1 Supplementary information

2 Depsipeptide Aspergillicins Revealed by Chromatin Reader Protein

3 Deletion

- 4 C. Greco,^a B. T. Pfannenstiel,^b J. C. Liu^a and N. P. Keller^{a,c}
- ^a Department of Medical Microbiology and Immunology, University of Wisconsin-Madison,
 Madison, WI, USA
- 7 ^b Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- 8 ^c Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA

9

10 Contents

11	List of Tables
12	Experimental section
13	General procedures5
14	HPLC-DAD
15	UHPLC-HRMS
16	Fungal strains and media 6
17	DNA fragment construction for gene disruption 6
18	Growth conditions and method of extraction
19	Bioinformatic analysis
20	Analysis of the thioesterase (TE) domains12
21	Fungal transformation12
22	Transformant confirmation13
23	Semi quantitative PCR and quantitative PCR14
24	Feeding experiment15
25	Sensitivity to iron experiment16
26	Isolations of aspergillicins17
27	HRMS and UV spectra19

28	NMR data21
29	Reference
30	
31	List of Figures
32	Figure S1. <i>A. flavus</i> ∆ <i>sntB</i> (left) and wild type (right) strains grown on GMM for 6 days at 30 °C.
33	
34	Figure S2. Schematic of the aspergllicin BGC flanked by siderophores genes
35	Figure S3. ACT analysis of the aspergillicin BGC from A. flavus genome vs A. oryzae
36	Figure S4. ACT analysis of the aspergillicin BGC from A. flavus genome vs A. arachidicola. In A.
37	arachidicola the BGC is split across two contigs
38	Figure S5. ACT analysis of the aspergillicin BGC from A. flavus genome vs A. nidulans
39	Figure S6. ACT analysis of the aspergillicin BGC from A. flavus genome vs A. fumigatus10
40	Figure S7. Multigene BLAST analysis of the aspergillicin BGC. The siderophore genes can be
41	identified across different fungi10
42	Figure S8. Multiple sequence aligment done using Clustal Omega. Red box highiligts conserved
43	motif11
44	Figure S9. Phylogenetic tree for the TE domains (orange) and C domains (blue). Dark orange
45	highlights fungal NRPS-TE domains. The TE domains is divided in bacterial TEs, fungal NRPS-
46	TE and fungal PKS-TE domains12
47	Figure S10. Schematic of the expected product from digestion using Mfel and HindIII (left).
48	Southern results for $\Delta a giA$ 13
49	Figure S11. PCR confirmation of the correct disruption of the resistance and purity. Schematic of
50	the expected product (left). Gel for the transfromants $C = \text{control}$; $W = \text{water}$, $T = \text{transfromants}$.
51	Purity test indicates primer that amplify the ORF, and no product should be observed in the correct
52	transfromants. $\Delta agiB$; T1 correct LH (2500 bp), RH (1744 bp), and no product in purity test (1286
53	bp). $\Delta sidJ$; T2 correct LH (2426 bp), RH (2005 bp), and no product in purity test (2490 bp). $\Delta agiB$;
54	T1, T2, T3, T4, T5 correct LH (2861 bp), RH (1730 bp), and no product in purity test (3034 bp).
55	14
56	Figure S12. A) Semi-qPCR analysis for agiA, agiB, sidJ, sidF and acting (expected products 100-
57	120 bp). B) Bar charts showing relative expression of agiA, agiB and sidJ using normalized
58	expression ration (2 ^{-$\Delta\Delta$Ct} Method) between WT and Δ <i>sntB</i> 15

59	Figure S13. Summary of the feeding experiment using O-Me-L-tyrosine. $\triangle sntB$ produces
60	aspergillicn A 1 and F 2. $\triangle sntB \triangle agiB$ produces aspergillicin C 4 and aspergillicin G 11.
61	$\Delta sntB\Delta agiB$ plus O-Me-tyrosine produces aspergillicin A 1 and aspergillicin F 216
62	Figure S14. GMM plates contating different amounts of FeSO ₄ (0, 5 $\mu M,$ 1 mM and 10 mM)
63	inoculated with WT and $\triangle snt$, $\triangle sntB \triangle agiA$, $\triangle sntB \triangle agiB$, $\triangle sntB \triangle sidF$ and $\triangle sntB \triangle agiJ$. Picure taken
64	after 5 days16
65	Figure S15. HRMS spectrum (left) and UV spectrum of aspergillicin A 119
66	Figure S16. HRMS spectrum (left) and UV spectrum of aspergillicin F 219
67	Figure S17. HRMS spectrum (left) and UV spectrum of aspergillicin B 420
68	Figure S18. HRMS spectrum (left) and UV spectrum of aspergillicin G 1120
69	Figure S19. ¹ H NMR of aspergillicin A 1 (600 MHz in CDCl ₃)23
70	Figure S20. ¹³ C NMR of aspergillicin F 1 (150 MHz in CDCl ₃)23
71	Figure S21. HSQC spectrum of aspergillicin A 1 (600 MHz in CDCI ₃)24
72	Figure S22. HMBC spectrum of aspergillicin A 1 (600 MHz in CDCI ₃)24
73	Figure S23. ¹ H NMR of aspergillicin F 1 (600 MHz in CDCl ₃)25
74	Figure S24. ^{13}C NMR of aspergillicin F 2 (150 MHz in CDCl_3)25
75	Figure S25. COSY spectrum of aspergillicin F 2 (600 MHz in CDCI ₃)26
76	Figure S26. HSQC spectrum of aspergillicin F 2 (600 MHz in $CDCI_3$)26
77	Figure S27. HMBC spectrum of aspergillicin F 2 (600 MHz in $CDCI_3$)27
78	Figure S28. ¹ H NMR of aspergillicin C 4 (600 MHz in CDCl ₃)27
79	Figure S29. COSY spectrum of aspergillicin C 4 (600 MHz in CDCI ₃)28
80	Figure S30. ¹³ C NMR of aspergillicin G 11 (150 MHz in CDCl ₃)28
81	Figure S31. ¹ H NMR of aspergillicin G 11 (600 MHz in CDCl ₃)29
82	Figure S32. COSY spectrum of aspergillicin G 11 (600 MHz in CDCl ₃)29
83	Figure S33. HSQC spectrum of aspergillicin G 11 (600 MHz in CDCl ₃)30
84	Figure S34. HMBC spectrum of aspergillicin G 11 (600 MHz in CDCl ₃)30

