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SUPPLEMENTARY NOTE

A. Active polar fluid model of epithelial spreading

Instead of formulating a model based on adhesion energies, similar to those previously proposed
to describe tissue wetting1, our aim is to see how the wetting transition arises from mechanical models
of collective cell migration. To this end, we extend a previously introduced continuum model of
epithelial spreading2 to the present problem. This continuum model takes a coarse-grained approach
that describes the long-time and large-scale dynamics of the tissue as those of an active polar liquid,
namely in terms of a polarity field p (r, t) and a flow field v (r, t). Below, we briefly justify this
description, which has already been applied to the spreading of tissue monolayers2–5. A very similar
model was also proposed for traction force and velocity profiles of single crawling cells6.

1. Polarity dynamics

In our monolayer, cells at the center exert weak and random traction forces. In contrast, cells
at the edge extend large lamellipodia towards the outside and exert strong inward-pointing traction
forces on the substrate, indicating that they are polarized (Fig. 1h, Supplementary Fig. 3). The
outwards polarization of cells at the border is likely due to contact inhibition of locomotion, a cell-cell
interaction whereby cells repolarize in opposite directions upon contact7,8. In fact, this interaction is
mediated by cell-cell adhesion, with front-rear differences in cadherin-based junctions acting as a cue
for the repolarization9–14. Although originally proposed for mesenchymal cells, contact inhibition of
locomotion is being increasingly recognized to play a key role in orchestrating the collective migration
of epithelial monolayers7,12–19. In a cohesive monolayer, this interaction naturally leads to polarization
of cells at the edge towards free space, leaving the inner region of the monolayer unpolarized. Such
a polarity profile, in turn, explains the localization of traction forces at the edge and the build-up
of tension at the center of epithelial monolayers17,18. Therefore, upon the expression of E-cadherin,
we expect the polarity field p (r, t) to be set by an autonomous cellular mechanism such as contact
inhibition of locomotion, which polarizes cells within a time scale τCIL ∼ 10 min11,19. Hence, p (r, t)
should remain essentially independent of flows in the monolayer, which occur over a longer time scale
given by the strain rate, at least of order τs ∼ 100 min2,20. Consequently, within a phenomenological
approach, we propose the polarity field to follow a purely relaxational dynamics given by

∂pα
∂t

= − 1

γ1

δF

δpα
, (S1)

where F [p] is the coarse-grained free energy functional of the orientational degrees of freedom, and
γ1 is a kinetic coefficient (the rotational viscosity for the angular degrees of freedom). With respect
to the most general dynamics of the polarity field in an active polar fluid, Eq. (S1) neglects polarity
advection and corotation, as well as flow alignment and active spontaneous polarization effects.

Then, since the bulk of the monolayer remains mechanically unpolarized, the coarse-grained free
energy F includes a Landau expansion around the isotropic state p = 0, and gradient terms resulting
from nematic elasticity21:

F =

∫
V

[
a

2
pαpα +

K

2
(∂αpβ) (∂αpβ)

]
d3r, (S2)

where a > 0 is a restoring coefficient of the polarity, and K is the Frank elastic constant in the usual
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one-constant approximation. The dynamics of the polarity is thus given by

∂tpα =
1

γ1

(
−apα +K∇2pα

)
. (S3)

In the limit of fast polarity dynamics compared to the spreading dynamics, the polarity field is al-
ways at equilibrium, ∂tpα = 0, adiabatically adapting to the shape of the monolayer. Under this
approximation, the polarity field is given by

L2
c∇2pα = pα, (S4)

where we have defined the characteristic length Lc ≡
√
K/a of the polar order in the monolayer.

2. Force balance

Flows in cell monolayers occur at very low Reynolds numbers. Therefore, inertial forces are
negligible, and hence momentum conservation reduces to the force balance condition

0 = ∂β

(
σsαβ + σaαβ + σE,sαβ

)
+ fα, (S5)

where σsαβ and σaαβ are the symmetric and antisymmetric parts of the deviatoric stress tensor, and fα
is the external force density. Respectively, σE,sαβ is the symmetric part of the Ericksen tensor. This
tensor generalizes the pressure P to include anisotropic elastic stresses associated to the orientational
degrees of freedom in liquid crystals21:

σEαβ = −Pδαβ −
∂f

∂ (∂βpγ)
∂αpγ , (S6)

where f is the Frank free energy density, namely the integrand of Eq. (S2). Thus, the orientational
contribution to the Ericksen tensor is of second order in gradients of the polarity field, and hence we
neglect it, so that force balance reads

0 = −∂αP + ∂β
(
σsαβ + σaαβ

)
+ fα. (S7)

Then, the pressure is related to the cell number surface density ρ by the equation of state of the
monolayer. For the sake of an estimate, we assume the simplest form for an equation of state, P (ρ) =
B (ρ− ρ0) /ρ0, whereB is the bulk modulus of the monolayer, and ρ0 is a reference density defined by
P (ρ0) = 0. Taking the pressure origin at the monolayer edge, ρ0 ∼ 3 ·103 cells/mm2 (Supplementary
Fig. 10). Respectively, density differences in the monolayer are, at most, ρ − ρ0 ∼ 103 cells/mm2

