Structural Brain Correlates of Loneliness among Older Adults

Sandra Düzel¹*, Johanna Drewelies², Denis Gerstorf², Ilja Demuth³, Elisabeth Steinhagen-Thiessen³, Ulman Lindenberger^{1, 5} & Simone Kühn^{1,6}

¹Max Planck Institute for Human Development, Berlin, Germany

²Humboldt University Berlin, Germany

³Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany

⁴Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany

⁵Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK

⁶University Clinic Hamburg-Eppendorf, Hamburg, Germany

Supplementary Information

A.1 Review of Studies investigating Associations between Loneliness and Size and Activation of Different Brain Regions

author, year of publication	journal	waves	n	age- range	measure of loneliness	covariates	
Cross-sectional Studies							
Layden et al., 2016	NeuroImage	1	55	20-29	Revised UCLA Loneliness Scale (Russell, 1996)	age; gender; depressive symptomatology; objective isolation	
Inagaki et al., 2017	Social Cognitive and Affective Neuroscience	1	31	24.26 ± 7.57	Revised UCLA Loneliness Scale (Russell, 1996)	age; gender; ethnicity; feelings of social connection	
Kanai et al., 2012	Current Biology	1	108	18-39	UCLA Loneliness Scale (Russell et al., 1980)	age; gender; social network size; anxiety; empathy; social perception skills; autistic traits	
Kong et al., 2014	Experimental Brain Research	1	308	18-27	Revised UCLA Loneliness Scale (Russell, 1996)	age; gender; total GMV; neuroticism; extraversion; psychoticism	

Tian et al., 2017	PLoS ONE	1	30	21.3 ± 2.4	UCLA Loneliness Scale (Russell et al., 1978)	anxiety; depression; interpersonal reactivity; trust; social support
Ti et al., 2018	Social Cognitive and Affective Neuroscience	1	100	22-35	NIH Toolbox (Salsmann et al., 2013)	perceived emotional support; perceived instrumental support
Wong et al., 2016	Psychological Medicine	1	54	67.45 ± 5.427	20-item UCLA- Loneliness Scale (Russell 1996)	age; gender; MMSE; Depressive symptoms; Severity of depression, onset age (years); number of episodes; actual depressed (months); use of hypnotics (months)
D'Agostino, Kattan, Canli, 2018	Social Neuroscience	1	99	18-22; 57-69:	UCLA Loneliness Scale (Russell et al., 1978)	age; social network (The Social Network Index (SNI))
Sin et al., 2017	International Journal of Geriatric Psychiatry	1	52	67.92 ± 5.0	20-item UCLA- Loneliness Scale (Russell 1996)	age; gender; Hamilton Rating Scale for Depression (HAMD); Short-Form Health Survey (SF-36)
Longitudinal Studies						
Ehlers et al., 2017	Frontiers in Aging Neuroscience	2	247	60-79	UCLA Loneliness Scale (Russell et al., 1980)	perceived social support; perceived stress; gender; race; education; marital status; weight

Study	Findings – greater self-reported loneliness/ perceived social isolation was associated with				
Cross-sectional Studies					
Layden et al., 2016	 increased brain-wide functional connectivity (FC) in right central operculum and right supramarginal gyrus increased FC in cingulo-opercular network (e.g. in bilateral insula/ frontoparietal opercula) reduced FC between cingulo-opercular network and right middle/ superior frontal gyrus 				
Inagaki et al., 2017	- increased ventral striatum activity when viewing a close other (vs. a stranger)				
Kanai et al., 2012	 less gray matter volume (GMV) in left posterior superior temporal sulcus (pSTS) weaker activation in ventral striatum when viewing pictures of pleasant social events (vs. pictures of pleasing nonsocial events) 				
	 weaker activation in bilateral temporoparietal junction (TPJ) to unpleasant social pictures of people (vs. unpleasant pictures of objects) 				
Kong et al., 2014	- greater regional gray matter volume (rGRV) in left dorsolateral prefrontal cortex (DLPFC)				
Tian et al., 2017	 altered interactions between resting-state networks weaker causal flow from dorsal attentional network (DAN) to ventral attentional network (VAN) decreased causal flow from affective network (AfN) to VN (visual network) inducing stronger VN activity → decreased top-down control from higher networks leads to stronger activation in lower sensory networks 				
Ti et al., 2018	- greater spontaneous neural activity in right inferior temporal gyrus (ITG)				
Wong et al., 2016	 loneliness-related sub-network identified: structural brain networking in regions within the salience network (i.e. amygdala) + additional component that connects left globus pallidus with temporal and occipital regions increased connectivity within default mode network and cortico-striatal network → aberrant networking in subcortical area while processing negative stimuli → perceived loneliness plays unique role in relation to negative affective processing (in late-life depression) 				

D'Agostino, Kattan, Canli, 2018	 older adults were less lonely compared to younger and dwelled longer on faces, regardless of valence no association between loneliness and VS activation to social pictures of strangers in either age group no association between social network size and amygdala activation to social stimuli 				
Longitudinal Studies					
Ehlers et al., 2017	 change in regional brain volume mediates effects of changes in social support and stress on change in perceived loneliness larger baseline amygdalae associated with greater decreases in loneliness (mediated by reductions in stress) larger baseline PFC volume was associated with greater reductions in stress (mediated by greater increase in social support) 				