JBD30 ORF	Accession ID	Protein Length (amino acids)	Function
32	YP_007392339.1	526	portal protein
33	YP_007392340.1	428	homolog of phage Mu gpF
37	YP_007392344.1	365	protease/scaffold
38	YP_007392345.1	304	major head
41	YP_007392348.1	138	head-tail joining
42	YP_007392349.1	157	tail terminator
44	YP_007392351.1	256	tail tube
46	YP_007392353.1	1158	tape measure
47	YP_007392354.1	318	putative tail protein
48	YP_007392355.1	307	putative tail protein
49	YP_007392356.1	567	tail protein; phage lambda gpM-like
50	YP_007392357.1	273	tail protein; phage lambda gpL-like
53	YP_007392360.1	735	central fiber
54	YP_007392361.1	382	putative pilus binding protein

Supplementary Table 1. Virion proteins of phage JBD30 detect by mass spectrometry, Related to Figure 7A

Source	Genome ID	Anti-CRISPR ID
Pseudomonas phage JBD30	NC_020198.1	YP_007392342.1
Alcanivorax sp. KX64203	NZ_LVIC01000002.1	WP_063139756.1
Pectobacterium phage ZF40	NC_019522.1	YP_007006940.1
Escherichia coli SE11	NC_011413	WP_000765122.1
Naissanis maninaitidis 22221	N7 0 1 D0100000 1	WP_042743676.1;
Neisseria meningiliais 25251	NZ_UALD0100002.1	WP_042743678.1
Listaria managutaganag 10161	NC 017545 1	WP_003722517.1;
Listeria monocylogenes 30181	INC_01/343.1	WP_003722518.1
Streptococcus phage Sfi21	NC_000872.1	NP_049988.1
Streptococcus phage D1811	MH000604.1	AVO22749.1
Sulfolobus islandicus rudivirus 3	NC_030884.1	YP_009272954.1

Supplementary Table 2. List of genomes and anti-CRISPR protein identifiers used in Figure 1

Source	Genome ID	Aca ID
Pectobacterium phage ZF40	NC_019522.1	YP_007006939.1
Vibrio parahaemolyticus	NZ_JPKT01000003.1	WP_080285139.1
Vibrio cyclitrophicus	KP795522.1	AKN37111.1
Phaseolibacter flectens	NZ_JAEE01000001.1	WP_036985669.1
Serratia marcescens	NZ_CP013046.2	WP_060559942.1
Proteus penneri	GG661994.1	EEG86165.1
Shewanella xiamenensis	JGVI01000034.1	KEK29120.1
Oceanimonas smirnovii	NZ_KB908455.1	WP_019933869.1
Brackiella oedipodis	NZ_KK211205.1	WP_028357637.1
Nme NmSL13x2	NZ_NGAT01000003.1	WP_002212356.1
Nme 22472	NZ_OAFV01000002.1	WP_002255676.1
Nme M40030	NZ_QQEW01000023.1	WP_118803841.1
Nme 2842STDY5881035	NZ_FERW01000005.1	WP_042743680.1
Nme NM80179	NZ_ALXV01000004.1	WP_002231710.1
Nme 2842STDY5881013	NZ_FERN01000021.1	WP_061695140.1
Nme WUE2121	NZ_CP012394.1	WP_061384811.1

Supplementary Table 3. List of genomes and Aca protein identifiers used in Supplementary Figures 6 and 7