(Supplementary Fig. 10). Then, the monolayer is expected to be highly compressible because area
changes can in principle be accommodated by changes in height, resisted only by the shear modulus
of the tissue. Hence, we estimate the bulk modulus of the monolayer by typical shear moduli of cell
aggregates, which are in the range G ∼ 102−103 Pa22–24. Thus, the pressure in the monolayer should
be P . 30 − 300 Pa. In fact, isotropic compressive stresses (pressures) of ∼ 50 Pa were shown to
induce cell extrusion25. In conlusion, if tissue spreading is not dominated by cell proliferation26–28,
the magnitude of the pressure in the monolayer is expected to be much smaller than the tensile stress
(tension) induced by traction forces, as measured by monolayer stress microscopy, which is of the
order of several kPa (Fig. 1i), with a monolayer height of h ∼ 5 µm. Hence, we neglect the pressure
in the force balance:

0 = ∂β
(
σsαβ + σaαβ

)
+ fα. (S8)
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Now, for a nematic medium, the antisymmetric part of the stress tensor is given by σaαβ =
1/2 (pαhβ − hαpβ), where hα = −δF/δpα is the molecular field. From Eq. (S1), the adiabatic
approximation for the polarity dynamics, ∂tpα = 0, implies hα = 0. Therefore, the antisymmetric
part of the stress tensor vanishes under this approximation, σaαβ = 0. Thus, force balance reduces to

0 = ∂βσ
s
αβ + fα. (S9)

Finally, multiplying Eq. (S9) by the height h(t) of the monolayer, the force balance can be rewritten
in terms of the experimentally measured traction stress Tα (r, t) and monolayer tension σαβ (r, t)
fields:

∂βσαβ = Tα, (S10)

from where

Tα = −fαh, σαβ = σsαβh. (S11)

3. Constitutive equations

Next, constitutive equations must be given to specify the deviatoric stress tensor σsαβ and the exter-
nal force fα in terms of the polarity and velocity fields. The generic constitutive equations of an active
liquid crystal are provided by active gel theory29–32. Here, based on the previous assumptions for the
dynamics of the polarity field, we propose a simplified version of the generic constitutive equations of
an active polar gel to describe epithelial spreading.

First, the spreading occurs on timescales of the order of τs ∼ 100 min2, at which the tissue should
have a fluid rheology. This time scale is much slower than the turnover time scales of proteins in the
cytoskeleton or in cell-cell junctions, which are of the order of tens of minutes at most33,34. Intra- or
intercellular processes such as cytoskeletal reorganizations or cell-cell slidings dissipate energy over
these time scales, so that elastic energy may only be stored in the tissue at shorter times. Therefore, to
describe the slow spreading dynamics, we will not consider the elastic response of the tissue at short
time scales. Note that incessant cell-cell sliding and neighbour exchanges are observed throughout the
experiments (Supplementary Movie 7), which provides further support to the fluid behaviour of the
monolayer at the experimentally relevant time scales.

Then, in the viscous limit, the constitutive equations for the internal stress and the interfacial force
of an active polar medium are:

σsαβ = 2ηṽαβ+
ν1
2

(
pαhβ + hαpβ −

2

d
pγhγδαβ

)
−ζqαβ+

(
η̄ d vγγ + ν̄1 d pγhγ − ζ̄ − ζ ′pγpγ

)
δαβ,

(S12)

fα = −ξvα + νiṗα + ζipα, (S13)

where, qαβ = pαpβ−pγpγ/d δαβ is the traceless symmetric nematic order parameter tensor, with d the
system dimensionality, and vα is the velocity of the fluid with respect to the substrate. The coefficients
η and η̄ are the shear and bulk viscosities of the medium, ζ is the anisotropic active stress coefficient,
and ζ̄ and ζ ′ are two isotropic active stress coefficients. Finally, ξ, νi, and ζi are the corresponding
interfacial versions of the viscosity (viscous friction), flow alignment (polar friction), and active stress
(active force) coefficients. The constitutive equation for the internal stress, Eq. (S12), is that of an
active polar gel with a variable modulus of the polarity30. In turn, the constitutive equation for the
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interfacial force, Eq. (S13), is less conventional35, but it was derived from a mesoscopic model of an
active polar gel36.

Now, the adiabatic approximation for the polarity dynamics implies ṗα = hα = 0, so that flow
alignment terms contribute neither to the stress tensor nor to the interfacial force. Next, we assume
that polarized cells generate much larger active stresses than unpolarized cells. Hence, we neglect the
active stress coefficient ζ̄ in front of ζ and ζ ′. Note that, to capture the wetting transition with a model
for a two-dimensional fluid layer, the fluid must be compressible, meaning that bulk coefficients must
be retained. Then, for simplicity, we assume ζ = ζ ′ d = 2ζ ′ and 2η = η̄ d = 2η̄. Under these
simplifications, the constitutive equations reduce to

σsαβ = η (∂αvβ + ∂βvα)− ζpαpβ, (S14)

fα = −ξvα + ζipα, (S15)

which close the set of equations defining the active polar fluid model of the spreading of an epithelial
monolayer.

B. Traction and flow profiles

In this section, the model is solved in a circular geometry. There are two unknown fields: the
polarity field p (r, t) and the flow field v (r, t). The polarity field is completely specified by Eq. (S4).
Once the polarity profile is known, introducing the constitutive equations Eqs. (S14) and (S15) into the
force balance condition Eq. (S9) sets a closed equation for the flow field. The equations for both the
polarity and the flow field are time-independent. Therefore, the time dependence of these fields arises
solely from the boundary conditions at the free interface, which moves according to dR/dt = vr (R).

