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1 Derivation of the expression for the Helmholtz free

energy

In this section, we derive the expression for the electrostatic and hydration field energies

using the approach described in refs. 1 and 2. The expressions for the field energies derived

here contribute to the Helmholtz free energy of the system. Note that the Helmholtz free

energy serves as the starting point in the derivation of the disjoining pressure operating

between two charged surfaces.
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1.1 Electrostatic Field Energy

We assume that two point charges interact via a Coulomb potential, along with a local

interaction potential attributed to ion-ion correlations which decays according to the length

scale, lij, for each pair interaction between ions i and j.3,4 The interaction potential, Ui,j is

given by:

Ui,j(r)

kBT
=
zizjlb(1− e−|r|/li,j)

| r |
(S1)

where kB is the Boltzmann constant, T is the absolute temperature, zi and zj are the valencies

of ion i and ion j, respectively, lb is the Bjerrum length, and r is a spatial coordinate.

The linear operator which corresponds to the Green’s function, G(r, r′) = 1−e−|r−r′|/li,j

4π|r−r′| ,

such that LG(r, r′) = δ(r − r′) is L = (li,j
2∇2 − 1)∇2 where δ is the Dirac delta function.

The mean potential, φi,j, resulting from the interaction of the point charges, as described in

Eq. S1, is given by,

zieφi,j =

∫
V

dr′[Ui,j(r− r′)cj(r
′)] (S2)

where cj is the number density of ions of type j (number of ions of type j per unit volume).

By applying the linear operator Li,j on both sides of Eq. S2, the potential resulting from

the interaction of ion i with ion j obeys the following differential equation:

εLi,jφi,j = zjecj(r) (S3)

Summing over the index i from 1 to N where N is the number of ion types in the system,

Eq. S3 can be expressed as follows:

N∑
i=1

N∑
j=1

εLi,jφi,j = N
N∑
j=1

zjecj(r) = Nρ (S4)

where ρ is the charge density. Note that the correlation lengths for a pair interaction is

symmetric, namely li,j = lj,i. If the correlation length for each pair of species is equal,
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li,j = lc, then the linear operators are equivalent, Li,j = L = (lc
2∇2 − 1)∇2. Therefore, we

can define the potential as:

φ =
1

N

∑
i

∑
j

φi,j (S5)

The governing equation for the electrostatic potential is given by:

ε(lc
2∇2 − 1)∇2φ = ρ (S6)

We can then derive the form of the electrostatic field energy via a charging process. The

field energy changes as we place charges in a potential field. The change in the electrostatic

field energy, δWelec, upon introducing a differential amount of charge, δρ, into the system is

given by:

δWelec =

∫
V

dr[φδρ] (S7)

Substituting ρ in Eq. S6 into Eq. S7, we obtain:

δWelec =

∫
V

dr[εφδ(∇ · (lc2∇3φ−∇φ))]

=

∫
V

dr[εφ∇ · (lc2δ∇3φ− δ∇φ)]

(S8)

Note that throughout the main text and the SI, we assume that the solvent permittivity, ε,

is constant. Invoking the vector identity that: a∇ · v = ∇ · (av)−∇a · v, where a is a scalar

and v is a vector, Eq. S8 can be rewritten as follows:

δWelec =

∫
V

dr[ε∇ · (φ(lc
2δ∇3φ− δ∇φ))

− ε∇φ · (lc2δ∇3φ− δ∇φ)]

(S9)

Note that Eq. S9 was obtained using, a = φ and v = (lc
2δ∇3φ− δ∇φ), in the vector identity

discussed above. Next, implementing the divergence theorem on the 1st integral in Eq. S9,
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Eq. S9 can be rewritten as follows:

δWelec =

∫
S

drsn · [εφ(lc
2δ∇3φ− δ∇φ)]+∫

V

dr[−ε∇φ · (lc2δ∇3φ− δ∇φ)]

(S10)