Purpose	Sequence (5'-3')
Cloning of JBD30 anti-	F: GGGCCCGTCGACTGGCCACTTTCGGACAAG
CRISPR locus into pBTK30 transposon	R: CCCGGGGTCGACTCACGCAGATGGCGGGTCGT
Generation of RT-qPCR	F: TGGTTCAGCCCTCAACAACT
standard for gene A	R: TCTTGAGCATGGCGAGCA
PT aPCP of appa A	F: GCCTCGGTTCAACAGTACGA
KI-qrCK of gene A	R: AACGTGGTACTCCATCGCTTT
Generation of RT-qPCR	F: AGTTCGCCTTTATGGACGAG
standard for gene G	R: ATTTCGGCTCAAGGCTGTTA
PT aPCP of game C	F: CGGGTCCAACTTGGTCTATG
KI-qi CK oi gene o	R: TTTCGTCGAACGGCAGATA
Generation of RT-qPCR	F: ATGAAGTTCATCAAATACCTC
standard for <i>acrIF1</i>	R: TCAGGGGTTTTCACGCCGGG
DT aDCD of acriE1	F: AATACCTCAGCACCGCTCAC
	R: TTGCCGTTTACGACGTTCTC
Generation of RT-qPCR	F: ATGAGATTTCCCGGCGTGAA
standard for <i>aca1</i>	R: TCACGCAGATGGCGGGTCGT
DT aDCD of anal	F: TCAAGAAAGCCGGCATCA
	R: TCCTTGATGTCCTCGCTCAG
Generation of RT-qPCR	F: GAAAAGAACCGCCTACTCGTT
standard for gene <i>37</i> (protease/scaffold)	R: TGGCTTTCAGGAGTTCATCC
RT-aPCR of gene 37	F: ATGAGCACCAGACCCTCAAG
	R: GGGCTGTGTATTCGACACG
Generation of RT-qPCR	F: CTGCAAGAGTTTCTGGATGATG
standard for <i>clpX</i>	R: CTTTATCTGCGACGAGTGTGTC
$\mathbf{PT}_{\mathbf{d}}\mathbf{PCP}$ of $d\mathbf{n}\mathbf{Y}$	F: CGCTTGTAGTGGTTGTATACCG
	R: AAAGTAGTGGGCACAAACTTCC
Generation of RT-qPCR	F: GAGATGCGGTTGAGCTTGTT
standard for <i>rpoD</i>	R: GTCGACAGCGTCCTGAAGAG
$RT_{-a}PCR$ of $rp_{a}D$	F: GGGCGAAGAAGGAAATGGTC
KI qi ek oi ipob	R: CAGGTGGCGTAGGTAGAGAA
Cloning of anti-CRISPR	F: CCCGGGCCCCATGGTGGCCACTTTCGGACAAG
promoter from JBD30	R: CCCGGGAAGCTTGGTTTGAATCCTTGTTGGCGCC
Generation anti-CRISPR promoter deletion	F: AGCCGAAATCGGTAGAACGGCGAGGCGCCAACAAG
recombination cassette	R: CTACCGATTTCGGCTCAAG
Cloning Acal	F: CCCGGGCCATGGCCAGATTTCCCGGCGTGAA
	R: CCCGGGAAGCTTTCACGCAGATGGCGGGTCGT

Supplementary Table 4. Oligonucleotides used in this study, Related to STAR Methos

Purpose	Sequence (5'-3')
Wild type onti CDISPR	sense: ACAAGCGGCACACTGTGCCTATTGCGAATTAGG
while-type anti-CRISER	CACAATGTGCCTAATCTAACG
FMS A	anti-sense: GGTTAGATTAGGCACATTGTGCCTAATTCGC
	AATAGGCACAGTGTGCCGCTTGT
IR1 mutant anti-CRISPR	sense: ACAAGCGTCGTACTGTGCCTATTGCGAATTAGG
nomoter substrate for	CACAATGTGCCTAATCTAACG
EMSA	anti-sense: CGTTAGATTAGGCACATTGTGCCTAATTCGC
	AATAGGCACAGTACGACGCTTGT
IR2 mutant anti-CRISPR	sense: ACAAGCGGCACACTGTGCCTATTGCGAGCTAGT
promoter substrate for	CCCAATGTGCCTAATCTAACG
EMSA	anti-sense: CGTTAGATTAGGCACATTGGGACTAGCTCGC
	AATAGGCACAGTGTGCCGCTTGT
IR1+IR2 mutant anti-	sense: ACAAGCGTCGTACTGTGCCTATTGCGAGCTAGT
CRISPR promoter	CCCAATGTGCCTAATCTAACG
substrate for FMSA	anti-sense: CGTTAGATTAGGCACATTGGGACTAGCTCGC
	AATAGGCACAGTACGACGCTTGT
Generation of IR1	sense: GGCCACTTTCGGACAAGCGTCGTACTGTGCCTAT
mutations in anti-CRISPR	TGCGAATT
promoter	anti-sense: AATTCGCAATAGGCACAGTACGACGCTTGTC
	CGAAAGTGGCC
Generation of IR2	sense: TGACGTTAGATTAGGCACATTGGGACTGCTTCG
mutations in anti-CRISPR	CAATAGGCACAGTGTGCC
nromoter	anti-sense: GGCACACTGTGCCTATTGCGAAGCAGTCCCA
	ATGTGCCTAATCTAACGTCA
Generation of R33A Aca1	sense: TCGGCTGCGCGCGCCTGGCTGATGCC
mutant	anti-sense: GGCATCAGCCAGGCGCGCGCGCAGCCGA
Generation of R34A Aca1	sense: CAGCTCGGCTGCGGCCCGCTGGCTGATG
mutant	anti-sense: CATCAGCCAGCGGGGCCGCAGCCGAGCTG
Generation of	sense: CAGCTCGGCTGCGGCCGCCTGGCTGATGCCG
R33A/R34A Aca1 mutant	anti-sense: CGGCATCAGCCAGGCGGCCGCAGCCGAGCTG
Concretion of $P44A$ A col	sense: GTAATAGCGCATCACCGCGTCACTGAGGCCGAGC
Bellefation of K44A Acai	anti-sense: GCTCGGCCTCAGTGACGCGGTGATGCGCTA
mutant	TTAC
	F: ACGACCCGCCATCTGCGTGAAGGGAACTGCCAGGC
Amplification of <i>rrnB</i> T1	ATC
terminator	R: TTTGCGGGCGGATCAGGTGACGTTCACCGACAAACA
	ACAG
Generation of terminator	F: TCACCTGATCCGCCCGCA
insertion recombination	
cassette	R: TCACGCAGATGGCGGGTC
	F: TAGTTGCGGCCGCAAAATGGATGAATGGTCAAGAAT
Cloning of Aca?	TAAAAAAG
Cioning of Aca2	R: GCGGCCGCAGGCAAAGGATATTAGATTAAATCCGCG
	TGAC

