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Appendix

Basic properties of the cell free viral spread model

The cell-free viral spread model is given by the following system of equations;

Dy = BV, (1)
Piyn = 6D+ 058, (2)
Qi1 = 025+ 050, (3)
Vs = 620Q,17, (4)
Tiy1 = sr+Tiexp (—Tt ;Tt* - ﬁlvt)a (5)
Try = Tl —exp(=AVi)]+ (1 — T, (6)

The system of equations (II)-(@]) will be studied in a biologically feasible region. We begin

by showing that the solutions of this system of equations are bounded.
Proposition 1. The system of equations (1l)-([@) is bounded.

Proof. For any to € Z*, eq (@), gives

T,
7_;fo—f—l S ST + ’77}0 exXp (_%> ) (7)

< ST + ’}/K eXp(_l)a

where we have used max,cg x exp(—z/K) = K exp(—1). We claim that
Ty < sy +vyKexp(—1) fort > to.

We prove this by contradiction. Assume that there exist a number Iy > ¢, such that 1, >

st +vK exp(—1). Then Iy > to + 2. From the previous argument we have
Ty _
T, < sr+7T, exp (—%) : (8)
< sp+yKexp(—1),



which is a contradiction.

From eq (), it can be deduced that,

Ty, < T+ (1 =Ty

< sp4+yKexp(—1)+ (1 — )T}

The solution of T}, = sp + yK exp(—1) + (1 — p)T}" is given by

T = (1— p)'Ty + (sp +vKexp(=1)) » (1 —p)"

i

I
—

Il
o

However, Z;;é(l — u)" is a geometric series such that

o [ T K exp(-1)) (FEEEE) (1) £ 1
.

Ty + (sp +vKexp(—1))t if (1—p)=1.
The parameter i # 0 and thus we have

T7 < (1= 7 Ty + (s + K esp(-1)) (2,

M~

In this case

K —1
limsup 7} < s+ 7K exp( )
t—o00 K=
If we let

' /!
”(t):<Tt Tt> aﬂdﬁ=<sT+erXp(_1) M)

p

then

n(t) < n for all t.

Observe that

where
0 0 0 P
Ao 0, 05 0 0
0 6, 05 0
sT+vK exp(—1)
e |
Define
Ni(t+1) = ANy(t), t>0, Ny(0)= AN(0),
then

~

Ny (t) = A'N,(0).

2



The spectral radius of fl, is less than 1, and thus N;(t), is decreasing sequence. This means

that fltNl(O) — 0, as t — 0o, where 0 = < 00 0 0 ) We therefore get that

liminf NVy(t) > 0 (10)
t—o0
From equality (@) and (I0)), it can be seen that 0 < N(t) < N;(0). O

We thus have the following proposition.

Proposition 2. The set defined by

Q= {N(t),n(t) e Ry xRy : 0< N(t) < Ni(0), 0<n(t) <n},

where 0 = < 00 ), is positively invariant under the flows of the system of equations (l)-(@).

Fixed points

The equilibrium points (fixed points) are obtained by equating the right hand side to the
left hand side of the system of equations ({)-(@). If we denote the equilibrium point by

!/
( D*, P*, Q*, V* T* T ) , we have the following system of equations

D* = pV*, (11)
P* == 91D* —|—93P*, (12)
QY = 6P+ 050", (13)
V' = 0,0Q"T™, (14)
T = sp+T'vexp (V" — T), (15)
T = TH(1—exp (~HV) + (1 — w)T™. (16)
Substituting eq (1)) into eq (I2)) we have
P = () (17
Tl
Eq (I7) into eq (I3) result in
6105
= V). 18
Q i 93)2(51 ) (18)
Substituting eq (I8]) into eq (I4]) we have
01039
V= ————(/V)T™. 19
(1-— 93)2(51 ) (19)



10

—(T)
- = =zero line

50 100 150
Equilibrium value of uninfected CD4" T cells (T*)

Figure 1: A graph of f(7™) against 7. The parameters used were sp = 10, K = 1500, v =
2.7. It can be seen that the graph of f(7™) crosses the x-axis and thus there is solution for

this parameter set.

