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Supplementary Figure 1: Detailed view of the BridGE method for detecting genetic interactions from 9 
GWAS data. 10 
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Supplementary Figure 2: Distribution of p-values from individual tests for pairwise SNP-SNP interactions 13 

for discovered Parkinson’s disease BPM. SNP pairs supporting the pathway-pathway interaction between 14 

the Golgi associated vesicle biogenesis gene set (Reactome) and Fc epsilon receptor I signaling pathway 15 

(KEGG) discovered from the PD-NIA Parkinson’s disease cohort were evaluated for association with PD 16 

based on a recessive and dominant disease model. The distribution of maximum -log10 hypergeometric 17 

test p-value of the two models for each SNP pair is plotted. None of the SNP pairs are significant after 18 

multiple hypothesis correction (dashed line at the most significant SNP-SNP pair corresponds to 19 

FDR=0.94). 20 

  21 



 22 

Supplementary Figure 3: Power analysis of the effect of minor allele frequency (MAF), BPM size, 23 
interaction effect size, and sample size on the discovery of between-pathway interactions. The plot is 24 
same as Fig. 6, but the biological densities used are 2.5% (a) and 10% (b). 25 
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 27 

Supplementary Figure 4: Power simulation of the effect of pathway size and interaction density on the 28 

discovery of between-pathway interactions. The BPM significance (  p-value derived from 150,000 29 
SNP permutations) is plotted for 100 embedded BPMs of different sizes and SNP-SNP interaction 30 
densities (online method). The gray plane indicates the p-value cutoff corresponding to the average SNP 31 
permutation p-values (p = 3.0×10-5) of the significant BPM discoveries across all GWAS cohorts 32 

(FDR 0.25). Bars exceeding this plane represent BPMs that would have been discovered in this cohort 33 
and provide an estimate of sensitivity of the approach. 34 
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 36 

Supplementary Figure 5: Distribution of sizes for discovered BPMs. The size of each candidate BPM was 37 
measured as the total number of possible SNP-SNP pairs between the two pathways. The distribution of 38 
sizes of all possible pathway-pathway pairs is plotted in (a) and only significant BPMs (FDR ≤ 0.25) from 39 
the PD-NIA cohort are plotted in (b). BPMs discovered by BridGE span a large range of sizes.  40 
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 42 

Supplementary Figure 6: Comparison of false discovery rates derived from 10 sample permutations vs. 43 

1000 sample permutations using PD-NIA dataset. BPMs that are significant (FDR 0.25) based on either 44 
10 sample permutations or 1000 permutations were plotted to show the agreement between two 45 
permutations. 46 
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 48 

Supplementary Figure 7: Power simulation of the effect of sample size, interaction effect size (IE) and 49 
minor allele frequency on the discovery of SNP-SNP interactions0, The discovery rates of 100 embedded 50 
SNP-SNP interactions in the synthetic datasets with different sample sizes were plotted and colored with 51 
corresponding interaction effect size. Each subplot is corresponded to a different minor allele frequency 52 
assumption: (a) MAF=0.05, (b) MAF=0.1, (c) MAF=0.15, (d) MAF=0.2, (e) MAF=0.25. 53 



Supplementary Discussion 54 

BridGE results on hypertension and type2 diabetes  55 

Although we did not conduct replication analyses for hypertension or type 2 diabetes, we found that many 56 
of the pathways involved in interactions from the discovery cohorts were also highly relevant to the 57 
corresponding disease. For example, in the hypertension cohort, we identified a risk-associated BPM 58 
interaction involving hypoxia inducible factor (HIF) signaling, whose aberrant expression has been 59 
previously associated with hypertension1. Two BPMs and one WPM, all associated with increased risk, 60 
involved the Rho cell motility signaling pathway, which has been previously implicated in the 61 
pathogenesis of hypertension2. For type 2 diabetes, we discovered BPMs associated with protective 62 
effects involving an autoimmune thyroid disease gene set, glycosaminoglycan biosynthesis, and the 63 
mTOR signaling pathway, all of which have strong links to diabetes3,4,5. 64 
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