Purpose	Sequence (5'-3')
	F: TAGTTGCGGCCGCAAAATGGATGAAGAAATTTGAAG
Cloping of A and	CCC
Clothing of Acas	R: GCGGCCGCAGGCAAAGGATATTATTTAATGAATCC
	AAAAGTTTTTG
Amplification of pCM-Str	F: TATCCTTTGCCTGCGGCC
for Aca cloning	R: CCATTTTGCGGCCGCAAC
Cloning of <i>aca2</i>	F: CCCGGGCCATGGAGCCTCACCTCCGGCG
associated upstream	R: CCCGGGAAGCTTCTCGAACCGATGAATAAATTATAT
region	GT
Cloning of <i>aca3</i>	F: CCCGGGCCATGGAATTGAATCCGCAATGGTGAAA
associated upstream region	R: CCCGGGAAGCTTTTTGAAATCCTTTCGTTTATCCTTG

Plasmid ID	Purpose	Backbone
pES102	Overexpression of JBD44-targeting crRNA in P. aeruginosa	pHERD30T
pSY100	Overexpression of JBD30 Aca1 in P. aeruginosa	pHERD30T
pSY115	Overexpression of R33A Aca1 mutant in P. aeruginosa	pHERD30T
pSY116	Overexpression of R34A Aca1 mutant in P. aeruginosa	pHERD30T
pSY117	Overexpression of R33A/34A Aca1 mutant in P. aeruginosa	pHERD30T
pSY118	Overexpression of R44A Aca1 mutant in P. aeruginosa	pHERD30T
pSY099	Overexpression of AcrIF1 in P. aeruginosa	pHERD30T
pSY107	Generation of JBD30∆Pacr	pHERD20T
pSY108	Generation of JBD30 IR1 mut	pHERD20T
pSY109	Generation of JBD30 IR2 mut	pHERD20T
pSY110	Generation of JBD30 IR1+IR2 mut	pHERD20T
pSY119	Generation of JBD30aca ^{R33A}	pHERD20T
pSY120	Generation of JBD30aca ^{R34A}	pHERD20T
pSY121	Generation of JBD30aca ^{R33A/R34A}	pHERD20T
pSY122	Generation of JBD30aca ^{R44A}	pHERD20T
pSY182	Generation of JBD30aca ^{R44A} IR1+IR2 mut	pHERD20T
pSY183	Generation of JBD30+rrnB T1	pHERD20T
pSY184	Generation of JBD30aca ^{R44A} +rrnB T1	pHERD20T
pSY105	Encodes anti-CRISPR locus carrying transposon	pBTK30
pSY101	Determining anti-CRISPR promoter region activity	pQF50
pSY102	Determining IR1 mutant promoter activity	pQF50
pSY103	Determining IR2 mutant promoter activity	pQF50
pSY104	Determining IR1+IR2 mutant promoter activity	pQF50
pSY138	Determining <i>aca2</i> -associated promoter activity	pQF50
pSY139	Determining <i>aca3</i> -associated promoter activity	pQF50
pSY123	Expression and purification of JBD30 Aca1	p15TV-L
pSY124	Expression and purification of R33A Aca1 mutant	p15TV-L
pSY125	Expression and purification of R34A Aca1 mutant	p15TV-L
pSY126	Expression and purification R33A/34A Aca1 mutant	p15TV-L
pSY127	Expression and purification of R44A Aca1 mutant	p15TV-L
pSY146	Constitutive expression of <i>aca1</i> in <i>E. coli</i>	pCM-Str
pSY144	Constitutive expression of <i>aca2</i> in <i>E. coli</i>	pCM-Str

