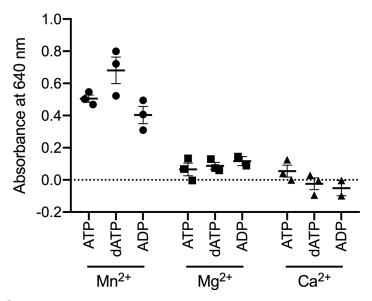
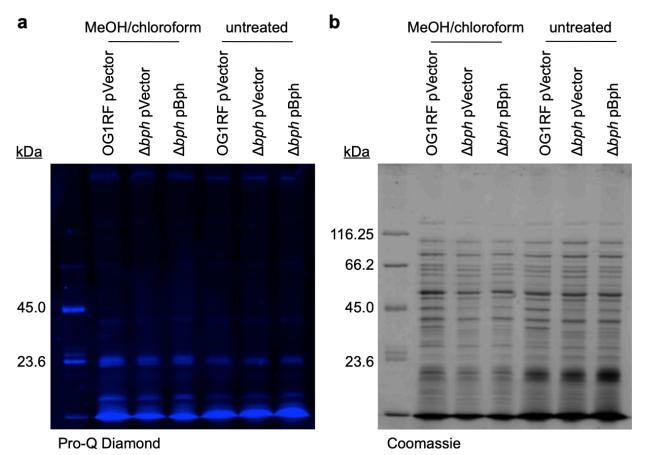


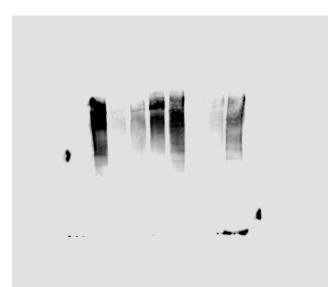
Supplementary Figure 1. Biofilm screen of arrayed transposon library and *in vitro* attachment of selected low-biofilm mutants. a) Distribution of biofilm index values relative to OG1RF (biofilm = 1.0) obtained in the arrayed Tn library screen. Insertions in intergenic regions are represented by yellow bars, and insertions in hypothetical genes are represented by cyan bars. b) Growth curves of putative low-biofilm mutants selected from initial Tn library screen. Mutants were grown in a 96-well plate in tryptic soy broth without added dextrose. Values are the average of three independent replicates with independent error of the mean. c) Biofilm production at 6 hr was measured for Tn mutants with high levels of biofilm in the primary screen. Each data point represents a biological replicate. The nucleotide position of each Tn insertion is indicated in the x-axis labels.


Supplementary Figure 2. bph mutations do not affect general biofilm

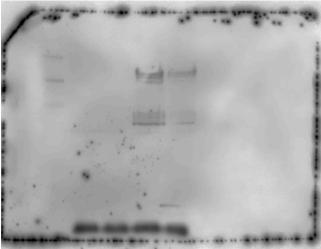
determinants or surface proteins. a) Polysaccharides harvested from cells in midlogarithmic phase were separated on a native gel. **b)** Extracellular DNA was quantified using PicoGreen and normalized to CFU/mL of the cell culture. Values are presented relative to parental OG1RF. Each data point represents a biological replicate. Statistical significance was determined by one-way ANOVA (***q<0.001). **c)** Gelatinase activity was measured using agar plates supplemented with 3% gelatin. Hazy zones surrounding colonies are indicative of gelatinase activity. **d)** Ace levels were detected in whole-cell lysates via Western blot with an anti-Ace antibody (top panel). **e)** SA80 was detected in the cell wall fraction via Western blot with an anti-SA80 antibody (top panel). For **d** and **e**, Coomassie-stained load controls are shown (bottom panels).

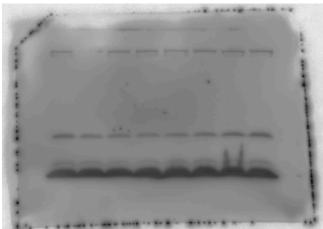

Supplementary Figure 3. Effect of *bph* on conjugation and transfer of pCF10.

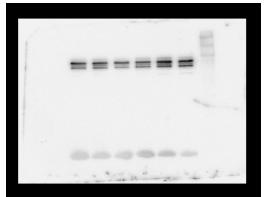
Transfer of pCF10 between cells was measured using **a**) OG1RF and Δbph as recipients and **b**) OG1RF and Δbph carrying pCF10 as donor strains. Cells were grown separately for 1 hr and mixed at a 9:1 recipient:donor ratio. At indicated timepoints, transconjugants, donors, and recipients were selected on antibiotic agar plates and enumerated. Data points represent three biological replicates, and error bars represent standard error of the mean. **c**) Whole-cell lysates were harvested 1 hr after induction with 10 ng/mL cCF10. Proteins were separated using SDS-PAGE and transferred to nitrocellulose, and aggregation substance was detected using an anti-PrgB antibody. **d**) Aggregation of OG1RF and Δbph carrying pCF10 after induction with exogenous cCF10 (10 ng/mL) was measured by tracking the OD₆₀₀ at the top of individual cultures.