85 List of Tables

86	Table S1. List of strain used in this work. 6
87	Table S2. List of oligonucleotides
88	Table S3. Summary of the predicted functions for the genes in the putative aspergillicin cluster.
89	The function was determined using NCBI BLAST in non-redundant database
90	Table S4. NMR assignment of aspergillicin F 2 in agreement with literature ⁸ (a150 MHz, b600 MHz
91	in CDCI ₃)21

Table S5. NMR assignment of aspergillicin G 11 (°150 MHz, °600 MHz in CDCl₃).....22

94 **Experimental section**

95 General procedures

96 Analytical grade chemicals and reagents were supplied from Sigma-Aldrich, Alfa Aesar, Acros 97 Organics and Fischer, unless otherwise stated. Solvents used for HPLC-DAD analyses were 98 HPLC grade, and for UPLC-HRMS analysis were LCMS grade. General molecular biology 99 procedures were performed as standard and molecular biology kits used according to 100 manufacturer's protocols. Analytical PCR was performed using Pfull Ultra high fidelity (Agilent) 101 Expand Long Template PCR (Roche) DNA polymerases.

102 **NMR**

103 NMR experiments were conducted on the following spectrometers: Bruker Avance-500 DCH 104 cryoprobe (¹H NMR at 500 MHz and ¹³C NMR at 125 MHz), Bruker Avance-600 TCI-F cryoprobe 105 (¹H NMR at 500 MHz and ¹³C NMR at 150 MHz). Chemical shifts were recorded in parts per 106 million (ppm referenced to the appropriate residual solvent peak).

107 HPLC-DAD

108 HPLC-DAD for analysis and purification was performed on Gilson GX-271 Liquid Handler with 109 system 322 H2 Pump connected to a 171 Gilson Diode Array Detector and fraction collector. A 110 XBridge BEH C18 XP Column (130 Å, 2.5 µm, 4.6 mm x 100 mm) with XBridge BEH C18 XP 111 VanGuard Cartridge (130 Å, 2.5 µm, 3.9 mm x 5 mm) was used for analytical run with a flow rate 112 of 0.8 mL/min. A XBridge BEH C18 OBD Prep Column (130 Å, 5 µm, 19 mm x 250 mm) with a 113 XBridge BEH C18 Prep Guard Cartridge (130 Å, 5 µm, 19 mm x 10 mm) was used for preparative 114 run with flow rate of 16 mL/min. HPLC grade water with 0.5% formic acid (solvent A) and HPLC 115 grade acetonitrile with 0.5% formic acid (solvent B) were used with the following gradient 0 min, 116 20% Solvent B; 2 min, 20% Solvent B; 15 min, 95% Solvent B; 20 min, 95% Solvent B; 20 min, 117 20% Solvent B; 25 min, Solvent B. Data acquisition and procession for the HPLC-DAD were 118 controlled by TRILUTION LC V3.0.

119 UHPLC-HRMS

UHPLC-HRMS was performed on a Thermo Scientific-Vanquish UHPLC system connected to a
Thermo Scientific Q Exactive Orbitrap mass spectrometer in ES⁺ and ES⁻ mode between 200 m/z
and 1000 m/z to identify metabolites. A Zorbax Eclipse XDB-C18 column (2.1 × 150 mm, 1.8 µm
particle size) was used with a flow rate of 0.2 mL/min for all samples. LCMS grade water with
0.5% formic acid (solvent A) and LCMS grade acetonitrile with 0.5% formic acid (solvent B) were

used with the following gradient 0 min, 20% Solvent B; 2 min, 20% Solvent B; 15 min, 95% Solvent
B; 20 min, 95% Solvent B; 20 min, 20% Solvent B; 25 min, Solvent B. Nitrogen was used as the
sheath gas. Data acquisition and procession for the UHPLC-MS were controlled by Thermo
Scientific Xcalibur software.

129 Fungal strains and media

Strains used in this study are listed in Supplementary Table S1. They were grown on glucose
minimal media (GMM)¹ with additional supplements for auxotrophic strains. Solid and liquid

- 132 cultures were grown in a light incubator at 30 °C. All strains were maintained as glycerol stocks
- 133 at -80 °C. Strain TJW149 is used as our wild-type control unless otherwise noted.

134

- **Figure S1.** *A. flavus* ∆*sntB* (left) and wild type (right) strains grown on GMM for 6 days at 30 °C.
- 136 **Table S1.** List of strain used in this work.

Strain Name	Genotype	Reference
TJW149	∆ku70::A. parasiticus pyrG	2
TJES20.1	∆ku70; pyrG-; ∆argB::A. fumigatus pyrG	3
TXZ13	Δ ku70; pyrG-; Δ argB; Δ sntB::A. flavus argB	3
TXZ14	Δ ku70:: A. fumigatus pyrG; pyrG-; Δ argB; Δ sntB::A.	3
	flavus argB	
TCG3.1	Δ ku70; pyrG-; Δ argB; Δ sntB::A. flavus argB; Δ agiA::A.	This study
	fumigatus pyrG	
TCG4.1	Δ ku70; pyrG-; Δ argB; Δ sntB::A. flavus argB; Δ agiB::A.	This study
	fumigatus pyrG	
TCG5.1	Δ ku70; pyrG-; Δ argB; Δ sntB::A. flavus argB; Δ sidJ::A.	This Study
	fumigatus pyrG	-
TCG6.1	Δ ku70; pyrG-; Δ argB; Δ sntB::A. flavus argB; Δ sidF::A.	This study
	fumigatus pyrG	

137

138 **DNA fragment construction for gene disruption**

All the DNA constructs were prepared using double joint PCR.⁴ 1 to 2 kb of 5' and 3' flanking
 sequence of each gene of interest was amplified using oligonucleotides listed in Table S2 (i.e.,