1. Traction profile

Since traction forces are mainly along the radial direction (Fig. 1h, Supplementary Fig. 3), we
assume the polarity field to be radial: p = p (r) r. Hence, in polar coordinates, Eq. (S4) reads

r2p′′ (r) + rp′ (r)−
[
1 +

r2

L2
c

]
p (r) = 0. (S16)

Because of the strong outwards polarization of cells at the edge of the cell island, we impose p (R) =
1, namely the maximal polarity value, as a boundary condition. Finitude and symmetry of the profile
also require p (0) = 0. Hence, the solution for the radial polarity profile is

p (r) =
I1 (r/Lc)

I1 (R/Lc)
, (S17)

where I1 is the modified Bessel function of the first kind and first order. Therefore, the nematic length
Lc characterizes the decay of the tissue polarity from its maximal value at the boundary towards its
vanishing value in the bulk (red gradient in Fig. 3a).

Next, we may compare the two sources of dissipation, the viscosity and the friction coefficient,
whose ratio defines the hydrodynamic screening length λ =

√
η/ξ. For monolayers smaller than

this length, R < λ, viscosity dominates over friction, and the monolayer stress profile features a
central plateau of maximal stress. In contrast, for monolayers larger than this length, R > λ, friction
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dominates over viscosity, and the monolayer stress decays at the center, thus featuring its maximum
close to the monolayer edge2. In our case, the stress is always maximal at the center of the monolayer
(Fig. 1i), meaning that R > λ. Hence, we neglect cell-substrate friction hereafter. This corresponds
to the so-called wet limit, λ → ∞, in which the flows in the monolayer are fully hydrodynamically
coupled, with no screening effects due to the release of stress to the substrate through friction31. In
this limit, the force balance reduces to

∂βσαβ = −T0pα, (S18)

where we have defined the active traction stress coefficient T0 = ζih, which gives the maximal traction
stress exerted at the edge of the monolayer.

Then, we fit the predicted radial traction force profile Tr (r) = −T0p (r) to the experimentally
measured profiles at different times, as represented in kymographs as in Supplementary Fig. 3a (see
Fig. 3d and Methods). From the fits, we obtain the time evolution of the maximal traction stress
T0 (t) and the nematic length Lc (t) (Fig. 3e, f). After an initial transient, the nematic length remains
essentially constant throughout the experiment (Fig. 3f), taking a value Lc ∼ 25 µm. This gives
support to the assumption that the polarity field is set by a flow-independent mechanism, and that its
dynamics is quasi-static.

Now, by combining the inferred value of the nematic length Lc with estimates for typical traction
forces and cell migration velocities, we can estimate all the parameters of the polarity dynamics,
namely the rotational viscosity γ1, the restoring force coefficient a, and the Frank elastic constant K.
To this end, we start by estimating the cell-substrate friction coefficient as ξ ∼ T/ (vh). Taking typical
values of traction stresses T ∼ 100 Pa and speeds v ∼ 10 µm/min for cell migration26, and estimating
the cell height h ∼ 5 µm (Supplementary Fig. 4), we get ξ ∼ 100 Pa·s/µm2, consistent with previous
estimates37. Then, we assume that the rotational viscosity mainly arises from the friction between
the substrate and polarized cytoskeletal structures such as the lamellipodia3. Thus, considering the
polarized structures to be rods of length ` ∼ 10 µm comparable to cell length, the rotational friction
may be estimated as γ1 ∼ ξ`2 ∼ 10 kPa·s. Now, together with the restoring force coefficient a, the
rotational friction γ1 determines the time scale of the polarity field: τp ∼ γ1/a. As argued above,
the polarity field should be essentially set by contact inhibition of locomotion interactions, so that the
time scale of the polarity field may be estimated by that of contact inhibition events, τp ∼ τCIL ∼ 10
min11,19. This gives an estimate for the polarity restoring force coefficient a ∼ 20 Pa. Finally, we
estimate the Frank constant as K = aL2

c ∼ 10 nN. The estimates of model parameters are collected
in Table I.

Finally, knowing the value of K allows to check that the orientational contribution of the Ericken
tensor in Eq. (S6) is negligible as argued above. Using Eq. (S2) and the polarity profile in Eq. (S17),
this contribution can be estimated as K (p′)2 ∼ K/L2

c = a ∼ 20 Pa. Therefore, it is much smaller
than the typical tensile stresses measured in the monolayer, of the order of several kPa, and it can be
safely neglected.

2. Flow profile

The next step is to solve the force balance equation to obtain the velocity field. As for the traction
field, we also consider a radial velocity field, v = v (r) r. Thus, in polar coordinates, the nonvanishing
components of the stress tensor are

1

h
σrr = ηv′ − ζp2, 1

h
σθθ = η

v

r
, (S19)
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Symbol Description Estimate
h monolayer height 5 µm
ξ friction coefficient 100 Pa·s/µm2

T0 maximal traction 0.2− 0.8 kPa
Lc nematic length 25 µm
−ζ contractility 5− 50 kPa
γ1 rotational viscosity 10 kPa·s
a polarity restoring coefficient 20 Pa
K Frank constant 10 nN
η monolayer viscosity 3− 30 MPa·s
λ hydrodynamic screening length 0.2− 0.6 mm
D noise intensity of monolayer shape fluctuations 0.05− 1.5 µm2/h

Table I. Estimates of model parameters.

and the force balance reads

σ′rr +
σrr − σθθ

r
= −T0p. (S20)

Hence, the equation for the velocity profile is

η

[
v′′ +

1

r
v′ − 1

r2
v

]
= −T0

h
p+ ζ

[
1

r
p2 + 2pp′

]
. (S21)