Supplementary Figure 4. Bph requires manganese for phosphatase activity.


Purified Bph-H6 was mixed with the indicated substrates in reaction buffer supplemented with various divalent cations. Free phosphate (measured by absorbance at 640 nm) was detected when manganese was used as the divalent cation, but not magnesium or calcium. Each data point represents a biological replicate. Error bars represent standard error of the mean.


Supplementary Figure 5. Effect of Bph on phosphoprotein content. Whole-cell lysates were prepared from the indicated strains and separated by SDS-PAGE. **a)** The gel was incubated in ProQ Diamond phosphoprotein stain and imaged. Phosphoproteins are visualized as blue bands. **b)** The gel from panel **a** was incubated in Coomassie stain and imaged.


Supplementary Figure 6. Uncropped anti-EbpC Western blot.

Supplementary Figure 7. Uncropped anti-PrgB Western blot.

Supplementary Figure 8. Uncropped anti-Ace Western blot.

Supplementary Figure 9. Uncropped anti-SA80 Western blot.

Strain	Description	Relevant Characteristics	Source
	<i>Enterococcus faecalis</i> OG1RF	Parent strain, Rif ^R , Fus ^R	1
JW271	<i>Enterococcus faecalis</i> OG1RF Δ10435 (ΔbapA)	Markerless deletion of OG1RF_10435, Rif ^R , Fus ^R	This study
	Enterococcus faecalis OG1RF ΔahrC	Markerless deletion of <i>ahrC</i> (OG1RF_10717), Rif ^R , Fus ^R	2
	<i>Escherichia coli</i> DH5α	Laboratory K-12 cloning strain	Fisher Scientific
	<i>Escherichia coli</i> BL21 (DE3)	Laboratory strain for T7 expression	New England Biolabs
	Plasmids	Relevant Characteristics	Source
	Plasinius		Source
pJW8	pCIE-tet	Pheromone-inducible pCIE vector with tetracycline resistance cassette, Tet ^R	This study
pJW76	pCIE-tet-MCS (pCIEtm)	pCIE-tet with modified multicloning site (BamHI/HincII- SaII/EcoRV/PvuI/NheI), Tet ^R	This study
pJW250	pCIEtm::OG1RF_10435	Contains wild-type OG1RF_10435 (<i>bapA</i>) sequence with native ribosome- binding site, Tet ^R	This study
	pCJK205	P ₂₃ :: <i>lacZ</i> constitutive reporter plasmid derived from pMSP3535, Erm ^R	3
	pCJK218	Temperature-sensitive plasmid for allelic exchange and <i>pheS</i> counterselection, Cm ^R	4
	pCJK218::OG1RF_10435- del	Allelic exchange plasmid containing genomic regions flanking OG1RF_10435, Cm ^R	This study
	pET28b+	Plasmid vector carrying N-	Novagen

