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Strain Bands, Cell Seeding, and Interface Simulation Model

To characterize the expected number of strain bands in experiments that used the open-

walled micro�uidic device, we created a sequential coin-�ipping model for the initial seed

strain type and placement of cells. Our goal was to create as simple a model as possible

that captures the correlation between the number of cells seeded in an experiment and the

number of resulting strain bands. We also developed a strain-interface simulation model

where each interface from the coin-�ipping model performs a random walk at a �xed rate in

order to capture the strain ratio �uctuations observed in experiments. Details of the models

follow below.
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Seed cell and band formation modeling

To simulate loading of cells in the trap, our model �ips a fair coin to choose one of two strains

and places the seed cell along the centerline, where we assume a one-dimensional reduction

of the initial seed positions in the trap. After cell loading, we assume initial seed cells grow

symmetrically until making contact with another growing seed cell colony; at which time,

if the two colonies are of di�erent strain types, the merged colony forms a strainA-strainB

interface. The colonies in this way continue to expand (possibly forming other interfaces with

other single or merged colonies) until the trap �lls (details of the strain-interface simulation

algorithm for trap �lling is given below). We also assume that a full trap results in vertical,

single cell-width columns, where the identity of each column is of strain type `A' or `B' (in

the experimental data these were sender or receiver cells) and that each column is derived

directly from an initial seed cell colony. Cells are thus modeled as being initialized along the

centerline of the trap and then being grown laterally and uniformly until the trap consists

completely of side-by-side columns. Our model is reductive and does not capture the full

complexity of the two-dimensional trap geometry and dynamics of trap �lling (for example,

seed cells will not always be located near the centerline of the trap and complex hydrodynamic

e�ects can lead to shifting of cells bands during trap �lling). However, we use our model in

Fig. 5 in the main text, which shows good agreement between the number of seeded cells

and the initial number of bands formed as measured in the experiments.

In this model, we are interested in the expected number of bands of cells vs. the number of

cells seeded, where a band is a contiguous group of columns, all of the same strain type. The

number of initial bands in an experiment is determined by the number of strainA-strainB

interfaces that form during the colonies' expansion phase after cell seeding. In our model,

the number of bands is determined by the number of transitions from one strain type to the

other ('A' to 'B' or vice versa) in the initial coin-�ipping initialization of seed cells. Since our

model restricts cells to grow uniformly and laterally, no additional bands are generated after

seeding in our one-dimensional reduction (but the width of each band increases uniformly
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for each band to model cell proliferation up to trap �lling).

Let n be the number of seed cells (seeded with equal probability 0.5 of each strain type)

and let b represent the number of resulting bands. The probability distribution of bands

b as a function of seed cell count n follows a binomial distribution with the inclusion of

one initial success trial. Here, a �success� is de�ned as the creation of an additional cell

band upon seeding an additional cell (a �trial�) and results from a trial where the strain

type changes from that of the previous trial. To account for the �rst seed cell forming the

�rst band, we begin with one success with the �rst trial. The number of Bernoulli trials is

then n− 1 after the initial strain is placed to form the �rst band and the probability of the

next success is p = 0.5 (unbiased probability for each strain) for each successive trial. Our

modi�ed binomial distribution of resulting bands for n ≥ 1 trials (seed cells) is then:

Pr(b, n, 0.5) =


0, for b = 0;(
n−1
b−1

)
· (0.5)n−1, for b = 1, 2, ..., n.

(1)

The expectation and variance of the number of bands is:

E[b] =
n+ 1

2
var(b) =

n− 1

4
. (2)

In Fig. 5, we used a range of ±3 standard deviations from the mean of this distribution for

each number of initial seed cells to compare to the experimentally reported band count.

Strain-interface simulations to model strain ratio dynamics

Using the above cell seeding construction, we wanted to investigate the dynamics of strain

fraction �uctuations by extending the model to include a birth/death spatial invasion process

at the interfaces of the bands. The fraction of one strain in the population in experiments is

computed by pixel counts of a �uorescent image (e.g., yfp) relative to the total pixel count of

the entire image within the trap boundary. Strain fraction is, however, spatially correlated
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since bacteria grow axially and tend to form columns of the same strain lineage as cells

proliferate (see further discussion of this assumption below). As above, our model assumes a

one-dimensional reduction of the bacterial population such that an idealized column of cells

is then represented by a single cell along the centerline of the trap.