Finitude and symmetry of the velocity profile impose v (0) = 0. In addition, in agreement with the
experimental measurements, we impose normal stress-free boundary conditions at the tissue boundary:
nασαβnβ|r=R = 0. This translates into σrr (R) = 0, which is the same condition employed to
compute the monolayer tension via monolayer stress microscopy. Under these conditions, the velocity
profile reads

v (r) =
1

2η

[[
ζ − 2T0

L2
c

hR
+

[
ζ
Lc
R

+ 2T0
Lc
h

]
I0 (R/Lc)

I1 (R/Lc)
− ζ I

2
0 (R/Lc)

I21 (R/Lc)

]
r

+

[
ζ
I0 (r/Lc)

I1 (R/Lc)
− 2T0

Lc
h

]
Lc

I1 (r/Lc)

I1 (R/Lc)

]
, (S22)

which is plotted in Supplementary Fig. 9a (red curve).
Now, the previous solution is general for a freely spreading cell monolayer. However, the mono-

layers in our experiments are confined within circular adherent regions. In the wetting phase, this
confinement imposes v (R) = 0. With no integration constants left, this extra boundary condition
sets a relationship between model parameters. Since the values of T0 (t) and Lc (t) are set by trac-
tion profiles, this condition directly determines the active stress coefficient ζ (t) in terms of the other
parameters:

ζ = −2T0
Lc
h

I2 (R/Lc)

I1 (R/Lc)− I0 (R/Lc)
[
I0(R/Lc)
I1(R/Lc)

− 2Lc
R

] . (S23)

Thus, whereas all model parameters are free in a spreading or retracting monolayer, they are not in-
dependent in a confined monolayer. Equation (S23) shows that, under confinement, the active stress
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coefficient is negative, hence corresponding to a so-called contractile active stress. Accordingly, the
coefficient −ζ is called contractility hereinafter. During the dewetting phase, the confinement re-
striction is released, and hence the contractility becomes an independent parameter, not governed by
Eq. (S23) anymore.

Both for confined and free monolayers, a general feature of the predicted velocity profiles is their
nonmonotonicity (Supplementary Fig. 9a). The model predicts an outwards flow at a velocity that,
close to the center, has a linearly increasing profile, with a slope controlled by traction forces: v (r) ≈
T0Lc/(ηh) r; r � R, as obtained from Eq. (S22) in the limit Lc � R. In contrast, through Eq. (S19),
the stress-free boundary condition σrr (R) = 0 imposes the slope of the velocity at the boundary to
be v′ (R) = ζ/η < 0. Hence, the contractility causes the velocity to drop at the peripheral polarized
region of width Lc. Therefore, the velocity a bit behind the boundary is always higher than at the very
boundary (Supplementary Fig. 9a). As a consequence, cells are expected to accumulate close to the
monolayer edge as they flow outwards. Experimentally, a gradient of increasing cell density towards
the edge develops in the monolayer (Supplementary Fig. 10), consistently with the predicted flow
profile.

The increase in peripheral cell number density might promote the extrusion of live cells from the
monolayer38–40, eventually leading to the formation of 3D structures at the monolayer edge. This is
indeed what seems to occur in our monolayers (Supplementary Fig. 4, Supplementary Movie 4). In
fact, 3D structures in the form of cell rims were previously observed both in confined and unconfined
monolayers41,42. We suggest that the formation of these structures might partially stem from the
predicted flow-induced accumulation of cells at the tissue edge.

C. Critical size for tissue wetting

We now focus on deriving the wetting transition, defined by a vanishing spreading parameter,
S = 0. The spreading parameter is directly related to the spreading velocity43 V = v (R) by S = ηV ,
so that using Eq. (S22) it reads

S =
ζR

2
− 2

T0L
2
c

h
+

[
ζLc +

T0LcR

h

]
I0 (R/Lc)

I1 (R/Lc)
− ζR

2

I20 (R/Lc)

I21 (R/Lc)
. (S24)

In the experimentally relevant limit Lc � R, it reduces to

S ≈ T0Lc
h

R+

(
ζ − 3T0Lc

h

)
Lc
2
. (S25)

This result gives the spreading parameter in terms of the active forces responsible for collective cell
migration, showing that the wetting transition results from a competition between traction forces and
tissue contractility. Thus, note that, in contrast to other studies of wetting phenomena in active liquid
crystal films44,45, our treatment of the wetting transition in tissues based on an active polar fluid model
crucially accounts for active traction forces, which give rise to the distinct physics of the active wetting
transition.

From Eq. (S24), monolayer dewetting will occur whenever the contractility exceed the critical
value

− ζ∗ = 2T0
Lc
h

I2 (R/Lc)

I1 (R/Lc)− I0 (R/Lc)
[
I0(R/Lc)
I1(R/Lc)

− 2Lc
R

] ≈ T0
h

(2R− 3Lc) , (S26)

which increases with the radius of the monolayer as shown in Fig. 3c. Therefore, larger monolay-
ers require a higher contractility to induce the dewetting. This can be understood by looking at the
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velocity profiles of monolayers of different radii. As explained above, traction forces at the edge im-
pose a linearly increasing velocity profile at the central region of the monolayer. As a result, larger
monolayers reach higher velocities right behind the narrow polarized peripheral region of width Lc
(Supplementary Fig. 9b). In turn, the wetting transition condition imposes a vanishing velocity at the
boundary. As also explained above, the contractility is responsible for the velocity drop across the
strongly polarized peripheral layer. Thus, larger monolayers require a higher contractility to bring the
velocity down to zero at the boundary.