141 5'-F paired with 5'-R) from RAAS233.2 genomic DNA, with the *pyrG* marker amplified from

142 genomic DNA isolated from *A. fumigatus*. These fragments were then fused together *via* PCR to

- 143 generate deletion constructs. PCR amplification was carried out on a C1000TM Thermal Cycler
- 144 (BioNRad).
- 145 **Table S2.** List of oligonucleotides

Name	Sequence	Use
CG-pyrG-F	TGCTCTTCACCCTCTTCGC	Selectable marker
CG-pyrG-R	CTGTCTGAGAGGAGGCACTG	Selectable marker
CG-agiA-5'-F	GAGTAGCAGGGCTTCTGTTC	Gene deletion
CG-agiA-5'-R	ATTTCAGACCCGCGAAGAGGGTGAAGAGCACTCATCCTGCTTC	Gene deletion
5	CAATCG	
CG-agiA-3'-F	GACAGTATAATACAAACAAAGATGCAAGAGGGATGTGTGCCATG	Gene deletion
	TACGAG	
CG-agiA-3'-R	GTGCAGGTGGTGGTACATAA	Gene deletion
CG-agiA-5'-F-int	GCAGCGTTGACTTATTCGC	Gene deletion
CG-agiA-3'-R-int	GCCGCCATTTGTGTTGATAG	Gene deletion
CG-agiB-5'-F	GTGCAGTGAACGGTAGACTAG	Gene deletion
CG-agiB-5'-R	ATTTCAGACCCGCGAAGAGGGTGAAGAGCAGGAGCCCGAATCA	Gene deletion
	AGTCTC	
CG-agiB-3'-F	CATCACGCATCAGTGCCTCCTCTCAGACAGATGGTTGGGAGTC	Gene deletion
	AGGATGC	
CG-agiB-3'-R	GCCAGAAAGCCCTCGGAATAG	Gene deletion
CG-agiB-5'-F-int	GCTTCGGGAGTTCGGATC	Gene deletion
CG-agiB-3'-R-int	GGTGTATCCTTGCCAGTTCAC	Gene deletion
CG-sidJ-5'-F	CACAGCGCGAAAGTACGATG	Gene deletion
CG-sidJ-5'-R	ATTTCAGACCCGCGAAGAGGGTGAAGAGCAGGCGTGAAGGATA	Gene deletion
	TCGCTATG	
CG-sidJ-3'-F	CATCACGCATCAGTGCCTCCTCTCAGACAGCCAGGAGAATCGG	Gene deletion
	GACTATCG	
CG-sidJ-3'-R	CTAGGGCCATAGTATTCTCCG	Gene deletion
CG-sidJ-5'-F-int	CTGTAAAAGCCTCTGTGGCG	Gene deletion
CG-sidJ-3'-R-int	CACCTCGTGTCTGGAATCTG	Gene deletion
CG-sidF-5'-F	GGCATTCAACATAGGGACCG	Gene deletion
CG-sidF-5'-R	ATTTCAGACCCGCGAAGAGGGTGAAGAGCAGCTGTAAAGTCAG	Gene deletion
	AGGGATGC	
CG-sidF-3'-F	CATCACGCATCAGTGCCTCCTCTCAGACAGGCCCTGGTTTATAT	Gene deletion
	CTGAGCAA	
CG-sidF-3'-R		Gene deletion
CG-sidF-5'-F-int		Gene deletion
CG-sidF-3'-R-int	GCGACGACAATATCGCAATTG	Gene deletion
CG-agiB-Check-F	CGTGCCTTCATTGCACTGA	Check mutant
CG-agiB-Check-R		Check mutant
CG-agiB-pur-R		Check mutant
CG-sidJ-Check-F	GTAGCCTGAGATCGGCTTC	Check mutant
CG-sidJ-Check-R		Check mutant
CG-sidJ-pur-R		Check mutant
CG-sidJ-Check-F	GAIGCCGIIGGGIAIGCAAI	Check mutant
CG-sidJ-Check-R	GGAGACCCTCCATCGTAAC	Check mutant
CG-Nac1-pur-R		Check mutant
PyrG-Check-F	GCATCGGTTGACTACGCT	Check mutant
PyrG-Check-R		Check mutant
CG-actin-semi-F		qPCR
CG-actin-semi-R		QPCR
CG-agiA-semi-F		
CG-agiA-semi-R		qPCR
CG-agiB-semi-F	GCCGCCGTACAAACACATCATATC	qPCR
CG-agiB-semi-R	GGCAAIGAACCCTCACCAGAG	qPCR
CG-sidJ-semi-F		
CG-sidJ-semi-R		qPCR
CG-sidF-semi-F	GGACAGAGCGCTTATGCCAG	qPCR
CG-sidF-semi-R	GCCGAAGGCGACGAATACAA	qPCR

147 Growth conditions and method of extraction

148 The A. flavus strains were grown on glucose minimal media (GMM), potato dextrose agar (PDA) 149 or potato dextrose broth (PDB) for 14 days at 30 °C, the liquid culture was shaken at 200 rpm. 150 Each 25 mL plate was blended in ethyl acetate (100 mL) and water (50 mL). After two hours, the 151 solid was removed using vacuum filtration and the organic layer was separated. The aqueous 152 layer was extracted with ethyl acetate (2 x 25 mL). The combined organic phases were dried over 153 anhydrous magnesium sulfate and concentrated under reduced pressure. To a liquid PDB culture 154 (200 mL), ethyl acetate (300 mL) was added. The mixture was blended and left soaking for 2 155 hours. The mycelia were removed by vacuum filtration, the organic layer was removed, and the 156 aqueous layer was extracted with ethyl acetated (2 x 100 mL). The combined organic phases 157 were dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The 158 dried extracts were resuspended in LCMS grade acetonitrile at a concentration of 10 mg/mL and 159 filtered through an Acrodisc syringe filter with a nylon membrane (Pall Corporation) (0.45 µm pore 160 size).

- 161 Bioinformatic analysis
- 162 Analysis cluster

164 **Figure S2.** Schematic of the aspergllicin BGC flanked by siderophores genes.

