

Supporting Information

for

Toxicity and safety study of silver and gold nanoparticles functionalized with cysteine and glutathione

Barbara Pem, Igor M. Pongrac, Lea Ulm, Ivan Pavičić, Valerije Vrček, Darija Domazet Jurašin, Marija Ljubojević, Adela Krivohlavek and Ivana Vinković Vrček

Beilstein J. Nanotechnol. 2019, 10, 1802–1817. doi:10.3762/bjnano.10.175

Additional figures and tables

Figure S1: The percentage of research papers focusing on silver (AgNPs) and gold nanoparticles (AuNPs) out of the total amount of papers discussing nanoparticles for biomedical applications (larger chart). Two smaller charts present the percentage of papers on interaction of AgNPs and AuNPs with cysteine (CYS) or glutathione (GSH).

Figure S2: ¹H NMR spectrum of the mixture cysteine : cystine = 25 : 1, in D₂O. Commercial samples (Sigma Aldrich) of both compounds were used.

Figure S3: ¹³C NMR spectrum of the reaction mixture cysteine : NaBH₄ = 1 : 10, in D₂O. The aliqout is taken after 75 min. The arrows show how signals (for cysteine and cystine) change with time.

Figure S4: ¹H NMR spectra of the reaction mixture aliquots (cysteine : $NaBH_4 = 1 : 10$, in ultrapure water/D₂O added) taken at several time points. The arrows show how signals (for cysteine and cystine) change with time. Upfield signals correspond to NaBH₄.

Figure S5: ¹H NMR spectra of the reaction mixture aliquots (GSH : NaBH₄ = 1 : 10, in ultrapure water/D₂O added) taken at several time points.

Figure S6: Uptake of silver (AgNPs) and gold nanoparticles (AuNPs) stabilized with cysteine (CYS) or glutathione (GSH) in L929 cells. Values marked with asterisk (*) differ significantly from the negative control (P < 0.05).

Figure S7: Visualization of cellular internalization of silver (AgNPs) and gold nanoparticles (AuNPs) stabilized with cysteine (CYS) or glutathione (GSH) in L929 cells by reflection contrast mode of confocal laser scanning microscopy. Images show maximum intensity Z-projections of cells stained with F-actin-phalloidin to visualize cell cytoskeleton (green), nucleic acid staining using Hoechst 33258 fluorescent dye (blue) and CLSM reflectance signals (red). Overlay of fluorescence stains and segmented reflectance signals are given in (d), (h) and (l) panels. Panels (a-d): Cells treated with CYS-AgNPs (at the 5 mg Ag L⁻¹). Panels (e-h): Cells treated with GSH-AgNPs (at the 5 mg Ag L⁻¹). Panels (i-l): Cells treated with GSH-AuNPs (at the 25 mg Ag L⁻¹). The NPs reflectance signals are visible as bright red signals and indicated by white arrows in panels (c-d), (g-h) and (k-l). The GSH-AuNPs can be found in the vicinity of L929 cells, but not intracellularly (k-l).

Figure S8: Population and apoptosis profiles of L929 cells analysed by flow cytometry using Muse® Annexin V and Dead Cell Assay Kit. (a) Negative controls - untreated control cells. (b) Positive controls - cells treated with paraformaldehyde (0.04 mg L^{-1}).

Figure S9: Population and apoptosis profiles of L9292 cells analysed by flow cytometry using Muse® Annexin V and Dead Cell Assay Kit. Cells treated with (a) 0.1 mg/L Ag⁺, (b) 1 mg/L Ag⁺, (c) 1 mg/L CYS-AgNPs, (d) 10 mg/L CYS-AgNPs, (e) 1 mg/L GSH-AgNPs and (f) 10 mg/L GSH-AgNPs.

Figure S10: Population and apoptosis profiles of L9292 cells analysed by flow using Muse® Annexin V and Dead Cell Assay Kit. Cells treated with (a) 1 mg/L Au³⁺, (b) 25 mg/L Au³⁺, (c) 50 mg/L CYS-AuNPs, (d) 300 mg/L CYS-AuNPs, (e) 50 mg/L GSH-AuNPs and (f) 300 mg/L GSH-AuNPs.