		terminal and C-terminal His6	
		tags and an N-terminal	
		thrombin-T7 tag, Kan ^R	
pJW204	pET28b+::OG1RF_10435- H6	OG1RF_10435 coding	This study
		sequence fused to C-terminal His6 tag	This study
		OG1RF_10435 coding	
pJW246	pET28b+::OG1RF_10435-	sequence with W70A mutation	This study
pJW233	H6 W70A pET28b+::OG1RF_10435- H6 Y85A	fused to C-terminal His6 tag	The etady
		OG1RF_10435 coding	
		sequence with Y85A mutation	This study
	pET28b+::OG1RF_10435- H6 N87A pET28b+::OG1RF_10435- H6 D105A	fused to C-terminal His6 tag	
		OG1RF_10435 coding	
pJW237		sequence with N87A mutation	This study
		fused to C-terminal His6 tag	
		OG1RF_10435 coding	This study
pJW235		sequence with D105A mutation	This study
		fused to C-terminal His6 tag pJW250 (OG1RF 10435	
pJW336	pCIEtm::OG1RF_10435 W70A pCIEtm::OG1RF_10435	complementation vector) with	This study
p000000		W70A mutation, Tet^{R}	This study
		pJW250 (OG1RF 10435	
pJW337		complementation vector) with	This study
p	Y85A pCIEtm::OG1RF_10435 N87A	Y85A mutation, Tet ^R	,
		pJW250 (OG1RF_10435	
pJW338		complementation vector) with	This study
		N87A mutation, Tet ^R	
	pCIEtm::OG1RF_10435 D105A	pJW250 (OG1RF_10435	
pJW339		complementation vector) with	This study
		D105A mutation, Tet ^R	
	pTCV-LacSpec	pTCV-LacSpec, vector for promoter fusions, Spec ^R	2
	pTCV-LacSpec::prom-	Promoter fusion Pebp <u>R</u> (- 87) in	
	ebpR	pTCV-LacSpec, Spec ^R	2
	pTCV-LacSpec::prom-	Promoter fusion PebpA(- 100)	2
	ebpA	in pTCV-LacSpec, Spec ^R	2
	Oligonucleotides	Sequence	Source
		5' - AAA GTC GAC GAT ATC	
JW54	pCIE-tetM-MCS	CGA TCG GCT AGC CCT AAA	This study
5004		GAA GTA ACC ATG TAT TAT	·····e etady
		G - 3'	
JW59	10435-fwd	5' - TTT AAG TGA ACT CAA	This study
		TGT ACG C - 3' 5' - ACA AGT CAC CGC TGT	
JW60	10435-rev	AGG C - 3'	This study
		AGG C - 3	•

JW93	10435-Pvu-rev	5' - TTT CGA TCG CTA TTT TTT TGA TAG CTG TTG ATA ACG - 3'	This study
JW109	10435-Nco-fwd	5' - ATA CCA TGG GAA TTC CTA AAG AAG G - 3'	This study
JW110	10435-Nhe-Xho-rev	5' - ATA CTC GAG GCT AGC TTT TTT TGA TAG CTG TTG ATA ACG -3'	This study
JW114	10435-W70A-fwd	5' - CAC AAG AAA TAT GCG TTC AAT ATA ATA GC - 3'	This study
JW115	10435-Y85A-fwd	5' - GGG TTT CGT ATG CCT GCA ATC TGG CTT CG - 3'	This study
JW116	10435-N87A-fwd	5' - GGG TTT CGT ATT ACT GCG CTC TGG CTT CGC C - 3'	This study
JW117	10435-D105A-fwd	5' - GTA TAT TGA TTA TGC TTT AGA TAT CAA GG - 3'	This study
JW130	10435-W70A-rev	5' - GCT ATT ATA TTG AAC GCA TAT TTC TTG TG - 3'	This study
JW133	10435-up-fwd-Bam	5'- GTT GGA TCC AGA ATA TGG CC -3'	This study
JW134	10435-up-rev-Eco	5' - TAG GAA TTC CCA TAA TAC CCC - 3'	This study
JW135	10435-down-fwd-Eco	5' - ATA GAA TTC CTA AAT AGC CGA TGT AAA CAG C - 3'	This study
JW136	10435-down-rev-Sph	5' - ACT GCA TGC TAG CTG ATC TGC C - 3'	This study
JW163	10435-fwd-Bam	5' - TTT GGA TCC AAG TGA ACT CAA TGT ACG C - 3'	This study

Supplementary Table 1. Bacterial strains, plasmids, and oligonucleotides used in this study. Cm^R, chloramphenicol; Fus^R, fusidic acid; Rif^R, rifampicin; Tet^R, tetracycline; Spec^R, spectinomycin. Restriction enzyme sites in oligonucleotides are included in the name or in parentheses.

- 1 Dunny, G., Funk, C. & Adsit, J. Direct stimulation of the transfer of antibiotic resistance by sex pheromones in Streptococcus faecalis. *Plasmid* **6**, 270-278 (1981).
- 2 Manias, D. A. & Dunny, G. M. Expression of Adhesive Pili and the Collagen-Binding Adhesin Ace Is Activated by ArgR Family Transcription Factors in Enterococcus faecalis. *J Bacteriol* **200**, doi:10.1128/JB.00269-18 (2018).
- 3 Djorić, D. & Kristich, C. J. Oxidative stress enhances cephalosporin resistance of Enterococcus faecalis through activation of a two-component signaling system. *Antimicrob Agents Chemother* **59**, 159-169, doi:10.1128/AAC.03984-14 (2015).

4 Vesić, D. & Kristich, C. J. A Rex family transcriptional repressor influences H2O2 accumulation by Enterococcus faecalis. *J Bacteriol* **195**, 1815-1824, doi:10.1128/JB.02135-12 (2013).