Cell Reports, Volume 28

Supplemental Information

Non-catalytic Roles of Tet2 Are

Essential to Regulate Hematopoietic

Stem and Progenitor Cell Homeostasis

Kyoko Ito, Joun Lee, Stephanie Chrysanthou, Yilin Zhao, Katherine Josephs, Hiroyo Sato, Julie Teruya-Feldstein, Deyou Zheng, Meelad M. Dawlaty, and Keisuke Ito

A	Tet2 targeting in V6.5 mESCs			
	mESCs colonies picked & screened	96		
	Clones heterozygote for <i>m</i> allele (+/ <i>m</i>)	6		
	+/m clones with non-intact wt allele	4		
	Efficiency of proper targeting (2 out of 96)	2%		
	Tet2*/m ESC			
	(Generated <i>in vitro</i> in V6.5 129/C57B6 mixed ESCs)			
	C57BL/6			
•	Tet2 +/m			
C	6-week-old			
	<i>Tet2</i> : +/+ (WT) <i>m/m</i> (Mut) –/-	- (KO)		
		Į.		

F

Tet2^{m/m} mice from *Tet2^{+/m}* X *Tet2^{+/m}* cross

В

No. of Pups	+/+	+/m	m/m
65 (10 litters)	20	30	15
Percent (ratio)	30 (1)	46 (2)	23 (1)

Tet2^{-/-} mice from *Tet2^{+/-}* X *Tet2^{+/-}* cross

No. of Pups	+/+	+/	_/_
79 (10 litters)	23	34	22
Percent (ratio)	29 (1)	43 (2)	27 (1)

Tet2

Figure S1 (Related to Figure 1). Generation and hematopoietic characterization of *Tet2* catalytic mutant mice

- (A) Summary of *Tet2* gene-editing in mouse ES cells (top) and schematic of injection of an edited ESC clone into blastocyst to generate *Tet2* catalytic mutant mice.
- (B) Mendelian ratios of *Tet2* catalytic mutant (Mut) and knockout (KO) mice. *Tet2* Mut mice, like knockout mice, are produced at normal mendelian frequency.
- (C) Images of 6-week-old *Tet2* mice of the indicated genotypes.
- (D) Body weight of live *Tet2* Mut and KO mice showing no differences in overall growth in young age.
- (E) Percentages of the indicated fractions in the peripheral blood in *Tet2* Mut and KO mice (4 months old) (n = 6).
- (F) Representative images of abnormal hematopoietic cells in PB smears of 10-month-old *Tet2* Mut (i-xii) and KO mice (xiii-xiv, with myeloid disorders; xv-xvii, with lymphoid malignancy). Dysplastic erythroid cells [i-iv, xvii; polychromatophilic (ii, blue arrowhead), Howell-Jolly bodies (ii and iv, black arrowhead), other poikilocytes (e.g. teardrop-shaped dacrocyte and echinocytes) (i, black-outlined arrowhead), and nucleated erythroid cells (iii and xvii, blue-outlined arrowhead). Dysplastic monocytes [v-x and xiv; a peudo-Pelger-Huet anomaly (ix and x)] and dysplastic platelet (giant platelet) (blue arrow, viii) are shown. Dysplastic neutrophils (xi-xiii) and immature B cells (xv and xvi) are also shown. All images are taken at x100. Scale bars, 10µm.
- (G) Percentages of B220⁺ (left) and CD3e⁺ (middle) cells in the PB in *Tet2* Mut and KO mice (10 months old).
- (H) Representative flow data for myeloid and lymphoid lineages in PB from *Tet2* KO mice with T lymphoid phenotypes (10 months old). Unstained flow controls are also shown (right, inset).

Error bars indicate standard deviation. n.c. stands for no significant change.