165 Table S3. Summary of the predicted functions for the genes in the putative aspergillicin cluster. The function was 166 determined using NCBI BLAST in non-redundant database.

Gene	Putative function	Homolog	Gene identity	Query coverage
L5	Hypothetical protein	A. bombycis	65%	85%
L4	Lipase 2	A. nomius NRRL 13137 A. arachidicola	88% 84%	99% 99%
L3	O-methyl transferase	A. bombycis A. arachidicola	92% 86%	99% 99%
L2	Hypothetical protein	A. bombycis	88%	96%
L1	Hypothetical protein	A. arachidicola	92%	98%
NRPS	NRPS (AELA 010580)	A. arachidicola	95% 81%	99% 99%
R1	esterase	A. arachidicola	99%	99%
R2	Acetylase Acel N-acyltransferase	A. arachidicola	98%	96%
R3	enoyl-CoA hydratase	A. arachidicola	98%	99%
R4	nonribosomal siderophore peptide synthase Sid2	A. arachidicola	96%	99%
R5	ABC transporter sidT	A. arachidicola	99%	99%
R6	MFS transporter mirB	A. arachidicola	99%	99%
R7	Hypothetical protein	A. bombycis	78%	98%
R8	Hypothetical protein	A. bombycis	78%	99%

167 Artemis comparison tool (ACT) analysis

- 168 ACT⁵ was used to compare the aspergillicin BGC from *A. flavus*. to the genome of *A. fumigatus*,
- 169 A. oryzae, A. arachhidicola and A. nidulans. The red and blue lines indicate homologous genes
- 170 with identity above 75%.

177

A. nidulans

Figure S5. ACT analysis of the aspergillicin BGC from A. flavus genome vs A. nidulans.

180 Figure S6. ACT analysis of the aspergillicin BGC from *A. flavus* genome vs *A. fumigatus*.

181 Multigene BLAST

- 182 Multigene BLAST⁶ analysis identified that the siderophore BGC is fairly conserved across many
- 183 fungi. But the NRPS *agiA* is unique to *A. flavus* and closely related species.

184

Figure S7. Multigene BLAST analysis of the aspergillicin BGC. The siderophore genes can be identified across different
 fungi.

187

188 Analysis of condensation domain

189 Multiple sequence alignment using Clustal Omega of the condensation domains of AgiA

190 (AFLA_010580) revealed the canonical HHxxxDG motif.

CLUSTAL O(1.2.4) multiple sequence alignment

C5	VROSFAOGRLWFLDOLHPGSTWYLMPFGLRIOGD-LHLDALEAAVSAIEERHETLRTT	57
C1	APSVMOEEMIVSTIADPSHKSYFETYHFSAOGI-VDPDOLNGAIHAVARKHAVLRSV	56
C3	DIIPCTPMORALLYEGIADHESRSYVTCRIWRIPTDOAICSOIEGAVKSLIORHGILRTV	60
C2	AIYPCTPOOEGLIOTSLH-GDKSAYFATITVHLGDS-LNLRTFHAAWNRLVFGCDMLRTA	58
C4	-VMPCTPFQEGVLSSNDESGSSAGYLAHMTVGLGKE-IDVEALKYAWQETVDHEDMLRTT	58
C6	-LMPCTPFOEGVLSNSLAVPGDSGYLSVVRLGLOSO-LDTKAMRLAWOKVVEREETLRTA	58
	: * : *. :. * **:.	
C5	FEHRDGENVOWHPEAH-ROLRVVEVPPAVDEEGLLGALKE	97
C1	FVHPTEFDSTNVPIGE	92
C3	FHIDPEVGPLALVLRDTOSPTA-SAVGHVKVKDHTEMEERV-TSLLC	105
C2	FVSFSEVOHPPVSESNILOVVLSOSA-EDVRRLVSLDNRDI	98
C4	FIPADMDMTDIRGLGOGSSLLOVVLYPES-POAGRVKTMKTVSTPATPNAALPSYPSLOG	117
C6	FIPVAEDLSSACITSSTFWOCIFNINS-REVORLLCIEGRNSGVDRS	104
	*	
C 5		144
C1	ETREGTI PLESTGTDEWDGVMPWKESI VVCEREOKSYTTVRVHHALLDGVSARALLE	149
C3		151
C2		141
C4		163
6		153
	: ** : * ::	
		100
CS		199
CI		192
Co		199
C2		190
64		219
0	ELSKEYHKARLAKDYVPLRAPQISMNKIPFSIFVSQLQAMPKESAISFWKSYLNG	208
	1	
C5	SKPAEFICDKRRPQAPSRQAIFEEVRIDGAMYDQLRQYCKQHQLTPFIVLLA	251
C1	IETSPILSPGPVANGDLRVGEVTREVSISSDIWLPDRPAVPARLLRL	239
C3	VQPKSLPLSLMSSSP-INAAAVVVEQACNLAILSENCISPAALVSL	244
C2	VAPATWPVASGIRRMREENGQDVEMTVVKSWTGNAVALGQKFQATPASIVRA	242
C4	ATPSTWPLPHGMQSS-ITSVKS-PETAVLEWTGNLRAAASKVQVTAAAIARA	269
C6	APAACWPVARGLESGRITEIDE-FSSRSLIWKGNMHNLAGARGVTPAAISRA	259
C5	VFRATHYRLTREADATIGTPIANRGREELHDIIGLFVNVOCIRLKVD 298	
C1	ALGMTISVFRNSDDSLFLEITSARSRLFPKD00VLGP 276	
C3	AWSLVLSEILDTDDVTHGMLFSGRQLPVD-GVADIIGPCISTVPIRTHL- 292	
C2	ALALALAOYSOTDDVVFGEVSSGRFDHDRFTLGPCLATHPVRIOI- 287	
C4	ALALTVAEHTNVTDVVLGEVSKGRPDIRGPGDARARFITGPCATTHPVRIR 320	
C6	AVALVVAEHSGVEDIVLGEVSSGRSITDGAAGFVAGPCISTHPIRIRM- 307	
	* * *	

191

192 Figure S8. Multiple sequence aligment done using Clustal Omega. Red box highligts conserved motif.

193 Analysis of the thioesterase (TE) domains

Phylogenetic analysis of the *agiA* TE domain was done using Clustal Omega and iTOL with defaults parameters (Figure S9). The TE domain is clearly distinct from condensation domains. There is not a clear distinction among bacterial TE domains in PKS or NRPS genes. In contrast, fungal TE domains in PKS genes are clustered together. Not many TE domains from fungal NRPS are available, but agiA-TE is very closely related to another fungal NRPS-TE involved in the biosynthesis of penicillin. Interestingly, the two fungal NRPS-TE clustered more closely to the bacterial TE domains than the fungal PKS TE domains.

