# Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis

Orduz et al.

**Supplementary Information** 



#### Supplementary Figure 1. Paired recordings between two YFP<sup>+</sup> interneurons.

**a**. Paired recording between two YFP<sup>+</sup> interneurons (green, left). Action currents evoked in a presynaptic YFP<sup>+</sup> interneuron elicited PSCs recorded in a postsynaptic YFP<sup>+</sup> interneuron (right, average of 100 traces) that were abolished by the GABA<sub>A</sub> receptor antagonist SR95531 (5  $\mu$ M; n=5 connected pairs, grey). **b-d**. Dot plots of different properties of unitary YFP<sup>+</sup> interneuron-YFP<sup>+</sup> interneuron connections (10 connected out of 72 tested pairs). Postsynaptic current amplitudes are in average 10 times larger than those of YFP<sup>+</sup> interneuron-YFP<sup>+</sup>/DsRed<sup>+</sup> OPC connections (p=0.02, Mann Withney U test). In contrast, no differences are found between these two types of connections for PPR at 50 ms, rise time and decay times (p>0.05, Mann Withney U test). Data are presented as Mean±SEM.



Supplementary Figure 2. YFP<sup>+</sup> FSI are a prevalent presynaptic input of OPCs.

**a**, **b**. Unitary synaptic connections between either a presynaptic YFP<sup>+</sup> FSI (**a**) or a presynaptic YFP<sup>+</sup> NFSI (b) with two different postsynaptic YFP<sup>+</sup>/DsRed<sup>+</sup> OPCs. Current-clamp recordings of the YFP<sup>+</sup> FSI (a, top) and the YFP<sup>+</sup> NFSI (b, top) during 800 ms depolarizing current pulses. Note the differences in their action potential properties (insets; 150 ms pulse, 200 pA step). Action currents in the YFP<sup>+</sup> FSI (a, green) and the YFP<sup>+</sup> NFSI (b, green) elicited PSCs on two different YFP<sup>+</sup>/DsRed<sup>+</sup> OPCs (yellow; averages of 100 traces). c. Percentages of tested and connected YFP<sup>+</sup> FSI (black; n=35 and n=13, respectively) and YFP<sup>+</sup> NFSI (white; n=133 and n=27, respectively) with any OPC (Chi-squared test; significant p-values are indicated). d-f. Comparisons of synaptic properties for unitary connections formed by presynaptic YFP<sup>+</sup> FSI or YFP<sup>+</sup> NFSI with OPCs. Dotplots comparing PSC amplitudes (d), rise (e) and decay times (f) between connections with YFP<sup>+</sup> FSI (black) and YFP<sup>+</sup> NFSI (white). As shown for the entire interneuron population<sup>15</sup>, PSCs elicited in OPCs by YFP<sup>+</sup> FSI and YFP<sup>+</sup> NFSI showed the same mean amplitudes (d), but faster rise (e) and decay times (f) for  $YFP^+$  FSI. Note that connections with  $YFP^+$  FSIs display faster kinetics compared to those with YFP<sup>+</sup> NFSIs (e, f). YFP<sup>+</sup> FSI-OPC connections thus operate in a faster temporal range as expected from a previous report<sup>15</sup> (Mann–Whitney U test; significant p-values are indicated). Data in **d-f** are presented as Mean±SEM.



Supplementary Figure 3. Dbx1-derived interneurons and OLs remain in cell clusters at PN19. a-d. Distances among YFP<sup>+</sup> cells in clusters at PN10 and PN19. Mean Euclidean distances among YFP<sup>+</sup> cells for all clusters (**a**, **c**) and clusters formed exclusively by two cells (**b**, **d**) according to the cell composition of clusters at PN10 (**a**, **b**) and PN19 (**c**, **d**) (one-way ANOVA test followed by a Tukey's Multiple Comparison test; significant p-values are indicated). Since OPCs are actively dividing at PN10, the shorter mean intersomatic distance of firstOPCs in two-cell clusters at PN10 probably reflect recent divisions. Note that the mean Euclidean intersomatic distance were not different between PN10 and PN19 ( $70 \pm 4 \mu m$  at PN10 vs.  $68.4 \pm 8.2 \mu m$  at PN19, p=0.803, Mann Whitney U test). **e.** Confocal image of a coronal section of the somatosensory cortex from a PN19  $Dbx1^{CRE}$ ; Rosa26<sup>YFP</sup> mouse showing YFP<sup>+</sup> cells. Scale bar: 200 µm. **f.** Magnification of the rectangle in **e** showing the unsupervised clusters of YFP<sup>+</sup> cells detected by hierarchical cluster analysis in this region (dotted ellipses). Insets: two identified clusters containing OLs and detected with an approximately unbiased p-value  $\geq 0.95$ . They are indicated by arrowheads in the dendrogram in **g**. Scale bars: 80 µm and 10 µm. **g**. Hierarchical clustering dendrogram displaying