In the main text, we report a correlation between the measured temporal instability

of the population fraction of one of the strains (measured using the strain fraction range

over the experiment) and the number of initial strain bands formed. We wanted to use our

model to investigate invasion rates across the band interfaces to see if this could account for

the measured temporal variation and correlation with the initial number of bands. Thus,

we extended our model to include a birth/death process at the strain band interfaces such

that at a �xed rate and for all interfaces, one band (chosen with equal probability) of each

interface grew by a Poisson-distributed number of cells and deleted an equivalent number of

cells from the other band, thus keeping the total cell count constant. We thus performed a

random walk (using a mean 1 Poisson-distributed step size) of each interface position; this

generated a time series for the resulting strain fraction from which we measured the resulting

strain fraction range over a single simulation and computed its mean and standard deviation

over 10,000 simulation runs. In some cases a band would become extinct, which resulted in

combining the two adjacent bands and in reducing the total band count by two (if in the

bulk) or by one (if on the edge). If the population then became �xed by one strain of the

population, the simulation run was terminated.

In order to keep our model as simple as possible and to avoid over-�tting, we used a single

rate parameter to �t our model to the experimental strain fraction range data reported in

the main text. We de�ned a rate parameter X that represents the number of interaction

events per interface per experimental hour. We found that setting X = 4 gave good trend

agreement between simulations and experiments (see Fig. S10) and we set this parameter

by matching the mean strain ratio range for the smallest size trap. This parameter is meant

to capture stochastic interactions between cells that occur in the course of an experiment
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that lead to changes in strain composition in a local area of the trap (further discussion

given below). We believe this parameter is physically grounded since cell division time in

exponential phase and in rich media of the experiments is ≈ 20 − 30 minutes. Thus, at

a thirty minute division time, for example, we expect (on average) 2 division events each

experimental hour for each side of a strainA-strainB interface at an idealized mother-cell

position and that division events are a likely cause of cell-folding that can lead to lateral

invasion across strains. Although this is an over-simpli�ed model of the role of cell division

in stochastic interactions between strains, we are motivated to keep the model simple in

order to investigate how it scales with trap size and the number of seed cells.

In our one-dimensional model, a single cell position represents a �xed fraction of the cell

population and replacement of one strain by another alters the strain ratio (we only simu-

late interactions at an interface between strains since we do not model mutations between

strains). We used a Poisson distribution of mean 1 for the invasion depth to include both

non-invasive interactions and interactions with a lateral reach greater than one cell width

in each simulation step. The invasion depth was sampled for each interface and for each

interaction time step independently.

The algorithm for our simulation is as follows:

1. Input: (set from experimental data) width of trap in microns w, number of seed cells

n, simulation time T (hours); (free model parameter) interaction rate parameter X

2. Perform coin-�ipping sequence n times to generate the initial band structure and record

the initial number of bands b.

3. Proliferate each seed cell by doubling until the population size �rst exceeds the width

of the trap (we assume each cell is one micron wide). To reduce the population size

to w, remove one cell sequentially from each band, removing a band if its cell count

goes to zero and merging �anking bands (if not an edge band). This completes the

initialization stage.
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4. Main loop: Sequentially for each interior band interface, randomly choose an invasion

direction and add (subtract) a mean 1 Poisson random number of cells to (from) the

invading (invaded) band. Remove and merge bands if a band cell count reaches zero

as necessary. Compute and record the resulting strain fraction to generate the time

series.

5. Iterate the sequential band interface birth/death process (interacting all interfaces in

each iteration) X times to complete one hour of simulated experimental wall time and

continue for T hours of iterations.

6. Repeat each simulation 10,000 times and generate statistical data for initial stripe dis-

tribution, (vs. number of seeded cells), strain fraction range (max−min) and standard

deviation across simulation runs.

In Fig. S10 we show the result of 10,000 simulation runs for the 5 di�erent experimental

trap widths using seed cell counts that resulted in the average number of bands (see ex-

pectation formula, above) as reported for each trap size in the �rst �ve panels of Fig. S11.