Next, we choose an arbitrary reference surface for which we will evaluate the surface integral

in Eq. S10. Note that the expression for the integrand in the surface integral is of the form,

n · δD, where D is the electric displacement field, given by, D = −ε∇φ + lc
2ε∇2∇φ. By

choosing an arbitrary reference surface where the displacement field is zero, we can cancel

out the surface term (1st term in Eq. S10, which is of the form,
∫
S
drsφ(n · δD), and obtain

the following simplified relation,

δWelec =

∫
V

dr[−ε∇φ · (lc2δ∇3φ− δ∇φ)] (S11)

Substitution of δ∇3φ = ∇δ∇2φ in Eq. S11:

δWelec =

∫
V

dr[−εlc2∇φ · ∇δ∇2φ+ ε∇φ · δ∇φ] (S12)

Utilizing the vector identity used above, and using the divergence theorem, and neglecting

surface terms, we obtain:

δWelec =

∫
V

dr[ε∇φ · δ∇φ+ εlc
2(∇2φ)δ∇2φ] (S13)

Integrating Eq. S13 from 0 to Welec, we obtain:

Welec =

∫
V

dr[
ε

2
(∇φ)2 +

εlc
2

2
(∇2φ)2] (S14)

The underlying assumption is that we can locally integrate from 0 to Welec, where Welec =∫
δWelec, at each local point within the volume V . Note that the field energy is universally
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convex such that δ2Welec > 0. However, in the minimization of the functional in Eq. S14,

we need to enforce Maxwell’s equations for a bulk charge distribution ρ bounded by surfaces

of fixed surface charge density qs, ∇ ·D = ρ and n ·D = −qs, with Lagrange multipliers, λ1

and λ2, where D is the displacement field. After incorporating these additional constraints

in Eq. S14, we obtain the following expression:

Welec =

∫
V

dr[
ε

2
(∇φ)2 +

εlc
2

2
(∇2φ)2]

+

∫
V

dr[λ1(ρ−∇ ·D)] +

∫
S

drs[λ2(qs + n ·D)]

(S15)

where n is the unit vector pointing outward from the surface. It can be shown that λ1 and

λ2 must satisfy λ1 = λ2 = φ by minimizing the functional in Eq. S15 with respect to the

electrostatic potential. After applying the divergence theorem and substituting in Eq. S6,

we arrive at the final form of the electrostatic field energy:

Welec =

∫
V

dr[ρφ− ε

2
(∇φ)2 − εlc

2

2
(∇2φ)2] +

∫
S

drs[qsφ] (S16)

1.2 Hydration Field Energy

We can follow a similar procedure to derive the field energy for the hydration potential. The

expression for the water-mediated hydration interaction between two ions, Vi,j, is given by:

Vi,j(r)

kBT
=
lhe
−κh(|r|−lh)

| r |
(S17)

In this case, we define a new potential, the hydration potential, arising from the repulsion

between two ions mediated by ordered water layers. In Eq. S17 lh is the hydration length

and κh is the inverse length scale associated with ordered water layers. The linear operator

that corresponds to the Green’s function G(r, r′) = −e−κh|r−r′|

4π|r−r′| such that LG(r, r′) = δ(r− r′)
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is L = ∇2 − κ2h. If we define the hydration potential ψh, as follows:

ψh =
1

kBT

∫
V

dr′[Vi,j(r− r′)
∑
n

αncn(r′)], (S18)

we can show that the potential in Eq. S18 will obey the following differential equation by

applying the linear operator L to both sides of Eq. S18:

(∇2 − κ2h)ψh = −4πlhe
κhlh

∑
n

αncn (S19)

where, cn, is the number density of ions of type n and αn is a size parameter for each ion

given by the relation, αn = ln
lh
eκh(ln−lh). In αn, ln is the hydrated size of ion n, so that αn = 1

∀n corresponds to the case of equally hydrated ion sizes. Note that this derivation is similar

to that of Bohinc et al.5 It is convenient to solve for the difference in the hydration potential

relative to a reservoir, instead of solving for its absolute value, because the chemical potential

contribution due to hydration will always be computed relative to a reservoir concentration.