Supplementary Table 5. Plasmids used in this study, Related to STAR Methods

pSY145	Constitutive expression of <i>aca3</i> in <i>E. coli</i>	pCM-Str
--------	--	---------

Description	Reference Sequence	Sequence
Anti-CRISPR locus phage ZF40	NC_019522.1	AGCCTCACCTCCGGCGTTGCCGTGGCGCTGTG TGATTTACAGGAAATAAAAAGGCCACGAATG CGGCCTTAGCGATTAAAAAATATGAAATGCCT TGCTTGTTCGCGATTGCGAACATATAATTTATT CATCGGTTCGAGATGGCTCGAACGCTCCTAA CGAGGATTCCACACATGTCTACTGCTTACATCA TCTTTAACTCATCCGTCGCGGCCGTAGTTGATA CTGAGATCGCTAATGGCGCTAATGTCACATTC TCAACAGTGACCGTTAAAGGAGAAATTAACGC GAACCGTGATTTCAATCTGGTTAACGCTCAGA ACGGGAAAATCTCACGCGCAAAACGCTGGGG AAACGAGGCGTCAAATGTGAGTATTTTGGCC GAGAAATAAACCCAACCGAGTTTTTCATCAAA TAATGTGGTCAAAATGACAAACAAAGAACTTC AGGCAATCAGAAAACGATGTTAATGCTGGATGTA TCAGAAGCGGCTGAACACATTGGCCGCGTTTC CGCCCGGAGTTGGCAATATTGGGAGTCTGGAC GCTCTGCTGTTCCTGATGATGTTGAGCAGGAA ATGTTGGATTTAGCGTCAGTCAGGATAGAAT GATGTCCGCTATAGACAAGCGTCTCGCCGATG GCGAACGTCCTAAATTACGTTTTATAACAAG TTGGATGAATACCTGGCTGACAACCCGATCA CAATGTAGAATACCTGGCTGACCACCCGATCA CAATGTAGAATACCTGGCTGACAACCCGATCA CAATGTGATCAGAATACCTGGCGCTTAACGCTCGACG TTGCCGCACTCTATTACACTGAGGATACACG GTTTGAAAAACCTGGCTGACCACCCGATCA CAATGTGATCAGGATGGCGCTCTGAGCCAGTCTG TTGCCGCACTCTATTACACTGAGGGTCACGCG GATTTAATCTAA
Anti-CRISPR promoter region and <i>aca3</i> gene from <i>Neisseria</i> <i>meningitidis</i>	NZ_FERW010000 05.1	TCCCAATTACCTGTTTGAAGCAGTATTTGTTTC TCAAATGACCAATTTTTAACCAAAGGCCGCTA ATGTGGCCGTTTTTTTTGTTCTCATACTCTTCT AATTTAGGGTCTCTGCCTCCAAGCTCCCGGTCT CGCCGCCGACGGCTCGGGAGCAGGGCATAGC CATAAAAGCTTACATTGTGTGCTAGACTATAT CAAACTACAACTACGAAAGGAAATCCGAACA CTATGAATAAAACTTATAAAATTGGAAAAAAT GCCGGGTATGATGGCTGCGGTCTTTGTCTTGC GGCCATTTCTGAAAATGAAGCTATCAAAGTTA AGTATTTGCGCGACATTGTCCTGATTACGAT GGCGATGATAAAGCTGAGGATTGGCTGAGAT GGGGAACGGACAGCCGCGTCAAAGCAGCCGC TCTTGAAATGGAGCAGTACGCATATACGTCGG TTGGTATGGCCTCATGTTGGGAGATTGTCAA

Supplementary Table 6. Sequences for cloning of *aca2*, *aca3*, and associated promoter regions, Related to STAR Methods

CTATGAAGAAATTTGAAGCCCCTGAAATTGGC TATACACCTGCCAATCTTAAAGCACTGAGAAA ACAATTTGGGCTTACACAAGCTCAGGTAGCAG AAATTACTGGTACAAAAACCGGATACAGCGTC CGCAGGTGGGAAGCAGCAATTGATGCCAAAA ATCGCGCGGGATATGCCGCTCGTAAAATGGCAA AAACTTTTGGATTCATTAAAATAATGA