We used a simulation time of 20 hours, which approximates that in the experiments. In

Fig. S11 (bottom-right panel) we compare the simulated strain ratio range while varying the

number of seed cells in the 2000 µm length trap, which captures the increased strain fraction

variability with increasing number of seed cells, as reported in the main text.

Modeling discussion

Our simulation model captures two principal trends reported from our experiments of two-

strain consortia in the open-walled micro�uidic device: (1) Increasing the trap width de-

creases the expected strain fraction variation (as measured by its experimental range), and

(2) increasing the number of seeded cells increases this variation for a �xed trap size. Our

model is, however, an over-simpli�cation in many respects and does not capture behaviors

that may also contribute to population dynamics in our two-strain experiments. Experimen-
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tal data clearly show, for example, that cells do not form perfect columns (as assumed in

our one-dimensional reduction) and may move laterally due to hydrodynamic e�ects (due

to media �ow in the �anking channels) or cell blockage (lower-height irregularities of the

trapping region and/or larger than average cell diameter). Such e�ects could account for

the di�erences seen in the larger-width trap experiments and simulations (with our �tting,

simulations showed a lower than experimentally reported strain fraction range for the larger

devices), but further investigation would be required to fully support this claim (for exam-

ple using high frame-rate image capture, lineage tracking, and hydrodynamic media �ow

models). We believe that a Poisson distribution for the invasion depth for each interface

interaction partially captures these experimental e�ects, but our simulations suggest that

their severity may scale with increasing trap size, though properly attributing all sources is

di�cult without more precise models.

Our one-dimensional model is based on the emergent spatial correlations that result from

axial growth of bacteria in the close-packed environment of the micro�uidic trap. In contrast,

our model would not be appropriate for bacterial cells in a low density environment where,

for example, run-and-tumble behaviors dominate cell motion and one may expect a di�u-

sive model to be more appropriate for strain interactions. Although �mother-cell positions�

(cell-pole positions that determine the strain type in local regions of the trap, see main text)

are frequently not centered in the trap and can shift position due to the stochastic lateral-

motion in�uences mentioned above, their progeny still generate strong spatial correlations

from proliferation and formation of quasi-columnar cell �ows. Thus, mother-cell positions

account for the strain identity of an entire lineage of cells on some spatial and temporal scale

and although such lineages �uctuate in size (due to channel removal and secondary lateral

mixing), an invasion of a mother-cell position due to stochastic �uctuations of the two strains

leads to �ushing of the previous lineage locally. Full accounting of the causal chain for cells

exiting the trap is challenging and computationally costly and our one-dimensional reduction

attempts to simplify the modeling while still capturing the experimentally observed corre-
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lations. We conclude that the number of strain-interfaces and the rate of their interactions

with stochastic local invasion of mother-cell positions can account for the trends we see in

the experimental data. However, experimental environments in micro�uidic traps are subject

to many sources of noise that are di�cult to predict or control. When employing cell-cell

signaling in consortial experiments, one wants to keep the density of strain interfaces high

to improve coupling between strains. However, our data and modeling suggest that increas-

ing the number of such interfaces can increase the temporal instability of the strain ratio,

which is also of concern both locally and globally, in order to balance functional and spatial

distribution of the strains in a multi-strain experiment.

Di�usion Model

Let x ∈ R+ ≡ [0,∞). Partiton R+ into two subsets I1, I2, where I1 = [0, Ls] and I2 =

(Ls,∞). I1 will correspond to the region where we have a densely packed sender strain.

Hence, Ls represents the thickness of the stripe formed by these sender cells. I2 will be

the region where receiver cells, for example, may exist. We are interested in understanding

the density of a chemical signal U produced by the sender strain uniformly in I1 at a point

that is a distance δ away from the right endpoint of I1 (i.e. a distance δ from the stripe of

sender cells) as a function of the thickness of the stripe, Ls. Let u1(x, t) denote the density

of chemical U at a point x at time t in I1. Let u2 describe the corresponding density in I2.