From eq (I9), we get V* = 0, which gives the disease free equilibrium point or 7** = 89_56;%21'
Substituting V* = 0 into equations (II))-(I6) we get the disease free equilibrium
/
Eo=<o, 0, 0, 0, T7, 0) :
where 7™ is a solution of
T —sp —T"vexp(——) =0. (20)

K
The analytical solution to the eq (20) is complex therefore, the graphical method is used to

show the existence of the solution. Let f(T*) = T* — sy — T*yexp (—L>), then the graph of
f(T*) against T* is given in Figure[Il It can be seen from Figure [I that the graph of f(7™)

crosses the x-axis and thus there is a solution to the eq (20) for this parameter set.



From eq (I6)) we have

Substituting eq (2I) into (I3) result in

kk T*
sp =T 4+ T (1_,u )exp(——):(),

which can be simplified to give

sp=T"+ (T = pI™) exp (= ———) = 0,

wx _ (1—03)2
where T** = TR

Stability of fixed points

The following theorem in [1I] is used to study stability of the equilibrium points.

(21)

(22)

(23)

Theorem 1. A fized point * of a function f(x) is asymptotically stable if all the eigenvalues

w of the first derivative, D f(x) of f(x) at x* satisfy |u| < 1. The fized point x* is unstable

if there exists an eigenvalue pv such that |p| > 1.

Proposition 3. The disease free equilibrium point
/
E0=<O, 0, 0, 0, T, O) ;
exist and is locally asymptotically stable when

(=) (F)

where T* is the solution of eq (20).

<1,

Proof. Existence has been proved in the previous section. The Jacobian matrix at this

equilibrium is given by

00 0 B 0 0

6 6, 0 0 0 0
o 0 6 6 0 0 0 |

O 00 0 0 0

00 0 M GI O

00 0 =BT 0 1—pu



where

T*
M = =T exp (_f) )

T* T*
Gl=v (1 — ?) exp (—?> .

All the eigenvalues Jy (0 twice, 03 twice, G1 and 1 — u) have magnitudes less than one if

and

|G1| < 1. This completes the proof. O
Proposition 4. The system of equations (1)-(@), does not have an endermic equilibrium

point for biologically feasible parameters.

Basic properties of the cell-associated viral spread model

The cell-associated viral spread model is given by the following system of equations;

Dy = BTY, (24)
Py = 601D, +65P;, (25)
Quy1 = 6B+ 050, (26)
Vipr = 620Q:T7, (27)
Tiy1 = sr+7Tiexp (_527}* L ;Tt*) ) (28)

(29)

Ty = T(1—exp(=5T7)) + (1 - wT. 29

Proposition 5. The solutions of the system of equations (24))-(29) remain non negative and
are bounded. The set © defined by © = {N(t),n(t)) e R*xR?: 0< N(t) < (I-G)'Bn, 0 <
n(t) < i}, where n = < st 4+ 7K exp(—1) %@@H) )/, 0= < 0, 0, 0, 0 ),, G =
0 0 0 0
01 05 0
0 6 05 0

0 0 92¢M 0
m
the flows of the system of equations (24))-(29).

_ /
and 0 = ( 0, 0 ) 15 positively invariant with respect to

Proof. Using the procedure used to prove Proposition [I], it can easily be shown that
n(t) <n
where

/
n= < s+ 7K exp(—1) 7ST”K:XP(*1) ) )
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Substituting inequality (@) and 7 into equation of the virus at its different stages of the life
cycle, yields
N(t+1) < GN(t) + Bn. (30)

We can prove by induction that N(t) < G*N(0) + 3_'_,(G'Bn). Tt can then be shown that

limsup N(¢) < (I — G) ' Ba.

t—o00

Equilibrium points

The equilibrium points (fixed points) are obtained by equating the right hand side to the
left hand side of the system of equations ([24)-(29). If we denote the equilibrium point by

/
( D, P QL LV, T, T* ) , we have the following system of equations

D = BT, (31)
P = 60,D+ 03P, (32)
Q = 0,P+ 050, (33)
Vo= 0,007, (34)
T = sp+Tyexp(—FT" — T—;(T*), (35)
T = T(1—exp(=BT7))+ (1 — )T, (36)

Substituting eq (BI)) into eq (B2)) we have
P = %(@P) (37)

1—05
Eq ([B7) into eq (33)) result in

Q= T2 T) (33)

Substituting eq (38]) into eq (B4) we have
V:ﬁ%%#wﬂﬂﬁ. (39)

