
DNA G-quadruplexes Activate Heme for Robust Catalysis of Carbene Transfer Reactions

Hanadi Ibrahim¹, Paul Mulyk¹, Dipankar Sen^{1,2*} ¹Dept. of Chemistry and ²Dept. of Molecular Biology & Biochemistry Simon Fraser University Burnaby, BC V5A 1S6, Canada

Supporting Information

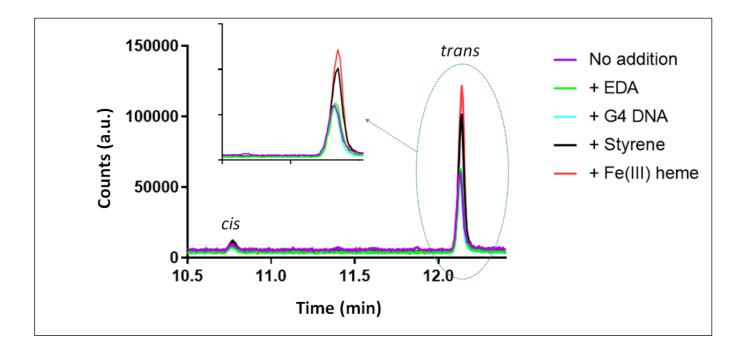
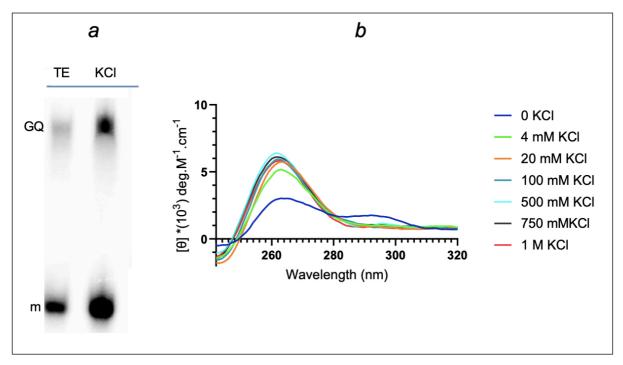

Figure S1: UV-vis absorption spectra of 2 μ M (*a*) ferric (*b*) ferrous heme and (*c*) ferric TMPyP4.5Cl in the presence and absence of "dsDNA", "Scrambled G4" and "G4" DNA (10 μ M DNA) in a buffer: 40 mM HEPES-NH₄OH, pH 8.0, 20 mM KCl, 1% DMF, 0.05% Triton X-100. Only (*b*) contained 10 mM Na₂S₂O₄.

Figure S2: Absorbance measurements at 404 nm of 0.5 μ M ferrous heme titrated with 0-16 μ M "G4" DNA in a buffer: 40 mM HEPES-NH₄OH, pH 8.0, 20 mM KCl, 1% DMF, 0.05% Triton X-100. The error bars represent one standard deviation from the mean, obtained from two independent experiments.


Table S1: Yields of cyclopropanation reaction using Fe(III)-heme catalysts under aerobic and anaerobic conditions with and without the reducing agent. Na₂S₂O₄. Product yields were determined by GC analysis: 80 μ M DNA, 30 μ M Hemin, 1 mM Styrene, 7 mM EDA, 10 mM Na₂S₂O₄ in an aqueous buffer: 40 mM NH₄-HEPES, pH 8.0, 20 mM KCl, 1% DMF, 0.05% Triton-X100.

	– argon	– argon	+ argon	+ argon
	$-\ Na_2S_2O_4$	$+ Na_2S_2O_4$	$-Na_2S_2O_4$	$+ Na_2S_2O_4$
Fe(III)-heme				
no DNA	-	-	1	2
Fe(III)heme				
dsDNA	-	-	1	3
Fe(III)-heme				
Scrambled G4	-	-	6	13
Fe(III)-heme				
G4	4	8	36	75

Figure S3: Effect of different reagent supplementations on the yield of 1-carbethoxy-2phenylcyclopropane (cPr) products by the "G4" heme•DNAzyme. Five identical reaction solutions were prepared, each containing 17 μ M heme, 83 μ M G4 DNA, 1 mM styrene, 7 mM EDA, and 10 mM Na₂S₂O₄ in a buffer solution consisting of 40 mM NH₄-HEPES, pH 8.0, 20 mM KCl, 1% DMF, and 0.05% Triton X-100. Following one hour of reaction, 10 μ l supplementations of one of the reaction components was added to a given reaction tube, in anaerobic fashion: (1) heme (to a final concentration of 33 μ M); (2) styrene (to 2 mM); EDA (to 13 mM); "G4" DNA (to 116 μ M). Following these single reagent supplementations, the various reactions were allowed to continue for one further hour prior to termination and extraction using ethyl acetate. **Table S2** : Yields of carbene insertion reaction of styrene with EDA in the presence of heme•DNAzymes made of different GQs ("G4-T", "G4-A", "G4-TTT", "G4-AAA" and "(dA₄G₅A₄)₄"). Reactions were carried out at 21°C for 1 hr, with 80 μ M GQ DNA (asterisked samples contained 80 μ M dA₄G₅A₄; hence, $\leq 20 \mu$ M (dA₄G₅A₄)₄ GQ following KCl incubation), 30 μ M hemin, 7 mM EDA, 10 mM Na₂S₂O₄ in a buffer (40 mM NH₄-HEPES, pH 8.0, 20 or 500 mM KCl, 1% DMF, 0.05% Triton X-100) under anaerobic conditions. cPr product yields were determined from GC analysis and are based on EDA as the limiting reagent.

GQ DNA species	cPr Yield (%)	
G4-AAA (20 mM KCl)	77 ± 3	
G4-AAA (500 mM KCl)	79 ± 2	
G4-TTT (20 mM KCl)	80 ± 2	
G4-TTT (500 mM KCl)	79 ± 2	
G4-A (20 mM KCl)	78 ± 2	
G4-T (20 mM KCl)	77 ± 1	
RNA G4-AAA (20 mM KCl)	78 ± 2	
*(dA ₄ G ₅ A ₄) ₄ (20 mM KCl)	51±4	
*(dA ₄ G ₅ A ₄) ₄ (500 mM KCl)	49 ± 3	
(dA ₄ G ₅ A ₄) ₄ (20 mM KCl)	92 ± 2	

Figure S4 *a*: Native gel electrophoresis to show the formation of a unique intermolecular GQ product from $dA_4G_5A_4$ upon incubation with buffered KCl ("m": single-strand; "GQ": G-quadruplex). *b*: Circular Dichroism (CD) spectra of the products of incubation of the DNA oligonucleotide "G4" ("G4-AAA"), at 20 µM, in the absence and presence of different KCl concentrations (0, 4, 20 100, 500, 750, and 1000 mM, respectively) within the buffer of 40 mM HEPES-NH₄OH, pH 8.0, 1% DMF, and 0.05% Triton X-100.