The following are the dynamics for u1, u2:

∂u1
∂t

= α +D
∂2u1
∂x2

− γu1, x ∈ I1 (3)

∂u2
∂t

= D
∂2u2
∂x2

− γu2, x ∈ I2 (4)

The signal di�uses and degrades at a rate γ in all of R+ but in I1 the signal is produced

at some rate α. This is what is captured in these equations. We note that γ represents

a degradation in a loose sense. Most likely this rate will represent a rate of absorption or
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consumption of the signal molecule. The boundary conditions are:

∂u1
∂x

∣∣∣
x=0

= 0

lim
x→∞

u2 = 0

u1(Ls, t) = u2(Ls, t)

∂u1
∂x

=
∂u2
∂x

∣∣∣
x=Ls

The �rst boundary condition says none of the chemical exits from the boundary at x = 0.

The second boundary condition keeps the solutions physical by preventing blowup. The last

two boundary conditions impose continuity in the density and �rst derivative of the density

at the partitioning point x = Ls. Examining this system at steady state and imposing the

�rst two boundary conditions, we obtain

u1(x) = 2A cosh
(
x

√
γ

D

)
+
α

γ
(5)

u2(x) = Be−x
√

γ
D (6)

The last step is to impose continuity at x = Ls. In doing this, we obtain the linear system

Av = b,

where

A =

 2 cosh
(
Ls
√

γ
D

)
e−Ls
√

γ
D

2 sinh
(
Ls
√

γ
D

)
e−Ls
√

γ
D

 ,v =

 A

B

 ,b =

 −α
γ

0


We now plot u2(Ls + δ) as a function of Ls. We can also plot the density pro�le of the

chemical signal u(x). It is also straightforward to generalize the above framework to the

case where there are receiver cells on either side of the region where sender cells are densely

packed. In this case, we let our domain be all of R and partition it into I1, I2, I3, where
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Figure S1: Plot of u2(Ls + δ) as a function of Ls. Parameter values are D = 1, γ = 0.01,
δ = 2, and α = 10.
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Figure S2: Plot of u(x). Parameter values are D = 1, γ = 0.01, Ls = 10, and α = 10.
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I1 = (−∞,−Ls/2), I2 = [−Ls/2, Ls/2], and I3 = (Ls/2,∞). We let ui(x, t) be the density of

chemical U in the set Ii, for i = 1, 2, 3. We impose zero conditions at x = ±∞ and continuity

conditions analogous to the above case at x = ±Ls
2
.

∂u1
∂t

= D
∂2u1
∂x2

− γu1, x ∈ I1 (7)

∂u2
∂t

= α +D
∂2u2
∂x2

− γu2, x ∈ I2 (8)

∂u3
∂t

= D
∂2u3
∂x2

− γu3, x ∈ I3 (9)

We study this system at steady state. Imposing continuity boundary conditions yields a

4 × 4 linear system analogous to the 2 × 2 system solved in the one-sided case. The key
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Figure S3: Plots of u(x) in the symmetric case. Parameter values are D = 1, γ = 0.01,
Ls = 10, and α = 10.

parameter in all these results is the spatial correlation length, ξ ≡
√
D/γ, along which the

decay of the signal molecule produced by the sender strain occurs. Figure S1 shows that for

0 < Ls < ξ, the density of signal felt at an area outside the stripe of sender cells increases

as the thickness of the stripe increases. On the other hand, for Ls > ξ, there is not much

change in the density of signal felt outside the stripe. Hence there is an optimal value for

the thickness of the sender stripe, given by Ls = ξ, where a sender stripe can maximize its
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range of in�uence at a minimal metabolic load. Figures S2 and S3 show that the decay of the

spatial pro�le of the signal molecule occurs with a characteristic length scale given by ξ. This

simple framework provides us with a means to look at several things. Namely, it gives an es-

timate to how far a receiver cell can be from a sender cell and respond to the signal molecule.
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Supplementary Figures

Figure S4: Signaling in the small hallway trap. Images of sender cells (yellow) cultured
with receiver cells (cyan) over time in a hallway trap. Receiver cells �uoresce cyan in the
presence of C4 HSL produced by sender cells. These images show that all receiver cells
�uoresce cyan whenever there are sender cells present - up until the loss of sender cells in
the trap in the rightmost image.
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Figure S5: Schematic of the entire micro�uidic devices. Blue regions are the 10 micron
tall �ow channel and the red regions are the cell-trapping regions. Blue triangle are ports to
which media, cells, and waste reservoirs are connected. (a) The hallway trap device. Traps
(red) are 1.5 microns tall. (b) The original (2mm) open trap device. Traps (red) are 0.95
microns tall. (c) The parallel device with four 2mm long open traps or with four di�erent
length traps: 1mm, 0.5mm, 0.225mm, and 0.1mm. Traps (red) are 0.95 microns tall.
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Figure S6: Non-communicating strains have equal growth rates and sizes. (a)
Growth experiments in a 96-well plate over time show no signi�cant di�erence in the growth
rate of the two non-communicating strains. (b) Microscope images show similar size and
shape of non-communicating strain in the �uidic devices.