Biothiol	[AgNO ₃],	[AgNO ₃]/[NaB	Last added	Visual observation	Size [nm] (% Volume)
	mM	H ₄]/[biothiol]	reactant		
CYS	1	1:2:0.2	CYS	Brown, stable	3.0 ± 0.3 (100%)
CYS	1	1:2:0.2	NaBH ₄	Dark brown, stable	$15.5 \pm 2.0 \ (100\%)$
CYS	1	1:2:0.5	CYS	Brown-gray, stable	n.a.
CYS	1	1:2:0.5	NaBH ₄	Dark gray, black precipitate	n.a.
CYS	1	1:10:0.2	CYS	Brown, unstable	$3.3 \pm 0.6 \ (100\%)$
CYS	1	1:10:0.2	NaBH ₄	Brown, unstable	$1.7 \pm 0.8 \; (98\%)$
GT 10				_	$15.2 \pm 1.7 (2\%)$
CYS	5.6	1:10:1	NaBH ₄	Dark greenish-gray, stable but	8.0 ± 0.9 (99%)
CCU	1	$1 \cdot 2 \cdot 0 2$	CSU	precipitates Proven stable	$50.9 \pm 9.8 (<1\%)$
ОЗП	1	1.2.0.2	USH	BIOWII, Stable	$4.0 \pm 1.2 (99\%)$ $51.6 \pm 3.4 (<1\%)$
GSH	1	1:2:0.2	NaBH ₄	Dark brown, stable	$51.0 \pm 5.4 (<170)$ n.a.
GSH	1	1:2:0.5	GSH	Brownish-gray, stable	n.a.
GSH	1	1:2:0.5	NaBH ₄	Dark gray, black precipitate	n.a.
GSH	1	1:10:0.2	GSH	Brownish, stable	14.6 ± 3.1 (18%)
				, ,	46.9 ± 6.3 (82%)
GSH	5.6	1:10:1	NaBH ₄	Brown, stable	6.0 ± 1.2 (99%)
					315.1 ± 74.3 (<1%)

Table S1: List of different methods employed for preparation of silver nanoparticles (AgNPs) in the presence of cysteine (CYS) and glutathione (GSH).

Biothiol	[HAuCl4], mM	[HAuCl4]/[NaBH4]/[biothiol]	Last added reactant	Visual observation	Size [nm] (% Volume)
CYS	1	1:2:0.2	CYS	Dark red, turns blue-gray, unstable	n.a.
CYS	1	1:2:0.2	NaBH ₄	Unstable	n.a.
CYS	1	1:2:1	CYS	Purple, precipitates	n.a.
CYS	1	1:2:1	NaBH ₄	Unstable, black precipitate	n.a.
CYS	1	1:10:0.2	NaBH ₄	Yellow, turns purple, stable	$\begin{array}{c} 10.7 \pm 3.7 \; (30\%) \\ 48.5 \pm 5.8 \; (70\%) \end{array}$
CYS	3	1:10:1	NaBH ₄	Yellow, turns purple, stable but precipitates	$\begin{array}{c} 24.2 \pm 3.4 \ (54\%) \\ 80.0 \pm 2.1 \ (10\%) \\ 21.7 \pm 4.8 \ (35\%) \end{array}$
GSH	1	1:2:0.2	GSH	Dark grey, unstable	n.a.
GSH	1	1:2:0.2	NaBH ₄	Dark grey. unstable	n.a.
GSH	1	1:2:1	GSH	Red, unstable	n.a.
GSH	1	1:2:1	NaBH ₄	Brown, unstable	n.a.
GSH	1	1:10:0.2	NaBH ₄	Yellow, turns purple, stable	$\begin{array}{c} 10.2 \pm 1 \; (48\%) \\ 37.4 \pm 6.5 \; (29\%) \\ 168.4 \pm 67.3 \; (22\%) \end{array}$
GSH	3	1:10:1	NaBH ₄	Yellow, turns reddish, stable	$6.4 \pm 0.8 \ (65\%) \ 65.1 \pm 3.8 \ (33\%)$

Table S2: List of different methods employed for preparation of gold nanoparticles (AuNPs) in the presence of cysteine (CYS) and glutathione(GSH).

