Table S1. Electrophysiological properties of glycine evoked currents in nAc. | Area | Neurons | Glycine sensitive | insensitive | EC ₅₀ (μM) | Current Density
(pA/pF) | I _{max} (pA) | 10 mM EtOH
Potentiation (%) | 100 mM EtOH
Potentiation (%) | GTP-γ-S
potentation (%) | |------|----------|------------------------|-----------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------| | nAc | WT
KI | 81 % (42)
88 % (57) | 19 % (10)
12 % (8) | 47 ± 6 (15)
54 ± 1 (12) | | 314 ± 46 (15)
407 ± 110 (12) | 24 ± 9 (8)
-17 ± 8 (19) (*) | 56 ± 7 (18)
1 ± 6 (24) (***) | 85 ± 21 (5)
8 ± 19 (9)(*) | Values are given as mean \pm SEM. Values were fitted to the equation $I_{glicine} = I_{max}$ [glycine]^{nH}/([glycine]^{nH}+[EC₅₀]^{nH}) using Origin 8.0 software . Glycine sensitivity was evaluated with1000 μ M of glycine. The EC $_{10}$ calculated for both genotypes was used for ethanol and GTP- γ -S sensitivity experiments. "% Potentiation" corresponds to the change between the control with glycine EC $_{10}$ and presence of 10 and 100 mM ethanol. The "% potentiation at 15 min" corresponds to the change after 15 minutes of dialysis of non-hydrolyzed analog, GTP- γ -S, 200 μ M. *p<0.05, ***p<0.001, Unpaired student t test n=(number of neurons)