Note that the critical contractility −ζ∗ is precisely the contractility under confinement (Eq. (S23)),
since confinement also imposes the condition V = 0 in the wetting phase. Therefore, while fully
spread, our confined monolayers are in a resting state (V = 0) maintained by the parallel increase of
traction T0 (t) and contractility −ζ (t), continuously fulfilling Eq. (S26).

D. Morphological instability during monolayer dewetting

1. Linear stability analysis

In this section, we study the morphological stability of the retracting tissue front during monolayer
dewetting. To allow for the loss of the circular tissue shape, we include the ortoradial components of
the polarity and velocity fields. Thus, Eq. (S4) reads(

∂2r +
1

r
∂r −

1

r2

)
pr +

1

r2
∂2θpr −

2

r2
∂θpθ =

1

L2
c

pr, (S27a)(
∂2r +

1

r
∂r −

1

r2

)
pθ +

1

r2
∂2θpθ +

2

r2
∂θpr =

1

L2
c

pθ. (S27b)

Force balance is expressed as

1

r
∂r (rσsrr) +

1

r
∂θσ

s
θr −

1

r
σsθθ = −T0/h pr, (S28a)

1

r
∂r (rσsrθ) +

1

r
∂θσ

s
θθ +

1

r
σsθr = −T0/h pθ, (S28b)

with the components of the stress tensor given by

σsrr = 2η ∂rvr − ζp2r , (S29a)

σsrθ = σsθr = η

[
r∂r

(vθ
r

)
+

1

r
∂θvr

]
− ζprpθ, (S29b)

σsθθ =
2η

r
(vr + ∂θvθ)− ζp2θ. (S29c)

The solution for the unperturbed state, which preserves circular symmetry, is given by Eqs. (S17)
and (S22):

p0r (r) =
I1 (r/Lc)

I1 (R0/Lc)
, (S30)

v0r (r) =
1

2η

[[
ζ − 2T0

L2
c

hR0
+

[
ζ
Lc
R0

+ 2T0
Lc
h

]
I0 (R0/Lc)

I1 (R0/Lc)
− ζ I

2
0 (R0/Lc)

I21 (R0/Lc)

]
r

+

[
ζ
I0 (r/Lc)

I1 (R0/Lc)
− 2T0

Lc
h

]
Lc

I1 (r/Lc)

I1 (R0/Lc)

]
, (S31)
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where the superindex indicates the zeroth order in the front perturbations, and R0 is the monolayer
radius, which changes according to dR0/dt = v0r (R0).

Next, we introduce small-amplitude perturbations of the circular monolayer boundary (Fig. 5b):

R (θ) = R0 + δR (θ) . (S32)

Then, the polarity and velocity fields are correspondingly perturbed:

pr (r, θ) = p0r (r) + δpr (r, θ) , pθ (r, θ) = δpθ (r, θ) , (S33)

vr (r, θ) = v0r (r) + δvr (r, θ) , vθ (r, θ) = δvθ (r, θ) . (S34)

To impose boundary conditions, we define the normal and tangential vectors at the boundary,

n = cosα r + sinα θ ≈ r − 1

R0

dδR

dθ
θ, (S35a)

t = − sinα r + cosα θ ≈ 1

R0

dδR

dθ
r + θ, (S35b)

where α is the angle between the normal directions of the perturbed and unperturbed interfaces. In
terms of the normal and tangential vectors, the conditions that impose a normal and maximal polarity
at the boundary read

p · n|r=R = 1, p · t|r=R = 0. (S36)

For the radial component, these conditions imply pr (R) ≈ 1, which expands into

pr (R) = p0r (R) + δpr (R) ≈ p0r (R0) + ∂rp
0
r (R0) δR+ δpr (R) ≈ 1, (S37)

so that

δpr (R) = −∂rp0r (R0) δR. (S38)

For the ortoradial component,

δpθ (R) = − 1

R0

dδR

dθ
. (S39)

In turn, the boundary conditions on the stress impose a vanishing normal and shear stress at the inter-
face:

n · σ · n|r=R = 0, t · σ · n|r=R = 0. (S40)

The condition on the normal stress gives σrr (R) = 0 which, after expanding as previously, yields

δσrr (R) = −∂rσ0rr (R0) δR. (S41)

Finally, the condition on the shear stress imposes σrθ (R) = 0, which translates into

δσrθ (R) =
1

R0

dδR

dθ
σ0θθ (R0) =

2η

hR2
0

v0r (R0)
dδR

dθ
. (S42)
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Next, we decompose the perturbations in their Fourier modes, identified by an index n (Fig. 5b):

δR (θ, t) =

∞∑
n=0

δR̃n (t) einθ, (S43a)

δpα (r, θ, t) =
∞∑
n=0

δp̃α,n (r, t) einθ, (S43b)

δvα (r, θ, t) =
∞∑
n=0

δṽα,n (r, t) einθ. (S43c)

In terms of the Fourier modes, the equations for the polarity components read(
∂2r +

1

r
∂r −

1 + n2

r2
− 1

L2
c

)
δp̃r =

2in

r2
δp̃θ, (S44a)(

∂2r +
1

r
∂r −

1 + n2

r2
− 1

L2
c

)
δp̃θ = −2in

r2
δp̃r. (S44b)

In turn, the components of the force balance, once the constitutive equation has been introduced, are
expressed as

2η

(
∂2r +

1

r
∂r −

1 + n2/2

r2

)
δṽr +

inη

r

(
∂r −

3

r

)
δṽθ

+

[
T0/h− 2ζ

((
∂r +

1

r

)
p0r + p0r∂r

)]
δp̃r −

inζ

r
p0rδp̃θ = 0,

(S45a)

inη

r

(
∂r +

3

r

)
δṽr + η

(
∂2r +

1

r
∂r −

1 + 2n2

r2

)
δṽθ

+

[
T0/h− ζ

((
∂r +

2

r

)
p0r + p0r∂r

)]
δp̃θ = 0.