the relationship between Dbx1-derived interneurons (green) and OLs (magenta) according to Manhattan distances in the same slice. Detected YFP<sup>+</sup> cell clusters with approximately unbiased probability values of  $\geq$ 95% are shown (grey boxes). **h**, **i**. Percentages of clusters according to the number of cells per cluster (**h**) and the cell composition (**i**). As for PN10, 74.4±2.4% cells were in clusters *vs.* 25.5±2.4 % isolated cells (n=10 slices from 3 mice, p<0.0001, Mann Whitney U test). Proportions and composition of detected clustered cells were compatible with those at PN10 (67.9% clusters containing 2-3 cells and 94.7% containing at most 7 cells; 66.5% clusters composed by interneurons only, 28.2% by interneurons and oligodendroglia (mixed) and 4.3% by oligodendroglia only). Data in **a-d** are presented as Mean±SEM.



Supplementary Figure 4. Local microarchitecture of interneuron-OPC connections.

a. Schematic of the coordinate system illustrating a pair between a presynaptic YFP<sup>+</sup> interneuron (green) located in position zero and an OPC (black) tested at an intersomatic distance d in the barrel cortex. The orientation of the OPC with respect to the YFP<sup>+</sup> interneuron was determined by calculating an angle  $\alpha$  in the x-y plane. **b.** Spatial distributions of connected (black, n=40) and unconnected (grey, n=128) OPCs with respect to the tested presynaptic YFP<sup>+</sup> interneurons. Note the shorter intersomatic distances, but lack of a specific orientation of connected pairs (comparison of angles of connected and unconnected OPCs: p=0.23; D=0.18, Kolmogorov-Smirnov test). No differences were observed whether the presynaptic neuron was YFP<sup>+</sup> FSI or YFP<sup>+</sup> NFSI (comparison of angles for connected YFP<sup>+</sup> FSI and YFP<sup>+</sup> NFSI, p=0.97, D=0.16, Kolmogorov-Smirnov test). c. Box plots of distances of connected (black) and unconnected (grey) OPCs. d. Spatial distributions of connected YFP<sup>+</sup>/DsRed<sup>+</sup> OPCs (yellow, n=24) and connected YFP<sup>-</sup>/DsRed<sup>+</sup> OPCs (red, n=16) with respect to the tested presynaptic YFP<sup>+</sup> interneuron. Note their similar distributions and lack of orientation. No differences were observed on the distances, orientation and angle distributions between YFP<sup>+</sup>/DsRed<sup>+</sup> OPCs and YFP<sup>-</sup>/DsRed<sup>+</sup> OPCs (comparison of angles: p=0.19; D=0.33, Kolmogorov-Smirnov test). e. Box plots of distances of connected YFP<sup>+</sup>/DsRed<sup>+</sup> OPCs (yellow) and connected YFP<sup>-</sup>/DsRed<sup>+</sup> OPCs (red) showing no differences of intersomatic distances with the connected interneuron. Boxes show interquartile ranges and medians; whiskers indicate 10% and 90% percentile values (Mann–Whitney U test in c and e; significant p-value is indicated).



## Supplementary Figure 5. Densities of OPCs and OLs from the ePOA in the motor and visual cortex.

**a, b.** Confocal images of YFP<sup>+</sup> cells in layer V-VI from the motor (left) and visual (right) cortex in a  $Dbx1^{CRE}$ ;  $Rosa26^{YFP}$ ;  $NG2^{DsRed}$  mouse at PN19. Insets: white dotted squares surround YFP<sup>+</sup> cell clusters composed of a YFP<sup>+</sup> interneuron and a YFP<sup>+</sup>/Olig2<sup>+</sup>/CC1<sup>+</sup> OL in both cortical regions. Arrowheads point to clusters composed of YFP<sup>+</sup> interneurons. YFP<sup>+</sup> cell clusters can therefore be visualized in different cortical regions and thus, they do not follow a specific antero-posterior distribution. Scale bars: 50 µm and 20 µm. **c-h**. Densities of Olig2<sup>+</sup> cells (**c, d**), Olig2<sup>+</sup>/CC1<sup>-</sup> OPCs (**e, f**) and Olig2<sup>+</sup>/CC1<sup>+</sup> OLs (**g, h**) for the motor (**c, e, g**) and visual (**d, f, h**) cortex at PN10, PN19 and PN90 of  $Dbx1^{CRE}$ ;  $Rosa26^{YFP}$  mice (dots represent n=3 animals per age; one-way ANOVA test followed by a Tukey's Multiple Comparison test; significant p-values are indicated). Data are presented as Mean±SEM.