Figure S2

Tet2: WT Mut KO *p < 0.05

Figure S2 (Related to Figure 2). Phenotypic and functional characterization of HSPCs from *Tet2* Mut and KO mice

- (A) Percentages of the indicated fractions in the peripheral blood in *Tet2* Mut and KO mice (4 months old) (n = 6).
- (B, C) Bone marrow flow analysis for the indicated immature fractions from *Tet2* Mut and KO mice (4 months old, B; 10 months old, C).
- (D) Percentages in live mononuclear cells (left) or relative absolute number (middle, right) of the indicated fractions in the bone marrow in *Tet2* Mut and KO mice (10 months old) (*n* = 6). The alterations of Pro-B and Pre-B are minor in *Tet2* KO mice, while both B-1a fractions and B-1 progenitors are increased.
- (E, F) Colony-forming capacity of HSPCs from 4-month-old *Tet2* Mut and KO mice (n = 3) (E). Overview of the experimental design for *in vitro* colony-replating assay (F, left). *Tet2*-KO HSCs have the increased re-plating capacity compared to *Tet2*-Mut HSCs (4 months old, up to 4th round re-plating data, n = 3) (F, right).
- (G, H) Profiles of the colonies formed by HSPCs from 10-month-old *Tet2* Mut and KO mice (*n* = 3).
 Representative images of May-Grünwald-Giemsa–stained cytospin preparations of the formed-colonies by hematopoietic stem and progenitor cells from *Tet2* Mut and wild-type mice (at 2nd replating) (H). Scale bars, 10µm.

HSPCs, hematopoietic stem and progenitor cells; LSK, Lineage⁻cKit⁺Sca1⁺; GMP, granulocyte-monocyte progenitor; CLP, common lymphoid progenitor; Pro-B, Gr-1⁻CD4/8⁻IgM⁻CD43⁺; Pro-B, Gr-1⁻CD4/8⁻IgM⁻CD43⁻; B-1 progenitor, Gr-1⁻CD4/8⁻IgM⁻CD19⁺B220^{dim/-}; GEMM, Colony-forming unit-granulocyte, erythroid, macrophage, and megakaryocyte; GM, Colony-forming unit-granulocyte and macrophage; M, Colony-forming unit-macrophage; E, Burst-forming unit-erythroid. Error bars indicate standard deviation. n.c. stands for no significant change.

Figure S3

Figure S3 (Related to Figure 3). Analysis of spleens from *Tet2* Mut and KO mice

- (A) Representative histologic images of sections of spleen, liver and lymph node from 10-month old *Tet2* Mut mice, stained with H&E. Tissue with myeloid expansion/infiltration are shown (top right for Mut mouse #1, and bottom left for Mut mouse #2). Histologic images of spleen from 10-month old *Tet2* KO mice with B cell phenotypes (bottom right for KO mice #1 and #2, respectively; Magnified spleen image of KO mouse #1, in the inset). Normal tissues in the age-matched wild-type mice are also shown as control (top, left). Scale bars, 250 µm.
- (B, C) Representative flow data for myeloid and lymphoid lineages in the spleen from *Tet2* Mut and KO mice (4 months old, B left; 10 months old, B right). Percentages of the indicated fractions are also shown (*n* = 6) (C).

Error bars indicate standard deviation. n.c. stands for no significant change.

Figure S4

Α

Sample ID

KO-1 LSK

KO-2 LSK

Mut-1 LSK

Mut-2 LSK

WT-1 LSK

WT-2 LSK

Sample ID

KO-3 Lin-

KO-4 Lin-

Mut-5 Lin-

Mut-6 Lin-

WT-1 Lin-

WT-2 Lin-

83 84

5844

141

56

5872

С

Ε

Ctrl

Gata2

CD45.1

Figure S4 (Related to Figure 4): Gene expression changes in hematopoietic stem and progenitor cells from *Tet2* Mut and KO mice.

- (A) Summary of RNA-seq data.
- (B) Venn diagram of up- and down-regulated DEGs in LSK (left) and Lin⁻ cells (right).
- (C) Venn diagram showing overlap of DEGs with *Tet2* bound genes in bone marrow.
- (D) mRNA levels of indicated genes in LSK cells isolated from 2-month-old mice, quantified by RT-qPCR.
 Data normalized to *Gapdh*.
- (E, F) Representative flow cytometric analysis for donor-chimerism (E) and CD11b/B220 positivity (F) in peripheral blood of recipient mice transplanted with *Gata2*-expressing *Tet2* Mut bone marrow cells (bottom left) or *Tet2* KO bone marrow cells (bottom right), 3 weeks after BMT. Empty vector transduced controls are also shown (top).