(S45b)

Finally, in Fourier space, the boundary conditions read

δp̃r,n (R) = −∂rp0r (R0) δR̃n, δp̃θ,n (R) = − in
R0
δR̃n, (S46)

δσ̃rr,n (R) = −∂rσ0rr (R0) δR̃n, δσ̃rθ,n (R) =
2inη

hR2
0

v0r (R0) δR̃n. (S47)

At this point, the four coupled ordinary differential equations Eqs. (S44) and (S45) are solved for
δp̃α,n (r) and δṽα,n (r). The solution is completely analytical for mode n = 0 and almost analytical
for the rest of modes, meaning that it has an analytical expression that involves two integrals that
need to be numerically evaluated. Then, from the Fourier modes of the velocity field, the perturbed
spreading velocity can be obtained as

V = v · n|r=R =
[
v 0 · n+ δv · n

]
r=R
≈ v0r (R0) + ∂rv

0
r (R0) δR+ δvr (R0) , (S48)

which implies

δV (θ) = V (θ)− V0 = ∂rv
0
r (R0) δR (θ) + δvr (R0, θ) . (S49)
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Thus, the growth rate ωn of the tissue shape perturbations follows from

δṼn =
1

2π

∫ 2π

0
δV (θ) e−inθdθ =

dδR̃n
dt

= ωnδR̃n. (S50)

Hence,

ωn = ∂rv
0
r (R0) +

δṽr,n (R0)

δR̃n
. (S51)

The resulting growth rate is a purely real number under any conditions, showing that there is no oscil-
latory instability. At the onset of dewetting, namely using typical critical parameter values T ∗0 , L∗c , and
−ζ∗ that define the tissue wetting transition (Fig. 4d, f; Supplementary Fig. 14), the cell monolayer
exhibits a long-wavelength morphological instability (Fig. 5j). Several modes corresponding to defor-
mations of the tissue shape (n ≥ 2, Fig. 5b) are unstable. Hence, we propose that this instability is at
the root of the observed shape changes during monolayer dewetting (Fig. 5a, Supplementary Movie
11).

2. Monolayer viscosity

At the wetting transition point, all the model parameters are known except for the monolayer
viscosity. This allows us to estimate the monolayer viscosity at the wetting transition η∗ from the
retraction rate of the monolayer (Fig. 5e):

ω0 =
1

4η

[
2T0

R0

h
+ 3ζ + 2

[
ζ

[
Lc
R0
− R0

Lc

]
+ 2T0

Lc
h

]
I0 (R0/Lc)

I1 (R0/Lc)

−
[
2T0

R0

h
+ 5ζ

]
I20 (R0/Lc)

I21 (R0/Lc)
+ 2ζ

R0

Lc

I30 (R0/Lc)

I31 (R0/Lc)

]
, (S52)

which is approximated by

ω0 ≈
T0Lc
2ηh

(S53)

in the limit Lc � R0.

3. Structure factor of monolayer shape

To compute the structure factor, we add a noise term to the dynamics of the perturbation modes,
Eq. (S50). Thus, the corresponding Langevin equation reads

dδR̃n
dt

= ωnδR̃n + ξ̃n (t) . (S54)

Assuming that shape fluctuations are fast compared to the dewetting dynamics, we consider that they
are temporally uncorrelated and hence we take a Gaussian white noise:〈

ξ̃n (t)
〉

= 0,
〈
ξ̃n (t) ξ̃∗m

(
t′
)〉

= 2Dδn,mδ
(
t− t′

)
, (S55)
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where D is the noise intensity, which we assume independent of the mode number n. Now, under
the approximation of a constant growth rate ωn in the short time span tf − t∗ = 7 h, the solution to
Eq. (S54) can be formally expressed as

δR̃n (t) = δR̃n (t∗) eωn(t−t∗) + eωnt

∫ t

t∗
ξ̃n
(
t′
)
e−ωnt′dt′. (S56)

Considering no shape perturbations at the onset of dewetting, δR̃n (t∗) = 0, the equal-time structure
factor reads

Sn (t) =
〈
|δR̃n (t) |2

〉
= e2ωnt

∫ t

t∗

∫ t

t∗

〈
ξ̃n
(
t′
)
ξ̃∗n
(
t′′
)〉
e−ωn(t′+t′′) dt′ dt′′ =

D

ωn

[
e2ωn(t−t∗) − 1

]
,

(S57)
where we have employed Eq. (S55).

Finally, once the experimental value for ω0 is known, the experimental growth rate is determined
from the structure factor by numerically inverting the relation

Sn (tf )

S0 (tf )
=
ω0

ωn

e2ωn(tf−t∗) − 1

e2ω0(tf−t∗) − 1
, (S58)

which is independent of the noise intensity D.
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Fig. S1. E-cadherin western blot during 3 days of induction. E-cadherin increases in time during 
the first 24h and plateaus for at least 2 more days.
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Fig. S2. Spreading cell monolayers exhibit a transition from wetting to dewetting. a-b, Phase contrast 
images (a) and time evolution of monolayer area (b) of a representative unconfined monolayer undergoing 
a transition between wetting (Ȧ>0) and dewetting (Ȧ<0) at time t=22h. Scale bar = 150 µm.