To this end, we introduce the relative hydration potential, ψh = ψh −ψh,ref , which results

in the following expression:

(∇2 − κ2h)ψh = −4πlhe
κhlh

∑
n

αn(cn − cn,ref ) (S20)

Beginning with Eq. S20, we can mimic the electrostatic charging procedure for the non-

electrostatic hydration interaction to obtain the field energy for the hydration potential. To

this end, instead of placing ions in an electric field, we place them in a hydration field, which

results in the following expression for the change in the hydration field energy, δWhydr, for

the hydration process,
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δWhydr = kBT

∫
V

dr

[
ψhδ
(∑

n

αn(cn − cn,ref )
)]

= kBT

∫
V

dr

[
ψhδ
(−∇2ψh + κ2hψh

4πlheκhlh

)] (S21)

For convenience, defining a constant A = kBT/(4πlhe
κhlh), and then implementing the vector

identity discussed earlier, Eq. S21 can be recast as follows:

δWhydr =

∫
V

dr

[
− Aψhδ∇2ψh + Aκ2hψhδψh

]

=

∫
V

dr

[
− A∇ · (ψhδ∇ψh)

+ A∇ψhδ∇ψh + Aκ2hψhδψh

] (S22)

Next, we first apply the divergence theorem on the 1st term in Eq. S22. We then note

that similar to our analysis of the surface integral in Eq. S10 to derive the expression

for the electrostatic field energy, we can move the term on the second line of Eq. S22 to

a reference surface such that it takes the form,
∫
S
drsAψh(n · δDh), where Dh = −∇ψh,

is the equivalent of the electric displacement field for the hydration potential. Similar to

the analysis presented in the case of the electrostatic field energy where the surface term

containing the electric displacement field got eliminated, we can also eliminate this term

containing the displacement field for the hydration potential. Subsequently, we integrate the

two final terms in the third line of Eq. S22 to obtain,

Whydr =

∫
V

dr

[
A

2
(∇ψh)2 +

A

2
κ2hψ

2
h

]
(S23)

Note that we still need to enforce Eq. S20 in the hydration field energy. This can be

done using two Lagrange multipliers at the surface and in the bulk, similar to what we did to
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derive the electrostatic field energy. Following a procedure similar to the one used to obtain

the Lagrange multipliers in the case of the electrostatic field energy, here, we find that the

Lagrange multipliers are equal to the hydration potential, ψh. Substituting the Lagrange

multipliers along with the expressions of the constraints in Eq. S23, we obtain:

Whydr =

∫
V

dr

[
A

2
(∇ψh)2 +

A

2
κ2hψ

2
h

]

+

∫
V

dr

[
ψhkBT

(∑
n

αn(cn − cn,ref )
)]

+

∫
V

dr

[
Aψh∇2ψh − Aκ2hψ2

h

)]

+

∫
S

drs

[
ψh(−n · A∇ψh + σh)

]
(S24)

Equation S24 can be further simplified by using the divergence theorem, which yields the

following expression for the hydration potential:

Whydr =

∫
V

dr

[
− A

2
(∇ψh)2 −

A

2
κ2hψ

2
h

]
+∫

V

drψhkBT
∑
n

αn(cn − cn,ref )

+

∫
S

drs

[
ψhσh

] (S25)

Because we assumed that the hydration interactions act only between the counterions, i.e.,

between the cations in the case of two negatively-charged surfaces, α+ = 1 for cations, while

for the cation-anion and the anion-anion interactions, αn = 0. This results in the following

expression for the hydration field energy:

Whydr =

∫
V

dr

[
− A

2
(∇ψh)2 −

A

2
κ2hψ

2
h + ψhkBT

(
c+ − c0

)]

+

∫
S

drs

[
ψhσh

] (S26)
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1.3 The Total Free Energy Functional

The total internal energy of the system is given by: U = Welec + Whydr. In addition, we

retain the entropic contribution in the PB model, −TS =
∫
V
drg, where,

g = kBT
∑
i=±

[
ci

(
ln

(
ci
c0i

)
− 1

)]
(S27)

We assume that the entropy of the ions is unaffected by the electrostatic correlations which

only influence the internal energy, U . Finally, we include a contribution to the Helmholtz

free energy which results from the exchange of ions between the bulk reservoir and the region

confined between the two charged surfaces, Fexch., which is given by: Fexch. = −
∫
V
dr
(
µ+c++

µ−c−

)
. Adding up U − TS + Fexch., the expression for the Helmholtz free energy, F, of the

system is given by:

F =

∫
V

dr
{
ρφ− ε

2

[
|∇φ|2 + lc

2
(
∇2φ

)2 ]
+ g (c+, c−)

}
+

∮
S

dr qsφ

+

∫
V

dr

{[−κ2ψ2
h − (∇ψh)2

8πlheκlh

]
kBT + (c+ − c0)ψhkBT

}
+

∮
S

drσhψh −
∫
V

dr(µ+c+ + µ−c−)

(S28)

Note that Eq. S28 is the same as Eq. 3 used in the main text to predict the disjoining

pressure.