#### Supplementary Figure 6. Axon myelination of Dbx1-derived FSI.

**a**. Z-stack of a 3D reconstructed myelinated axon belonging to biocytin-loaded YFP<sup>+</sup> FSI in the third postnatal week. Note the presence of several myelin segments (cyan). Dendrites are omitted for visibility. Of note, axons of 3 out of 4 biocytin-loaded YFP<sup>+</sup> NFSI did not appear myelinated (not shown). Scale bar: 20  $\mu$ m. **b**. Current-clamp recordings of the same YFP<sup>+</sup> FSI in **a** during 800 ms depolarizing current pulses. Note the high frequency discharge. The inset show profound AHPs, negligible spike amplitude reduction and fast action potential kinetics.



## Supplementary Figure 7. Increase of Nkx2.1-derived interneurons and oligodendroglia in $Bax^{f/f}$ mice.

**a.** Confocal images of tdTomato<sup>+</sup> cells (red) of layer IV in the somatosensory cortex of control (left) and Bax<sup>f/f</sup> (right) mice at PN19 where FSI-mediated feedforward inhibition was analyzed (Fig. 6). Note the large increase in the number of recombinant tdTomato<sup>+</sup> cells in  $Bax^{f/f}$  mice. White dotted squares surround tdTomato<sup>+</sup> interneurons and tdTomato<sup>+</sup>/Olig2<sup>+</sup>/CC1<sup>+</sup> OLs shown in insets. Scale bar: 100 µm and 20 µm. **b, e.** Densities of recombinant tdTomato<sup>+</sup>/Olig2<sup>-</sup>/CC1<sup>-</sup> interneurons quantified in all layers of the somatosensory cortex in control and  $Bax^{f/f}$  mice at PN10 (**b**) and PN19 (**e**) (Mann Whitney U test; significant p-values are indicated). **c-g.** Densities of recombinant tdTomato<sup>+</sup>/Olig2<sup>+</sup>/CC1<sup>-</sup> OPCs and tdTomato<sup>+</sup>/Olig2<sup>+</sup>/CC1<sup>+</sup> OLs in all layers of the somatosensory cortex in control (black) and  $Bax^{f/f}$  (gray) mice at PN10 (**c**, **d**) and PN19 (**f**, **g**) (dots represent n=3 animals per condition; Mann Whitney U test; significant p-values are indicated). It is noteworthy that tdTomato<sup>+</sup>/Olig2<sup>+</sup> cells constitute 4,91% and 8.9% of total Olig2 cells considering all layers in control (black) and  $Bax^{f/f}$  (gray) mice at PN10, respectively, and 3.74% and 6.72% of total Olig2 cells considering all layers in control (black).



Supplementary Figure 8. An exceeding number of firstOPCs does not induce changes in non-recombinant tdTomato<sup>-</sup> oligodendroglia population at PN10.

**a.** Confocal images of tdTomato<sup>+</sup> (red) and Olig2<sup>+</sup> (cyan) cells of layer IV in the somatosensory cortex of control (left) and  $Bax^{f/f}$  (right) mice at PN10. Note the increase in the number of recombinant tdTomato<sup>+</sup> cells (firstOPCs are indicated by arrowheads), but the constant number of non-recombinant tdTomato<sup>-</sup>/Olig2<sup>+</sup> oligodendroglia in  $Bax^{f/f}$  mice. Scale bar: 100µm. **b**, **c**. Densities of non-recombinant tdTomato<sup>-</sup>/Olig2<sup>+</sup>/CC1<sup>-</sup> OPCs (**b**) and tdTomato<sup>-</sup>/Olig2<sup>+</sup>/CC1<sup>+</sup> OLs (**c**) in layers I-III, IV and V-VI of the somatosensory cortex in control (black) and  $Bax^{f/f}$  (gray) mice at PN10 (dots represent the number of animals; no statistical differences between conditions; Mann Whitney U test). Data are presented as Mean±SEM.