17



Ed
ge

 tr
ac

tio
n 

(k
Pa

)

0.0

0.2

0.4

0.6

0.8

Radial component    ǀ    ǀ 
Tangential component    ǀ    ǀ

302010

Tr
ac

tio
n 

   
ǀ  

 ǀ 
(k

Pa
)

0.0

0.2

0.4

0.6

0.8

1
Edge

Center

0 302010

50

40

30

20

10

60

01 02 03 04 05 60 07 08 09 100
Radial coordinate   r (µm)

1

-1

   
no

it
ca

rt 
la

id
aR

T
)a

Pk
(  

a

c d

50

40

30

20

10

60

01 02 03 04 05 60 07 08 09 100

1

-1

)a
Pk

(  
   

   
   

no
it

ca
rt 

la
it

ne
gn

aT
Supplementary figure S3

b

↑

Ti
m

e 
   
t (

h)

Ti
m

e 
   
t (

h)

Radial coordinate   r (µm)

r

µ 

µ

r

Time    t (h) Time    t (h)

T

T

T

T

0

Fig. S3. Traction forces are primarily radial and accumulate at the edge of the monolayer 
upon E-cadherin expression. a-b, Kymographs of the radial (a) and tangential (b) components of 
the traction profile. c, Evolution of the traction magnitude at the monolayer edge and at the center. 
d, Evolution of the radial and tangential components of the traction at the edge of the monolayer. 
Data are presented as mean ± s.e.m. n=18 cell islands.
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Fig. S4. Orthogonal views of monolayer dewetting. Life imaging of plasma membrane labelled 
cells (CAAX-iRFP) allow the visualization of tissue morphology in 3D. The tissue-substrate contact
area decreases pronouncedly during dewetting, while the tissue evolves from a monolayer to a
spheroidal cell aggregate, resembling a droplet. Scale bar = 40 µm. 
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Fig. S5. Monolayers display higher levels of ppMLC than single cells upon E-cadherin induction. a, 
ppMLC immunostaining of single cells and cell islands before and after 18h of E-cadherin induction. 
Scale bar = 40 µm. b, Quantification of median fluorescence intensity shows that single cells and cells in 
monolayers start with similar levels of ppMLC. After 18h of E-cadherin induction, cell monolayers show 
significantly higher levels of ppMLC than single cells (Kruskal Wallis test, p-value < 0,0001). Data are 
presented as mean ± s.e.m. n=43 (Single cells 0h), n=27 (Pattern 0h), n=51 (Single cells 18h) and n=28 
(Pattern 18h). 
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Fig S6. Calcium chelation prevents the buildup of tissue forces and the wetting transition.  a-c, 
Phase contrast images (a), and maps of traction forces (b) and average normal monolayer tension (c) 
in control and EGTA treated monolayers. EGTA efficiently inhibits cell-cell junction formation, as 
seen from the lack of cohesiveness in the treated monolayer. d-f, EGTA hinders the abrupt increase 
in tractions (e) and tension (f) after E-cadherin induction, thereby preventing the decrease in area 
caused by tissue dewetting (d). 
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Supplementary figure S7
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c

Fig S7. ppMLC accumulates at actin stress fibers but not at E-cadherin junctions. a, Immunostaining 
of ppMLC, Actin, and E-cadherin in cell islands after 18h of E-cadherin induction. Scale bar = 40 µm. b,c, 
Insets of the labelled regions in (a). E-cadherin junctions colocalize with actin but not with ppMLC 
(arrows). Instead, ppMLC accumulates at actin stress fibers. 
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Supplementary figure S9

Fig. S9. Predicted velocity profiles in the monolayers. a, Velocity profile in confined and 
unconfined monolayers, Eq. (S22). Parameter values are T = 0.5 kPa, L  = 25 μm, R = 200 μm, 
h = 5 μm, and η = 50 MPa·s. For the unconfined case, the contractility is -³  = 20 kPa, under 
which the monolayer expands (v(R) > 0). For the confined case, the condition v(R) = 0 sets the 
contractility to be given by Eq. (S23). b, Velocity profile for monolayers of different radius. 
Parameter values are T = 0.5 kPa, L    = 25 μm, h = 5 μm, and η = 50 MPa·s, with the critical 
contractility -³* given by Eq. (S26).
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Fig. S10. Cell density increases near the monolayer edge upon induction of E-cadherin expression. a, 
Expression of H2B-mNeonGreen allows counting cell nuclei in concentric circular coronae. b, Upon 
induction of E-cadherin expression, the cell density profile develops a gradient towards the monolayer edge. 
Data are presented as mean ± s.e.m. n=5 cell islands.
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Fig. S11. The wetting transition depends on substrate stiffness.  a, Time evolution of epithelial 
monolayers on substrates of different stiffness (Young’s modulus of 3, 12 and 30 kPa). Monolayers 
on stiffer substrates dewet later (red dashed line and shade indicate dewetting). Scale bar = 40 m. b-

d, Evolution of monolayer area (b), mean traction magnitude (c) and average normal monolayer 
tension (d). e-g, Evolution of the maximal traction (e), nematic length (f), and contractility (g) for 
monolayers on substrates of different stiffness. These model parameters were obtained by fitting the 
model predictions to the experimental data (see Methods). h-j, Transition time (h), critical traction (i) 
and critical contractility (j) for the different substrate stiffnesses. For monolayers on 30 kPa gels, a 
wetting transition is not observed within the time of the experiment. Thus, critical parameter values 
are higher than the maximal value measured at the end of the experiment (t=84h), and hence they are 
indicated as open intervals (parentheses). Data are presented as mean  s.e.m. n=23 for 3kPa gels, 
n=10 for 12 kPa gels and n=17 for 30 kPa gels.  
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Fig. S12. Area and monolayer tension evolution in islands of different sizes and substrate ligand 