V =0 in (39) implies T* = @) = P = 0. Substituting 7* = 0 into equations (B5) and (30)

and solving the two equation for 7', we get T which is a solution of equation

T
T—ST—Tvexp(—g) = 0. (40)



Proposition 6. The disease free equilibrium point exist and is locally asymptotically stable

(- ()]

|=BT +1—pr| <1

and

where T is a solution of eq ({{0]).
Proof. The disease free equilibrium is given by
/
E1=<O, 0, 0, 0, T, 0),

where 7" is a solution of eq (40).
The Jacobian at Ej is given by

00 00 0 By
6, 635 0 0 O 0
T = 0 6, 65 0 0 0
0 0 0 0 O 0
0 0 0 0 Gl —yBTexp(—%)
0 0 0 0 0 =BT+1—-pr

All the eigenvalues of Jg,, (0 (twice), G1, 63 (twice) and — ST* 4+ 1 — u) have magnitudes
less than one if and only if |G1| < 1 and |—fT 4+ 1 — ur| < 1. O

The disease equilibrium point is obtained by equating the right hand side to the left hand side
of the system of equations (24)-([29)). If we denote the equilibrium point by < D*, P*, Qf, V* T* 1

we have the following system of equations

D* = BT, (41)
P* = 6,D"+65P", (42)
QY = 6. + 050", (43)
V' = 0,0Q"T™, (44)
T° = sp+T"vexp (—ﬁQT** — %) : (45)

(46)

T = T*(1—exp(—=BT™)) + (1 —p)T™.

Substituting eq ([@I]) into eq ([@2)) we have

1 —0,

P (B2T). (47)
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Substituting eq (47) into eq (43) result in

0105

Q= m(ﬂzT**)- (48)
Substituting eq (48) into eq (44) we have
V= ﬁ(ﬁﬁ )T (49)

Making T* subject of formula in eq (46) we get

1 —exp(—BoT*)

*

(50)

Substituting this expression of T* into eq ([@3]) and simplifying the resulting equation we get

—— ] =0
K(1 —exp(=5.T*)) K

pT™* — sp(1 — exp(—=foT™)) — yuI™ exp (—ﬁzT** -

(51)
Solving for T** is complex and we resort to graphical solutions. We let
) = pI™* —sp(1— —BoT*))—yuT — BT — -——.
f(T) =p sp(l—exp(—F21")) —yuT™ exp ( Bo K —op(—AT") K >
(52)
The cell-free and cell-associated viral spread model
The model that considers both forms transmission takes the form;
Dy = BiVi+ BT, (53)
Py = 61Dy + 037, (54)
Q1 = 05+ 030, (55)
Vier = 0:0Q/T7, (56)
. L+Ty
Tiv1 = sp+~Tiexp (_Blvt — BT} — d I ! ), (57)
Thn = Ti(l—exp(=AVi = BT7) + (1 — W (58)

Proposition 7. The system of equations [53)-([58) has a disease free equilibrium point given
by
/
E3:<(), 0, 0, 0, T* o) ,

where T™* is a solution of eq (20).



The Jacobian matrix at Fs5 is given by

0 0 0 b1 0 o
01 03 0 0 0 0
0 60y 65 0 0 0
Jp, =
0 0 0 0 0 0
0 0 0 —yBT*exp (—T?*) G1 —BT* exp (—T?*)
0 0 0 —p T 0 —BoT*+1—p

The eigenvalues are 0 (twice), 03 (twice), G1, and —5;T* + 1 — u. All the eigenvalues have
magnitudes less than one if and only if |G1| < 1 and | — 87" + 1 — pu| < 1. Showing
that the system of equations (53))-(58) has an endemic equilibrium is maybe difficult, we use

permanence to show the existence of the disease equilibrium.