S9



2 Derivation of Eq. 15 in our article describing the re-

lation between the electrostatic potential, hydration

potential and their higher order derivatives

At thermodynamic equilibrium, δF
δφ

= 0 and δF
δψh

= 0 for the bulk variation. Using the calculus

of variations, the functional derivative of F[φ] and F[ψh], can be expressed as:

δF
δφ

=
∂f

∂φ
− d

dx

(
∂f

∂φ′

)
+

d2

dx2

(
∂f

∂φ′′

)
= 0 (S29)

δF
δψh

=
∂f

∂ψh
− d

dx

(
∂f

∂ψ′h

)
= 0 (S30)

The total derivative of f is given by:

df

dx
=
∂f

∂x
+
∂f

∂φ
φ′ +

∂f

∂φ′
φ′′ +

∂f

∂φ′′
φ′′′

+
∂f

∂ψh
ψ
′

h +
∂f

∂ψ′h
ψ′′h

(S31)

Because f does not depend explicitly on x, it follows that ∂f
∂x

= 0. In addition, we utilize the

following mathematical relations:

∂f

∂φ′
φ′′ =

d

dx

(
∂f

∂φ′
φ′
)
− d

dx

(
∂f

∂φ′

)
φ′ (S32)

∂f

∂φ′′
φ′′′ =

d

dx

(
∂f

∂φ′′
φ′′
)
− d

dx

(
∂f

∂φ′′

)
φ′′ (S33)

∂f

∂ψ′h
ψ′′h =

d

dx

(
∂f

∂ψ′h
ψ′h

)
− d

dx

(
∂f

∂ψ′h

)
ψ′h (S34)
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Now, substituting the results for ∂f
∂φ′
φ′′, ∂f

∂φ′′
φ′′′, and ∂f

∂ψ′h
ψ′′h from Eqs. S32, S33 and S34,

respectively, into Eq. S31, we obtain:

df

dx
=
∂f

∂φ
φ′ +

d

dx

(
∂f

∂φ′
φ′
)

+
d

dx

(
∂f

∂φ′′
φ′′
)

− d

dx

(
∂f

∂φ′

)
φ′ − d

dx

(
∂f

∂φ′′

)
φ′′

+
∂f

∂ψh
ψ
′

h +
d

dx

(
∂f

∂ψ′h
ψ′h

)
− d

dx

(
∂f

∂ψ′h

)
ψ′h

(S35)

Now multiplying Eq. S29 with φ′ and Eq. S30 with ψ′h, and then substituting the resulting

expressions in Eq. S35, we obtain:

df

dx
=
d

dx

(
∂f

∂φ′
φ′
)

+
d

dx

(
∂f

∂φ′′
φ′′
)

− d2

dx2

(
∂f

∂φ′′

)
φ′ − d

dx

(
∂f

∂φ′′

)
φ′′

+
d

dx

(
∂f

∂ψ′h
ψ′h

) (S36)

Using the relation: d
dx

(
d
dx

(
∂f
∂φ′′

)
φ′
)

= d2

dx2

(
∂f
∂φ′′

)
φ′+ d

dx

(
∂f
∂φ′′

)
φ′′, Eq. S36 can be rewritten

as:

df

dx
=
d

dx

(
∂f

∂φ′
φ′
)

+
d

dx

(
∂f

∂φ′′
φ′′
)

− d

dx

(
d

dx

(
∂f

∂φ′′

)
φ′
)

+
d

dx

(
∂f

∂ψ′h
ψ′h

) (S37)