densities. a-c, Evolution of the average normal monolayer tension for islands of different radii on 
substrates of 100 g/mL of collagen (a), 10 g/mL of collagen (b) and 1 g/mL of collagen (c). d-g, 
Evolution of the average normal monolayer tension for islands seeded on substrates with different 
collagen densities with radii of: 200 m (d), 150 m (e), 100 m (f) and 50 m (g). h-k, Evolution 
of the mean area for islands seeded on substrates with different collagen density with radii of: 200 
m (h), 150 m (i), 100 m (j) and 50 m (k). l, Relative fluorescence intensity of collagen coating 
the substrate, quantified by immunostaining for different concentrations of collagen in solution. Data 
are presented as mean  s.e.m. n=57 for 100 g/mL of collagen; n=40 for 10 g/mL of collagen; and 
n=40 for 1 g/mL of collagen. 
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Supplementary figure S14
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Supplementary figure S15
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Fig. S16. Structure factors and perturbation growth rates for dewetting monolayers in islands 

of different sizes and substrate ligand densities. a-b, Structure factors at time 𝑡𝑓 − 𝑡∗ = 7 h upon
the onset of dewetting (a) and perturbation growth rates (b) in islands of different radii (50, 100, 150 
and 200 m) and substrate ligand densities (100, 10 and 1 g/mL). The predicted structure factors 
(Eq. 9, black symbols) are fitted to the experimental data (color symbols) to obtain the noise intensity 
𝐷 of perturbation mode amplitudes (see Fig. 5h). The predicted growth rates (black symbols) are 
compared to the experimental data (color symbols). 
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Supplementary Movies 

Movie 1. Unconfined monolayer exhibiting a transition from wetting to dewetting. 

Representative example of a spreading monolayer (shown in Fig. 1f) undergoing a wetting transition. 
The release of confinement at t=0h allows the monolayer to freely spread. At ~25h, the monolayer 
spontaneously starts retracting until it collapses into a spheroidal aggregate.  

Movie 2. Another example of a wetting transition in a spreading monolayer. Another spreading 
monolayer (shown in Supplementary Fig. 2) undergoing a wetting transition.  

Movie 3. Evolution of traction and tension fields during wetting and dewetting. Videos of Phase 
contrast images (left), maps of traction (center) and monolayer tension (right) in a monolayer with 
increasing concentration of E-cadherin. A wetting transition is observed at time t=22h. 

Movie 4. Orthogonal views of monolayer dewetting. Timelapse of MDA-MB-231 cells stably 
expressing a cell membrane marker (CAAX-iRFP). The tissue-substrate contact area decreases 
pronouncedly during dewetting, while the tissue evolves from a monolayer to a spheroidal cell 
aggregate, resembling a droplet. 

Movie 5. Calcium chelation hinders the increase of tissue forces and prevents dewetting. Phase 
contrast, and maps of traction forces and monolayer tension of control (left) and EGTA-treated (right) 
cell islands. Cells treated with EGTA move individually rather than forming a cohesive monolayer, 
suggesting that cell-cell junctions are efficiently abrogated. In the presence of EGTA, both tractions 
and monolayer tension increase much more slowly than in control islands, and the wetting transition 
does not occur.   

Movie 6. Dewetting is inhibited and reversed when tissue contractility is externally decreased. 
Dewetting (left), dewetting inhibition (center) and reversibility (right) assays. Partial inhibition of 
contractility with blebbistatin clearly delays the wetting transition. A sudden inhibition of contractility 
with Y27632 (t=46h) is enough to revert dewetting, inducing a rewetting of the substrate.  The name 
of the drug indicates its presence in the cell medium.  

Movie 7. Cell rearrangements in the monolayer. Phase contrast (left) and cell nuclei (right) in a 
200 m radius island during the wetting phase of the experiment. Cells incessantly exchange 
neighbours, a fact that provides support to the fluid behaviour of the monolayer. Moreover, cells 
progressively accumulate at the edge of the monolayer, which develops a gentle cell density gradient. 

Movie 8. Evolution of traction and monolayer tension fields in islands of different radii. For all 
sizes, the magnitude of tractions and monolayer tension increase in time as E-cadherin is 
progressively expressed. Tractions accumulate at the edges of the monolayers, while monolayer 
tension has a maximum at the center. Red frames indicate monolayer dewetting. 

Movie 9. Evolution of traction and monolayer tension fields in islands on substrates of different 

stiffnesses. For monolayer on substrates of Young’s modulus 3 and 12 kPa, tissue forces increase in 
time, eventually triggering monolayer dewetting. This transition occurs earlier for the softest 
substrate. For the stiffest substrate (30 kPa), tissue forces keep increasing until the end of the 
experiment, suggesting that the critical contractility to induce dewetting is not reached. Red frames 
indicate monolayer dewetting. 
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Movie 10. The wetting transition time depends on tissue radius and substrate ligand density. 
Cell islands of different radii seeded on substrates with different substrate ligand densities exhibit the 
wetting transition at different times. Red frames indicate monolayer dewetting. 

Movie 11. Symmetry breaking of monolayer shape during dewetting. A 200 m radius cell island 
divided in 24 sectors. Blue = wetting, red = dewetting. Dewetting starts in diametrically opposed 
regions of the monolayer edge. Hence, the monolayer loses its initial circular shape and acquires an 
elliptic-like shape during the early stages of dewetting. 
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