	Apo active EGFR	Apo inactive EGFR	ATP-bound active EGFR
Principal structure	2GS2 [1]	2GS7 [1]	2ITX [2]
Structures used to build missing loops	1M14 [3] (723-725)	3W2S [4] (958-984)	2GS6 [1] (862-865)
	3W2S [4] (967-981)	4HJO [5] (848-850)	3W2S [4] (990-1001)

• Numbers in bracket correspond to the range of amino acids missing from the principal structure which were then built using the indicated PDB structure.

References

- Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An Allosteric Mechanism for Activation of the Kinase Domain of Epidermal Growth Factor Receptor. Cell. 2006;125(6):1137–49.
- Yun C-H, Boggon TJ, Li Y, Woo MS, Greulich H, Meyerson M, et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell. 2007;11(3):217–27
- Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002;277(48):46265–72.
- Sogabe S, Kawakita Y, Igaki S, Iwata H, Miki H, Cary DR, et al. Structure-Based Approach for the Discovery of Pyrrolo[3,2- *d*]pyrimidine-Based EGFR T790M/L858R Mutant Inhibitors. ACS Med Chem Lett. 2013;4(2):201–5.
- 5. Park JH, Liu Y, Lemmon MA, Radhakrishnan R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem J. 2012;448(3):417–23.