NP type	Size [nm]	ζ [mV]	Coating	Concentration applied, mg L ⁻¹	Endpoint measured	Method	Result	Refe- rence
AuNP	36.3 ± 12.4	-49.4 ± 3.0	PVP	1-400	viability	WST-8	No reduction in viability at highest concentration	[1]
AuNP	0.8, 1.2, 1.4, 1.8, 15.0	/	TPPMS ^I	/	viability	MTT	Viability reduction in NPs of 1.8 nm or smaller; EC_{50} 250 μ M, 140 μ M, 56 μ M, 230 μ M, respectively	[2]
AuNP	19 ± 3	-35.7	citrate	1-25	viability	MTT	Significant cell death at 5 μ g/mL or higher, after 48 h exposure, EC ₅₀ 18. mg L ⁻¹	[3]
AgNP	/	/	PVP	25 - 100	apoptosis	annexin V/PI	>90% live cells after 24h, 5.5% early apoptotic at highest conc., no necrosis	[5]
AgNP	5	/	PVP	0.1 – 100	viability	MTT	Significant cell death at 25 µg/mL (cca 50%)	[6]

Table S3: Overview of published data on the toxic effects of silver (AgNPs) and gold nanoparticles (AuNPs) to L929 cells *in vitro*, depending on their physico-chemical properties and concentration.

^Itriphenylphosphine monosulfonated

NP type	Size [nm]	ζ [mV]	Coating	Concentration(s) applied	Result	Reference
AgNP	55.4 ± 10.1 and 89.3 ± 21.5	-33.6±8.3 and -25.7 ± 7.9	PVP	N/A	100% mortality at 100 μg L ⁻¹ , no mortality below 10 μg L ⁻¹	[7]
AgNP	39 ± 10	-0.13	PVP	N/A	EC ₅₀ 14.81 µg L ⁻¹	[8]
AgNP	8.4 ± 2.8	/	PVP	N/A	$EC_{50}54.0\pm1.4~\mu g~L^{-1}$	[9]
AgNP	35	/	PVP	N/A	$EC_{50} \ 10.48 \pm 3.23 \ \mu g \ L^{\text{-1}}$	[10]
AgNP	40-50	-19.6 ± 3.5	carbonate	20, 50, 100, 200 and 500 mg L ⁻¹	No mortality up to 500 mg L ⁻¹	[11]
AgNP	28.3 ± 0.8	/	PVP	0-51 nmol L ⁻¹	$EC_{50} 55 \pm 16 \text{ nmol } L^{-1}$	[12]
AuNP	21	/	bare	N/A	$EC_{50} \sim 70 \text{ mg } L^{-1}$	[13]
AuNP	14 ± 4	-14 ± 8	citrate	$0.1 - 10 \text{ mg } \text{L}^{-1}$	$EC_{10} \ge 10 \text{ mg } L^{-1}$	[14]
	17.9 ± 0.9	17.9 ± 0.9	PAH ^I		40% mortality at 10 µg/L	
AuNP	12.8 ± 1.2	-15.3 ± 1.5	citrate	0.001–25 mg L ⁻¹	No mortality at highest conc.	[15]
	8.0 ± 1.2	-18.5 ± 1.3	MPA ^{II}		No mortality at highest conc.	

Table S4: Overview of the results of 48 h acute toxicity testing of gold and silver nanoparticles to *Daphnia magna* Straus, depending on their physico-chemical properties and concentration.