201

204 Fungal transformation

205 A fresh spore suspension (2 x 10⁶ spores/mL) of TXZ13 was used to inoculate 500 mL of sterile 206 GMM and shaken at 280 rpm and 28 °C until the formation of young germlings (~13 hours). The 207 germlings were centrifuged at 8000 rpm for 15 mins at 4 °C. The supernatant was discarded and 208 50 mL of sterile dH₂O water was added to the germlings. They were spin at 8000 rpm for 15 mins 209 at 4 °C. The supernatant was removed and the germlings were transferred to 10 mL of osmotic 210 medium (1.2 M MgSO₄, 10 mM NAPB*), adjusted to pH 5.8 with 1 M Na₂HPO₄) with 30 mg of 211 Lysing Enzymes (Sigma) and 20 mg of Yatalase (TaKaRa). The germlings were then shaken at 212 80 rpm and 28 °C, until protoplasts were obtained (approx. 3 h). The protoplast solution (10 mL) 213 were transferred to a 30 mL cortex tube and very gently overlaid with 10 mL of trapping buffer

Figure S9. Phylogenetic tree for the TE domains (orange) and C domains (blue). Dark orange highlights fungal NRPS TE domains. The TE domains is divided in bacterial TEs, fungal NRPS-TE and fungal PKS-TE domains.

214 (0.6 M sorbitol and 0.1 M Tris-HCI, pH 7.0). After centrifugation in the HB-4 (or Beckmann 215 equivalent) rotor at 5000 rpm for 15 min at 4 °C, the protoplasts were removed from the interface 216 and transferred to a 15 mL sterile tube. The protoplasts were diluted with one volume of STC 217 buffer (1.2 M sorbitol, 10 mM CaCl₂, 10 mM Tris-HCl, pH 7.5) and centrifuged at 6000 rpm for 10 218 min at 4 °C. The supernatant was removed, and the protoplasts were resuspended in STC (1-2 219 mL) and stored on ice. The transforming DNA (e.g. specific gene disruption construct) was diluted 220 with STC (10 μ g/100 μ L) in a 15 mL falcon tube. The protoplast was added to the DNA (100 μ L) 221 and incubated on ice for 50 minutes. Then 1.25 mL of PEG solution (60% PEG 4000, 50 mM 222 CaCl², 50 mM 10 mM Tris-HCl, pH 7.5) was added, mixed gently and incubated at room 223 temperature for 20 minutes. Next 5 mL of STC was added to the mixture, gently mixed and the 224 entirety plated (500 µL) on GMM media containing sorbitol (1.2 M). Resulting transformants were 225 subcultured twice on selective media and confirmed by Southern and PCR.

*NaPB: 2M phosphate buffer = 90.9 g Na₂HPO₄ and 163.4 g NaH₂PO₄ per liter, with pH 6.5.

227 Transformant confirmation

The transformants were confirmed using Southern analysis for the $\Delta agiA$ strain (Figure S10) and

PCR analysis for $\triangle agiB$, $\triangle sidJ$ and $\triangle agiF$ (Figure S11). Primers used are listed on Table S3.

232

Figure S11. PCR confirmation of the correct disruption of the resistance and purity. Schematic of the expected product (left). Gel for the transfromants C = control; W = water, T = transfromants. Purity test indicates primer that amplify the ORF, and no product should be observed in the correct transfromants. $\Delta agiB$; T1 correct LH (2500 bp), RH (1744 bp), and no product in purity test (1286 bp). $\Delta sidJ$; T2 correct LH (2426 bp), RH (2005 bp), and no product in purity test (2490 bp). $\Delta agiB$; T1, T2, T3, T4, T5 correct LH (2861 bp), RH (1730 bp), and no product in purity test (3034 bp).

238 **Reverse transcriptase quantitative PCR (RT-qPCR)**

The wild- type and *∆sntB* strains were grown in liquid PDB media at 30 °C and 200 rpm. RNA was
extracted at day 2, 3 and 6 from lyophilized tissues using Trizol (Invitrogen). For RT-qPCR, RNA
was quantified and 10 µg was DNasel treated before cDNA synthesis using iScript (Bio-Rad).
Primers used in qPCR are listed (Table S2). qPCR was performed using iQ SYBR Green
Supermix (BIO-RAD) and CFX Connect Real-Time System machine (BIO-RAD). Program used
considted of: (1) 95 °C for 3 minutes; (2) 95 °C for 30 seconds; (3) 55 °C for 30 seconds; Steps
2-3 were repeated 39 times.

The relative quantification of gene expression using $2^{-\Delta\Delta C_T}$ (Livak) method. (1) The C_T value of the target gene from the $\Delta sntB$ was normalized to reference gene (actin). (2) Then the C_T from WT of the target gene was normalized to reference gene (actin). (3-4) The Normalized expression ratio was calculated.

- $(1) \Delta C_{T(test)} = C_{T(target, test)} C_{T(ref, test)}$
- 251 (2) $\Delta C_{T(calibration)} = C_{T(target, calibrator)} C_{T(ref, calibrator)}$

$$(3) \Delta \Delta C_T = \Delta C_{T(test)} - \Delta C_{T(calibrator)}$$

253 (4) $2^{-\Delta\Delta C_T} = Normalized expression ratio$

254

Figure S12. Bar charts showing relative expression of *agiA*, *agiB* and *sidJ* using normalized expression ration ($2^{-\Delta\Delta Ct}$ Method) between WT and $\Delta sntB$.