Error bars indicate standard deviation. n.c. stands for no significant change.

Table S1 (Related to STAR Methods): List of oligos, gRNAs and gene blocks used in study

Name	Sequence	Purpose	Source
Tet2 gRNA For oligo	GCATGTTCTGCTGGTCTCTG	Gene targeting	This paper
Tet2 gRNA Rev oligo	CAGAGACCAGCAGAACATGC	Gene targeting	This paper
Tet2 gene block	gcagtggttacgt 471pbCCTACAGGGCC439bp tccatacacttaa	Gene targeting	This paper
Tet2 Mut Gen Fw	ATTCTCAGGAGTCACTGCATG	Genotyping Tet2 mutant mice	This paper
Tet2 Mut Gen Rev	TCTATCCATGAAAACACATGGCC	Genotyping Tet2 mutant mice	This paper
Tet2 KO Gen Fw	CCCATTGTTCCTTTGCTCCATGCA	Genotyping Tet2 KO mice KO allele	Zhe et al, Blood 2011
Tet2 KO Gen Rev	CGTCGCCGTCCAGCTCGACCAG	Genotyping Tet2 KO mice KO allele	Zhe et al, Blood 2011
Tet2 WT Gen Fw	CCATGCAGGGAAGACAAGAGTAGC	Genotyping Tet2 KO mice WT allele	Zhe et al, Blood 2011
Tet2 WT Gen Rev	ATCTTGTTTGGATGGAGCCCAGAG	Genotyping Tet2 KO mice WT allele	Zhe et al, Blood 2011
Tet1 RTqPCR Fw	TGCACCTACTGCAAGAATCG	Real time qPCR	Dawlaty et al, Cell Stem Cell 2011
Tet1 RTqPCR Rev	AAATTGGCATCACAGCTTCC	Real time qPCR	Dawlaty et al, Cell Stem Cell 2011
Tet2 RTqPCR Fw	GTCAACAGGACATGATCCAGGAG	Real time qPCR	Zhe et al, Blood 2011
Tet2 RTqPCR Rev	CCTGTTCCATCAGGCTTGCT	Real time qPCR	Zhe et al, Blood 2011
Tet3 RTqPCR Fw	TCCGGATTGAGAAGGTCATC	Real time qPCR	Dawlaty et al, Develop Cell 2014
Tet3 RTqPCR Rev	CCAGGCCAGGATCAAGATAA	Real time qPCR	Dawlaty et al, Develop Cell 2014
Hoxa9 RTqPCR Fw	ATGGCATTAAACCTGAACCG	Real time qPCR	Ailing et al, JCI 2013
Hoxa9 RTqPCR Rev	GTCTCCGCCGCTCTCATTC	Real time qPCR	Ailing et al, JCI 2013
Gata1 RTqPCR Fw	TGCCTGTGGCTTGTATCA	Real time qPCR	Kaimakis et al, Blood 2016
Gata1 RTqPCR Rev	TGTTGTAG GGTCGTTTGAC	Real time qPCR	Kaimakis et al, Blood 2016
Gata2 RTqPCR Fw	AAGCTGCACAATGTTAACAGG	Real time qPCR	Kaimakis et al, Blood 2016
Gata2 RTqPCR Rev	CCTTTCTTGCTCTTCTTGGAC	Real time qPCR	Kaimakis et al, Blood 2016
Gapdh RTqPCR Fw	ACATCTCACTCAAGATTGTCAGCA	Real time qPCR	Dawlaty et al, Develop Cell 2014
Gapdh RTqPCR Rev	ATGGCATGGACTGTGGTCAT	Real time qPCR	Dawlaty et al, Develop Cell 2014