¹polyallylamine hydrochloride

^{II} 3-mercaptopropionic acid

References

- 1. Hashimoto, M.; Yamaguchi, S.; Sasaki, J. I.; Kawai, K.; Kawakami, H.; Iwasaki, Y.; Imazato, S. *Eur. J. Oral Sci.* **2016**, *124*, 68. doi:<u>10.1021/acsnano.6b06040</u>
- Pan, Y.; Neuss, S.; Leifert, A.; Fischler, M.; Wen, F.; Simon, U.; Schmid, G.; Brandau, W.; Jahnen-Dechent, W. Small 2007, 3, 1941. doi:<u>10.1055/s-0042-112810</u>
- 3. Tan, G.; Onur, M. A. J. Biomed. Mater. Res., Part A 2018, 106, 1708. doi: 10.2147/IJN.S153167
- 4. Park, E. J.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Toxicol. In Vitro 2010, 24, 872. doi: 10.1007/s00204-014-1245-3
- 5. Wei, L.; Tang, J.; Zhang, Z.; Chen, Y.; Zhou, G.; Xi, T. Biomed. Mater. 2010, 5, 044103. doi: 10.3390/ijms17091534
- Takamiya, A. S.; Monteiro, D. R.; Bernabé, D. G.; Gorup, L. F.; Camargo, E. R.; Gomes-Filho, J. E.; Oliveira, S. H. P.; Barbosa, D. B. *J. Endod.* 2016, 42, 953. doi:<u>10.1002/wnan.1322</u>
- Li, L. Z.; Wu, H.; Ji, C.; van Gestel, C. A. M.; Allen, H. E.; Peijnenburg, W. J. G. M. *Ecotoxicol. Environ. Saf.* 2015, *119*, 66. doi:<u>10.1016/j.jfda.2014.01.010</u>
- Newton, K. M.; Puppala, H. L.; Kitchens, C. L.; Colvin, V. L.; Klaine, S. J. *Environ. Toxicol. Chem.* 2013, 32, 2356. doi:<u>10.1002/jat.2792</u>
- 9. Blinova, I.; Niskanen, J.; Kajankari, P.; Kanarbik, L.; Käkinen, A.; Tenhu, H.; Penttinen, O. P.; Kahru, A. *Environ. Sci. Pollut. Res.* **2013**, *20*, 3456. doi:<u>10.1002/jps.24001</u>
- 10. Poynton, H. C.; Lazorchak, J. M.; Impellitteri, C. A.; Blalock, B. J.; Rogers, K.; Allen, H. J.; Loguinov, A.; Heckman, J. L.; Govindasmawy, S. *Environ. Sci. Technol.* **2012**, *46*, 6288. doi:10.1897/08-002.1
- 11. Zhao, C.-M.; Wang, W.-X. Environ. Toxicol. Chem. 2011, 30, 885. doi: 10.4491/eer.2010.15.1.428
- 12. Khan, F. R.; Paul, K. B.; Dybowska, A. D.; Valsami-Jones, E.; Lead, J. R.; Stone, V.; Fernandes, T. F. *Environ. Sci. Technol.* **2015**, *49*, 4389. doi:<u>10.1002/etc.703</u>
- 13. Li, T.; Albee, B.; Alemayehu, M.; Diaz, R.; Ingham, L.; Kamal, S.; Rodriguez, M.; Whaley Bishnoi, S. Anal. Bioanal. Chem. 2010, 398, 689. doi:10.1016/j.tiv.2011.03.008
- 14. Skjolding, L. M.; Kern, K.; Hjorth, R.; Hartmann, N.; Overgaard, S.; Ma, G.; Veinot, J. G. C.; Baun, A. *Ecotoxicology* **2014**, *23*, 1172. doi:<u>10.1021/es062629t</u>
- 15. Bozich, J. S.; Lohse, S. E.; Torelli, M. D.; Murphy, C. J.; Hamers, R. J.; Klaper, R. D. *Environ. Sci.: Nano* **2014**, *1*, 260. doi:<u>10.1021/es8026314</u>