh that
T ∗

t0+1 ≥ (H1 − ǫ)
(

1− exp (−β1Vt0 − β2T
∗

t0
)
)

+ (1− µ)T ∗

t0
,

≥ (H1 − ǫ)
(

1− exp (−β2T
∗

t0
)
)

+ (1− µ)T ∗

t0
, (59)

≥ (H1 − ǫ)
(

1− exp (−β2T
∗

t0
)
)

− µT ∗

t0
, (60)

≥ (H1 − ǫ)

(

1− ln

(

µ

β2(H1 − ǫ)

))

+
µ

β2
ln

(

µ

β2(H1 − ǫ)

)

. (61)11



We laim that
T ∗

t ≥ H12, where H12 = (H1 − ǫ)

(

1− ln

(

µ

β2(H1 − ǫ)

))

+
µ

β2

ln

(

µ

β2(H1 − ǫ)

)for t ≥ t0.By way of ontradition assume there exists a τ0 > t0 suh that T ∗

τ0
< H12, then τ0 ≥ t0+2.Let τ̄0 = t0 + 2 be the smallest number suh that T ∗

τ̄0
< H12. The above argument produes

T ∗

τ̄0
≤ H12, a ontradition and this proves the laim. Thus lim inft→∞ T ∗

t ≥ H12. Setting
ǫ → 0 leads to

lim inf
t→∞

Tt ≥ H2 = H1

(

1− ln

(

µ

β2H1

))

+
µ

β2
ln

(

µ

β2H1

)We now show that lim inf N(t) ≥ H3 where H3 is to be determined. We now have that
n(t) < n̄+ (ǫ, ǫ)′, N(t) < N̄ + (ǫ, ǫ, ǫ, ǫ)′, and Tt ≥ H1 − ǫ, T ∗

t ≥ H2 − ǫ, t ≥ t∗.De�ne Ĝ =

















0 0 0 0

θ1 θ3 0 0

0 θ2 θ3 0

0 0 θ2φ(H2 − ǫ) 0

















, and n̂ = (H1 − ǫ, H2 − ǫ)′. For any t ≥ 0 we havethat
N(t + 1) = GN(t) +Bn̂ (62)

≥ ĜN(t) +Bn̂ (63)We an prove by indution that N(t) ≥ ĜtN(0)+
∑t−1

i=0 Ĝ
iBn̂, from whih it an be deduedthat lim inft→∞N(t) ≥ (I − Ĝ)Bn̂. Setting ǫ → 0 leads to lim inft→∞ N(t) ≥ H3 = (I −

G̃)Bn̂.Proposition 8. The system of equations (53)-(58) is permanent.Proof. The result follows from Lemma 1 and Lemma 2.The impliation of this result is that an endemi equilibrium point exist.Referenes[1℄ Gukenheimer J. and Holmes P. 1983. Nonlinear ossillations, Dynamial systems, andbirfurations of vetor �elds. Springer-Verlag.12