257 Feeding experiment

258 The *∆sntB/∆agiB* strain was inoculated to six 500 mL flasks, each containing 200 mL of PDB.

259 They were grown at 30 °C with shaking at 200 rpm. A solution of O-Me-L-tyrosine in water (200

260 mg/10 mL) was divided over three flasks and added over three days (day 6, 7, 8). Each flask was

261 extracted separately with ethyl acetated. The six extracts (three fed with O-Me-L-tyrosine) were

analyzed by UPLC-HRMS (Figure S13).

Figure S13. Summary of the feeding experiment using *O*-Me-L-tyrosine. $\Delta sntB$ produces aspergillicn A 1 and F 2. $\Delta sntB\Delta agiB$ produces aspergillicin C 4 and aspergillicin G 11. $\Delta sntB\Delta agiB$ plus *O*-Me-tyrosine produces aspergillicin A 1 and F 2. 1 and aspergillicin F 2.

267 Sensitivity to iron experiment

268 The wild type and all the deletion strains were serially passaged for three times on GMM lacking

iron and then plated on plates containing either no iron, normal growth media level of FeSO₄ (5

μM), high level of FeSO₄ (1 mM) and very high level of FeSO₄ (10 mM). The plates were grown

271 for 5 days at 30 °C and their growth was evaluated.

275 Isolations of aspergillicins

276 Aspergillicin A 1

277

A. flavus ∆sntB was grown on PDA plates (10 x 25 mL) at 30 °C. After 14 days, it was extracted 278 279 and purified using prep-HPLC to obtain of pure aspergillicin A 1 as faint vellow powder (1.6 mg). 280 λ_{max} / nm 200, 220, 280; δ_H (CDCl₃, 600 MHz) 8.25 (1H, d, 8.5 Hz), 7.10-7.08 (1H, m), 7.04 (2H, 281 d, 8.5 Hz), 6.84 (2H, d, 8.5), 6.62 (1H, d, 9.5 Hz), 5.56 (1H, m), 4.95 (1H, dd, 11.5, 3.3 Hz), 4.86 (1H, dd, 10.0, 2.5 Hz), 4.62 (1H, dd, 9.5, 7.2 Hz), 4.52 (1H, dd, 9.2, 5.2 Hz), 4.42 (1H, dd, 8.5, 5.9 282 283 Hz), 4.32 (1H, dd, 8.5, 5.2), 3.78(3H, s), 3.70-3.63 (2H, m), 3.58-3.49 (2H, m), 2.16 (3H, s), 2.20-284 2.08 (3H, m), 2.0-1.8 (4H, m), 1.74-1.70 (2H, m), 1.39-1.37 (1H, m), 1.30 (3H, m), 1.0-0.85 (13H, 285 m); δ_C (CDCl₃, 150 MHz) 173.4, 171.3, 171.25, 170.4, 170.2, 169., 168.6, 130.7 (2C), 130.5, 114.5 286 (2C), 72.0, 62.7, 59.0, 58.4, 47.6, 47.5, 47.8, 38.1, 33.6, 30.5, 29.5, 28.7, 28.0, 26.2, 25.6, 24.8, 287 **23.**, **19.6**, **18.4**, **16.7**, **14.3**, **11.9**; m/z (ESI) 741.4175 [M+H]⁺ (C₃₈H₅₆N₆O₉ requires 741.4187). Data in accordance to the literature.⁸ chemical shifts in **bold** were identified using HSQC/HMBC. 288

289 Aspergillicin F 2

291 *A. flavus* \triangle *sntB* was grown on PDA plates (10 x 25 mL) at 30 °C. After 14 days, it was extracted 292 and purified using prep-HPLC to obtain of pure aspergillicin F **2** as faint yellow powder (8 mg).

- 293 λ_{max} / nm 200, 220, 280; δ_H (CDCl₃, 600 MHz) and δ_C (CDCl₃, 150 MHz) see Table S4; m/z (ESI)
- 294 755.4337 $[M+H]^+$ (C₃₉H₅₈N₆O₉ requires 755.4343). Data in accordance to the literature.⁸

295 Aspergillicin C 4

296

297 A. flavus *AsntBAagiB* was grown on PDA plates (10 x 25 mL) at 30 °C. After 14 days, it was 298 extracted and purified using prep-HPLC to obtain of pure aspergillicin C 4 as faint yellow powder 299 (1 mg). λ_{max} / nm 200, 220, 280; δ_{H} (CDCl₃, 600 MHz) 8.26 (1H, d, 8.0 Hz), 7.33-7.26 (3H, m), 300 7.21-7.10 (3H, m), 6.63 (1H, d, 9.7 Hz), 5.60-5.54 (1H, m), 5.01 (1H, dd, 11.8, 3.6), 4.87, (1H, dd, 301 10.0, 2.4 Hz), 4.63 (1H, dd, 9.6, 7.5 Hz), 4.51 (1H, m), 4.41 (1H, dd, 8.6, 6.2 Hz), 4.27 (1H, m), 302 3.70-3.47 (4H, m), 3.22, (1H, dd, 14.2, 3.0 Hz), 3.04 (1H, dd, 14.2, 11.5), 2.85 (3H, s), 2.17 (3H, 303 s), 2.25-2.18 (2H, m), 2.01-1.84 (4H, m), 1.70-1.62 (2H, m), 1.43-1.38 (1H, m), 1.27 (3H, d, 15 304 Hz), 1.16-1.09 (1H, m), 1.8-0.75 (14H, m); m/z (ESI) 711.4072 [M+H]⁺ (C₃₇H₅₄N₆O₈ requires 305 711.4081). Data in accordance to the literature.⁹

306 Aspergillicin G 11

307

308 *A. flavus* Δ *sntB* Δ *agiB* was grown on PDA plates (10 x 25 mL) at 30 °C. After 14 days, it was 309 extracted and purified using prep-HPLC to obtain of pure aspergillicin G **11** as faint yellow powder 310 (5 mg). λ_{max} / nm 200, 220, 280; ¹H NMR and ¹³C NMR data see Table S5; m/z (ESI) 725.4232 311 [M+H]⁺ (C₃₈H₅₆N₆O₈ requires 725.4237).