Next, integrating Eq. S37 yields the following relation:

f − ∂f

∂φ′
φ′ − ∂f

∂φ′′
φ′′ +

d

dx

(
∂f

∂φ′′

)
φ′ − ∂f

∂ψ′h
ψ′h = constant (S38)
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Substituting the expression for f from Eq. 3 in our article, and solving for the various terms

in Eq. S38, we obtain:

ε

2
φ′

2
+
εlc

2

2
φ′′

2 − εlc2φ′′′φ′ + ρφ+ g − µ+c+ − µ−c−

+ ψhkBT (c+ − c0) + kBT
[−κ2hψ2

h + ψ′h
2

8πlheκhlh

]
= constant

(S39)

Eq. S39 is the same as Eq. 15 in our article.

3 Contour plots showing the dependence of the pre-

dicted disjoining pressure on the salt concentration

and surface charge density

To explore the full parameter space of the dependence of the predicted disjoining pressure on

salt concentration and surface charge density, two contour plots are presented in Fig. S1 for a

2:1 electrolyte solution. The contour plots show the regions in which the phenomenon of like-

charge attraction may be expected based on our proposed theory. In particular, like-charge

attraction is prominent at close separations of 1-3 nm, even for low to moderate charge

densities ranging from -0.05 C/m2 to -0.1 C/m2. As the two charged surfaces are pulled

apart from intimate contact, there is first a strong repulsive pressure, followed by an attrac-

tive well that relaxes to zero over a few nanometers of separation distance. The topological

complexity of the concentration-dependent disjoining pressure arises from the interplay be-

tween the attractive pressure resulting from ion-ion correlations and the entropic repulsion.

According to Eq. 2 in our article, increasing the salt concentration results in a decrease

in the magnitude of the correlation length, which in turn decreases the attractive pressure

contribution resulting from ion-ion correlations (2nd term of Eq. 21 in our article). However,

the dimensionless correlation length in Eq. 12 in our article, which controls the variation of

the electrostatic potential, and consequently, determines the value of the second derivative
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Figure S1: Contour plots of the predicted disjoining pressure for a 2:1 electrolyte solution
(εr = 80) with (a) changing bulk salt concentration, and (b) surface charge density. In (a),
the surface charge density is fixed at qs = −0.1 C/m2. In (b), the bulk salt concentration
is fixed at c0 = 0.1 M. The scales of the contour plots are adjusted so that red indicates a
repulsive predicted disjoining pressure, and blue indicates an attractive predicted disjoining
pressure. Note that the disjoining pressure is expressed in units of MPa.

of the electrostatic potential in the 2nd term of Eq. 21 in our article, gets enhanced upon

increasing the salt concentration. Furthermore, the entropic contribution to the predicted

disjoining pressure (4th term in Eq. 21 in our article) decreases with an increase in the salt

concentration of the bulk reservoir. This explains why we observe a complex non-monotonic

dependence of the predicted disjoining pressure with varying salt concentration.
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4 Comparison to experimental data for reduced Hamaker

constant

The Hamaker constant reported by Plassard et al. (Ah) is approximately 70-fold larger than

the reported value for silica, Ah ≈ 2 × 10−21 J based on previous studies.6,7 To ascertain

whether our model can work in the case of lower Ah values, we repeated the calculations

used to obtain Fig. 8 in the main text using Ah = 2 × 10−21 J instead of Ah = 14 × 10−20

J, the value measured experimentally by Plassard et al. The disjoining pressure profiles are

shown below in Fig. S2. In order to fit the qualitative trends in the data, all the parameter

values were kept constant, but the value of σh was changed from σh = 5/nm2 (the original

value used to generate Fig. 8 in the main text) to σh = 4/nm2. As can be seen, the BSK

theory can still describe the qualitative trends even when the Hamaker constant is reduced,

due to the attractive disjoining pressure resulting from ion-ion correlations.

Figure S2: Comparison of the disjoining pressure versus the surface separation distance
predicted by our complete theory (solid lines) with the experimental data of Plassard et
al.8 (circles) for five Ca(OH)2 salt concentrations. Note that we used Ah = 2 × 10−21 J to
generate the disjoining pressure profiles using our theory (solid lines).
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