Definition 1. The system ([53)-(328) is permanent if there exist positive constants m and M
which are independent of the solution of system (33)-(28), such that any positive solution

{Dy, P,, Qy, Vy, T,, T}} of system ([53)-(58) satisfies
m S 11{Il inf{Dt’ Pt’ Qt7 ‘/;7 E) j—‘t*} S lim Sup{Dt7 F)t) Qta ‘/ta E) j—‘t*} S M.
0 t—00

Lemma 1. Every solution { Dy, P, Qy, Vi, Ty, T} } of system (33)- (28) satisfies lim sup,_, . n(t) <

n and limsup, ,., N(t) < (I — G)~'Bn, where n, G are as previously defined.
Proof. From the proof of Proposition [Il we get that

limsup 7} < sy + vK exp(—1).

t—o00

Using the same procedure as the one used in proving Proposition [Il we get

st + 7K exp(—1)

limsup 7} <

t—o00 H
and
limsup N(¢) < (I — G)"'Bn,
t—o0
where 7, G are as previously defined. O

Lemma 2. Every solution { Dy, P, Q¢, Vi, T, T} of system ([(53)-(58) satisfies h < liminf; ., n(t)
0 0 0 0

- . 0, 03 0 0
and H < liminf, ,., N(t) where h = (H, Hy), H = (1-G)Bh, G = ,
0 6 6 O
0 0 6,pHy O
H, = yKexp(—BV — B,T* — 1) and

Hy = yKexp(—pV — 5T — 1) (1 In <52H1>> + 5 In <52H1> )
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Proof. According to Lemma [T} there exist a t* € Z*, such that

n(t) <n+ (e €, Nt) <N+ (e € € €, t >t

where N = (I — G)"'Bna. We first show that liminf, ,,, T, > H;, where H; is to be

determined. Assume that there exist a ty > ¢* such that

_ _ T
Tyyv1 = st +7Ty, exp (—51(‘/ +€) — Bo(T* +€) — %),
T
> ST—F’}/TtoeXp (— — %),
T,
Z ’)/Tto €xXp (_ - %)7

> ~yKexp(—F —1),
where —31(V +¢€) — Bo(T* + €) = F. We claim that
T, > Kexp(—F — 1), for t > t.

By way of contradiction, assume there exist a 79 > to such that T, < yKexp(—F — 1).
Let 7y = to + 2 be the smallest number such that 75 < 7K exp(—F — 1). The argument

presented above produces a contradiction and this proves the claim. Thus
li{n inf T, > vKexp(—F —1).
—00
Setting € — 0 leads to

liminf 7y > Hy = yK exp(—31V — B.T* — 1).

t—o00

We now need to show that liminf, ,. 7} > H,, where H, is to be determined. From the

above steps we have that for t* € Z™,

n(t) <n+ (e €), Nt) <N+ (e € ¢ €),

and Ty > Hy — ¢, t > t*. Assume that there exist ¢ty > ¢* such that

Ty = (Hi—e) (1—exp(=piVi, — BT3)) + (1 — )T,
> (Hi—e) (1 —exp(=5T})) + (1 — w)Ty, (59)
> (Hi—e) (1 —exp(=pT})) — pIy, (60)

It It It
= (h—9 H“(m))%ln(m) (61)

11



We claim that

. — (H. — N P *
T7 2 Hla, where Hl, = (H; —¢) (1 8 (BQ(Hl - 6))) " B2 n (52(H1 - €)>

for t > t,.

By way of contradiction assume there exists a 79 > ¢ such that T> < H1,, then 79 > o+ 2.
Let 7o = fp + 2 be the smallest number such that T < H1,. The above argument produces
T < Hly, a contradiction and this proves the claim. Thus lim inf; oo 17 > H1s. Setting

e — 0 leads to

. H H H
Iminf7, > Hy=H;(1—-1In + —1In
t—o00 b= "2 ! ( (BQHl)) 52 <B2H1)

We now show that liminf N(¢) > Hs where Hj is to be determined. We now have that
nt) <n+(e €, Nt)<N+(e ¢ ¢ ¢ and Ty > Hy —e¢, T} > Hy —¢, t > t".

0 O 0 0
. 0, 65 0 0 .
Define G = , and n = (H; —¢, Hy —¢€)". For any t > 0 we have
0 6, 05 0
0 0 6O(Ho—e) O
that
N(t+1) = GN(t)+ Bn (62)

> GN(t) + Ba (63)

We can prove by induction that N (¢) > GN(0)+ S G'Bn, from which it can be deduced
that liminf,,. N(t) > (I — G)Bn. Setting e — 0 leads to liminf, o N(t) > Hs = (I —

&) Bi. 0
Proposition 8. The system of equations (53)-(28) is permanent.
Proof. The result follows from Lemma [Il and Lemma O

The implication of this result is that an endemic equilibrium point exist.
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