312 HRMS and UV spectra

314 **Figure S15.** HRMS spectrum (left) and UV spectrum of aspergillicin A 1.

319 Figure S17. HRMS spectrum (left) and UV spectrum of aspergillicin B 4.

326 NMR data

	Aspergillicin F			
Residue	Position	δ _{c^a/ppm}	δ _H ^b / ppm (J in Hz)	
N-Me-L-O-Me-Tyr	1	169.8	-	
	2	62.7	4.95 (1H, dd, 11.5, 3.4)	
	За	33.7	3.17 (1H, dd,14.7, 3.4)	
	3b		2.98 (1H, dd, 14.7, 11.5)	
	4	129.8	-	
	5/9	130.6	7.03 (2H, d, 8.6)	
	6/8	114.5	6.84 (2H, d. 8.6)	
	7	158.9	-	
	10	55.6	3.78 (3H, s)	
	11	29.5	2.83 (3H, s)	
L-Pro	12	173.4	-	
	13	55.3	4.31 (1H, dd, 8.0, 5.0)	
	14a	28.7	1.07 (1H, m)	
	14b		0.87 (1H, m)	
	15a	25.5	2.11 (1H, m)	
	15b		1.71 (1H, m)	
	16a	47.6	3.62 (1H, m)	
	16b		3.52 (1H, m)	
L-Pro	17	170.2	-	
	18	58.3	4.51 (1H, dd, 8.5, 5.2)	
	19a	28.1	2.20 (1H, m)	
	19b		1.84 (1H, m)	
	20a	24.8	1.98 (1H, m)	
	20b		1.93 (1H, m)	
	21a	47.8	3.7 (1H, m)	
	21b		3.6 (1H, m)	
D-allo-Ile	22	171.3	-	
	23	54.9	4.61 (1H, dd, 9.9, 8.0)	
	23-NH	-	6.54 (1H, d, 9.90)	
	24	37.8	1.67 (1H, m)	
	25	26.2	1.38 (1H, m)	
			1.07 (1H, m)	
	26	11.9	0.91 (3H, m)	
	27	14.7	0.88 (3H, m)	
O-Ac-L-Thr	28	168.8	-	
	29	55.9	4.85 (1H, dd, 9.8, 2.2)	
	29-NH	-	7.03 (1H, m)	
	30	71.6	5.56 (1H, dq, 6.6, 2.2)	
	31	16.8	1.28 (3H, d, 6.6)	
	32	171.25	-	
	33	23.3	2.14 (3H, s)	
L-Ile	34	170.4	-	
	35	57.7	4.55 (1H, dd, 8.8, 5.6)	
	35-NH	-	8.17 (1H, d, 8.8)	
		37.0	1.95 (1H. m)	
	36	07.10		
	36	24.8	1.38 (1H, m)	
	<u> </u>	24.8	1.38 (1H, m) 1.14 (1H, m)	
	36 37 38	24.8	1.38 (1H, m) 1.14 (1H, m) 0.83 (3H, t, 7.4)	

Table S4. NMR assignment of aspergillicin F **2** in agreement with literature⁸ (a150 MHz, b600 MHz in CDCl₃).

			Aspergillicin G		
Residue	Position	δ_{c^a} / ppm	δ _H ⁰ / ppm (J in Hz)	НМВС	COSY
N-Me-L-Phe		169.9	-	-	-
	2	62.7	5.00 (1H, dd, 11.5, 3.3)	C1	3a/3b
	3a	34.6	3.23 (1H, dd,14.5, 3.3)	C1, C4, C5/9	2, 3b
	3b		3.03 (1H, dd, 14.5, 11.5)		2, 3a
	4	138.0	-	-	-
	5/9	129.1	7.13 (2H, m)	C3, C7	6/8, 7
	6/8	129.7	7.31 (2H, m	C7, C5/9	5/9, 7
	7	127.2	7.25 (1H, m)	C5/9	6//8, 5/9
	11	29.9	2.85 (3H, s)	C12	-
L-Pro	12	173.4	-	-	-
	13	55.3	4.27 (1H, dd, 8.0, 5.0)	C14, C15	14a/b
	14a	28.6	0.97 (1H, m)	C12, C13,	13, 14b, 15a, 15
	14b		0.71 (1H, m)		13, 14a, 15a, 15
	15a	25.5	2.11 (1H, m)	C14, C13	15a, 15b, 16a, 16
	15b		1.71 (1H, m)	·	15a, 15b, 16a, 16
	16a	47.6	3.62 (1H, m)	C14, C13,	15a,15b, 16b
	16b		3.52 (1H, m)		15a, 15b, 16a
L-Pro	17	170.2	-	-	· · ·
	18	58.3	4.50 (1H, dd, 8.5, 5.2)	C17, C19, C20	19a/19b
	19a	28.0	2.20 (1H, m)	C17, C20, C21	18.19b
	19b		1.84 (1H. m)	,,	
	20a	24.8	1.98 (1H, m)	C19. C21	18. 19a
	20b		1.93 (1H. m)	,	,
	21a	47.8	3.69 (1H, m)	C19. C20	20a, 20b, 21b
	21b		3.62(1H, m)	,	20a. 20b. 21a
D-allo-Ile	22	171.3	-	-	,,
	23	55.0	4.62 (1H, dd, 9.9, 8.0)	C22, C24, C25, C27, C28	23NH, 24
	23-NH	-	6.56 (1H, d, 9.90)	C28	23
	20 111	37.8	1 67 (1H m)	C23	23 25 27
	25	26.2	1 38 (1H m)	C24 C26 27	23, 25, 27
	25	20.2	1.07 (1H m)	021, 020, 2,	21,20,2,
	26	11.8	0.91 (3H m)	C23 C24 C25	25
	20	14.7	0.88 (3H m)		25
Q-Ac-L-Thr	27	168.7	-	-	
O-AC-E-IIII	20	55.9	4 83 (1H dd 9 8 2 2)		20-NH 30
	20 NH	55.5	6 8 (1H d 0 8)		20-111, 50
	20	71 7	5 57 (1H ad 6.4. 2.2)		2.5
	21	16.0	1 28 (211 d C 4)		
		171 12	1.28 (SH, U, 0.4)		29
	32	1/1.12	-		
1.11-	33	23.3	2.14 (3H, 5)	C32	-
L-IIE	34	1/0.2		-	-
	35	57.8	4.56 (1H, 00, 8.6, 5.6)		35-NH, 36
	35-NH	-	8.18 (1H, 0, 8.6)	L34	35
	36	37.1	1.95 (1H, m)	-	35, 3/a, 3/b, 3
	3/	24.89	1.38 (1H, m)	-	36, 37a, 38
			1.14 (1H, m)	000 000 0000	36, 37b, 38
	38	11.3	0.83 (3H, t, 7.4)	C36, C38, C39C37,	37a, 37b
	39	15.8	0.90 (3H, m)	-	38

