Supporting Information

Nano- and micro-patterned polycaprolactone cellulose composite surfaces with tunable protein adsorption, fibrin clot formation and endothelial cellular response

Tamilselvan Mohan^{+*}, Chandran Nagaraj[‡], Bence M. Nagy[‡], Matej Bračič[†], Uroš

Maver^B, Andrea Olschewski^{‡,\$}, Karin Stana Kleinschek^{†*} and Rupert Kargl^{#**}

[†]Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical

Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia

[‡]Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24

8010 Graz, Austria

^{\$}Otto Loewi Research Center, Chair of Physiology Neue Stiftingtalstraße 6/D05 8010

Graz, Austria

^βUniversity of Maribor, Faculty of Medicine, Institute of Biomedical Sciences,

Taborska ulica 8, SI-2000 Maribor, Slovenia

KEYWORDS: nano-structure, thin films, biomaterial, primary human pulmonary artery endothelial cells, blood plasma coagulation, protein adsorption, cell culture

Removal of TMSC or PCL from blend films

Figure S1. AFM topographical image (10 x 10 μ m²) of a PCL/TMSC film (top left) after the removal of TMSC with hexamethyldisiloxane (HMDSO) (top right) and a PCL/Cellulose film (bottom left) after the removal of PCL with chloroform (bottom right) (image size 10 μ m x 10 μ m).

ATR-IR spectra of PCL/TMSC films

An increased R-OH band at 3400 cm⁻¹ and a decreased R-Si band at 845 and 753 cm⁻¹ is evidence for the regeneration of TMSC into cellulose (Figure S2 and S3). The usual R-Si band at 1252 cm⁻¹ is very close to the 1240 cm⁻¹ R-O-C band from PCL. However careful evaluation of the regenerated films shows that the band at 1252 cm⁻¹ decreases while the band at 1240 cm⁻¹ is retained.

Figure S2. ATR-IR spectra of PCL/TMSC films, before and after regeneration with HCl vapors. The lines show the peaks assigned to the functional groups of either TMSC/Cellulose (dotted) or PCL (straight).

Figure S3. ATR-IR spectra of PCL/TMSC films for the region 650 – 1600 cm⁻¹. The lines show the peaks assigned to TMSC/Cellulose (dotted, C-Si rocking vibrations at 1252, 845 and 753 cm⁻¹) and PCL (straight, asymmetric C-O-C stretching at 1240 cm⁻¹) before and after regeneration.

Interaction of cell growth media with thin films in QCM-D

Figure S4. QCM-D frequency changes for the adsorption of the cell growth media EBM-2, Lonza, on PCL/TMSC surfaces after regeneration.

zeta potential measurements

Figure S5. A) zeta potential of blend films containing increasing amounts of cellulose. B) zeta potential at pH 7.4.

pH-potentiometric titrations of proteins

Figure S6. Charges of different proteins as a function of pH