329 Table S5. NMR assignment of aspergillicin G 11 (a150 MHz, b600 MHz in CDCl₃).

332 Figure S19. ¹H NMR of aspergillicin A 1 (600 MHz in CDCl₃).

334 Figure S20. ¹³C NMR of aspergillicin F 1 (150 MHz in CDCl₃)

336 Figure S21. HSQC spectrum of aspergillicin A 1 (600 MHz in CDCl₃).

338 Figure S22. HMBC spectrum of aspergillicin A 1 (600 MHz in CDCl₃).

340 Figure S23. ¹H NMR of aspergillicin F 1 (600 MHz in CDCl₃).

342 Figure S24. ¹³C NMR of aspergillicin F 2 (150 MHz in CDCl₃)

344 **Figure S25.** COSY spectrum of aspergillicin F **2** (600 MHz in CDCl₃).

346 Figure S26. HSQC spectrum of aspergillicin F 2 (600 MHz in CDCl₃)

Figure S27. HMBC spectrum of aspergillicin F **2** (600 MHz in CDCl₃).

Figure S28. ¹H NMR of aspergillicin C **4** (600 MHz in CDCl₃).

352 Figure S29. COSY spectrum of aspergillicin C 4 (600 MHz in CDCl₃).

354 Figure S30. ¹³C NMR of aspergillicin G 11 (150 MHz in CDCl₃).

356 Figure S31. ¹H NMR of aspergillicin G 11 (600 MHz in CDCl₃).

358 Figure S32. COSY spectrum of aspergillicin G 11 (600 MHz in CDCl₃).

Figure S33. HSQC spectrum of aspergillicin G **11** (600 MHz in CDCl₃).

Figure S34. HMBC spectrum of aspergillicin G **11** (600 MHz in CDCl₃).

363 **Reference**

- Shimizu, K.; Keller, N. P. Genetic Involvement of a CAMP-Dependent Protein Kinase in a
 G Protein Signaling Pathway Regulating Morphological and Chemical Transitions in
 Aspergillus Nidulans. Genetics 2001, 157 (2), 591–600.
- 367 (2) Zhao, X.; Spraker, J. E.; Bok, J. W.; Velk, T.; He, Z.-M.; Keller, N. P. A Cellular Fusion
 368 Cascade Regulated by LaeA Is Required for Sclerotial Development in *Aspergillus Flavus*.
 369 *Front. Microbiol.* 2017, *8*, 1925. https://doi.org/10.3389/fmicb.2017.01925.
- 370 (3) Pfannenstiel, B. T.; Zhao, X.; Wortman, J.; Wiemann, P.; Throckmorton, K.; Spraker, J. E.;
 371 Soukup, A. A.; Luo, X.; Lindner, D. L.; Lim, F. Y.; et al. Revitalization of a Forward Genetic
 372 Screen Identifies Three New Regulators of Fungal Secondary Metabolism in the Genus
 373 Aspergillus. MBio 2017, 8 (5), e01246-17. https://doi.org/10.1128/mBio.01246-17.
- Yu, J.-H.; Hamari, Z.; Han, K.-H.; Seo, J.-A.; Reyes-Domínguez, Y.; Scazzocchio, C. 374 (4) 375 Double-Joint PCR: A PCR-Based Molecular Tool for Gene Manipulations in Filamentous **2004**, 376 Fungi. Fungal Genet. Biol. 41 (11),973-981. 377 https://doi.org/10.1016/j.fgb.2004.08.001.
- 378 (5) Carver, T. J.; Rutherford, K. M.; Berriman, M.; Rajandream, M.-A.; Barrell, B. G.; Parkhill,
 379 J. ACT: The Artemis Comparison Tool. *Bioinformatics* 2005, *21* (16), 3422–3423.
 380 https://doi.org/10.1093/bioinformatics/bti553.
- 381 (6) Medema, M. H.; Takano, E.; Breitling, R. Detecting Sequence Homology at the Gene
 382 Cluster Level with MultiGeneBlast. *Mol. Biol. Evol.* 2013, *30* (5), 1218–1223.
 383 https://doi.org/10.1093/molbev/mst025.
- 384 (7) Yelton, M. M.; Hamer, J. E.; Timberlake, W. E. Transformation of *Aspergillus nidulans* by
 385 Using a TrpC Plasmid. *Proc. Natl. Acad. Sci. U. S. A.* **1984**, *81* (5), 1470–1474.
- 386 (8) Kikuchi, H.; Hoshikawa, T.; Fujimura, S.; Sakata, N.; Kurata, S.; Katou, Y.; Oshima, Y. 387 Isolation of a Cyclic Depsipetide, Aspergillicin F, and Synthesis of Aspergillicins with Innate 388 Immune-Modulating Activity. J. Nat. Prod. 2015, 78 (8), 1949–1956. https://doi.org/10.1021/acs.jnatprod.5b00286. 389
- (9) Capon, R. J.; Skene, C.; Stewart, M.; Ford, J.; O'Hair, R. A. J.; Williams, L.; Lacey, E.; Gill,
 J. H.; Heiland, K.; Friedel, T. Aspergillicins A-E: Five Novel Depsipeptides from the MarineDerived Fungus Aspergillus carneus. Org. Biomol. Chem. 2003, 1 (11), 1856–1862.

393 https://doi.org/10.1039/b302306k.