Figure S7: Segmented open trap examples. Data from four additional open traps when
segmented. Image of each trap once �lled with cells is shown below each graph. Blue lines
are the entire trap yellow strain fraction; gray solid and red dashed lines are data from each
hallway-length segment. Red dashed lines are segments that at some point lose one strain.
All data looks noisy with hallway-like strain instability except the bottom right which shows
a trap with only has about 2 bands of cell strains.
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Figure S8: Time Series from varied length traps. Data of yellow strain fraction over
time from each varied length trap experiment averaged in Fig. 4. As the open trap gets
shorter, the strain ratios become more variable over time.
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Figure S9: Average strain ratio time series variance. The variance of the yellow strain
fraction over time is shown to compare with Fig. 4 in the main text, which plots the range
of the yellow strain fraction. The two plots are qualitatively the same and show the trend of
increased strain stability with increasing size of the cell-trapping area. Closed blue circles:
average strain fraction variance of the open-walled devices of each trap size. The open
circle for the longest open-walled device is lowered (open blue circle) when including only
experiments with the 6 smallest number of resulting stripe bands (see main text and Fig.
S10 and Fig. S11) Red star: same data but for the �hallway� device.
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Figure S10: Average strain fraction range vs. trap area for reduced data in the
longest trap size: comparing model and experiment. We reduced the experimental
data set in the longest open-walled trap to compare with Fig. 4 in the main text. The reduced
data re�ect a similar number of striping bands as for the other trap sizes. Filled black circles:
average yellow strain fraction range of the open-walled devices of each trap size (x-axis: cell-
occupied trap area) with the last data point including the reduced data set only. Open black
circle: Mean range while including all data for the longest trap size (same as in Fig. 4). The
reduced data for the longest trap size support a conclusion that increased numbers of seed
cells correlated with an increased number of measured striping bands in the experiment,
which, in turn, correlated with measured strain ratio variability (our simulations support
this claim, see Fig. S11). Model simulations interact strain band interfaces by seeding cells
with a one-dimensional random placement and performing a random walk of the interface
locations using a Poisson process of rate one to determine the step size. The single parameter
of the model (the number of interactions per interface per simulated experiment hour) was
set to �t the smallest trap size strain ratio range mean to that of the experiments. Compared
to experiments, the simulations show a lower than measured strain ratio range for the larger
trap and an overal higher experiment-to-experiment variability (error bars, ± one standard
deviation from the mean), which we attribute to observed trap exit clogging and e�ects from
hydrodynamic �ow.
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Figure S11: Experimental strain fraction range vs. measured number of striping
bands for each trap size. Data for each length of open trap showing measured yellow
strain fraction range vs. measured number of striping bands for each experiment in each
device. Solid lines are linear least-squares �t of the data. In the 2000µm length device, open
blue circles show the entire data set, circles with �lled + show the reduced data set, chosen
to comprise the 6 data points with the smallest number of striping bands (thus, comparable
to the data from other trap lengths). Blue line: least-squares linear �t to the reduced data.
Cyan line: least-squares linear �t for the entire data set. In the last panel, we simulated
the 2000µm length device using a range of seed cell sizes that resulted in the number of
initial bands shown. While we capture the trend of increasing strain ratio instability with
increasing number of stripes in this size device, the simulated interactions from our simple
modeling do not capture the strength of the interactions as measured in experiment. We
attribute the di�erences to additional stochastic behavior, such as hydrodynamic �ow and cell
blockages that lead to spontaneous lateral cell �ow, which are not captured by our simplistic
interaction model. Seed cells were 8, 16, 32, 64, 128, which resulted in the expected number
of initial stripes formed 4.5, 8.5, 16.5, 32.5, 64.5, respectively. Each simulated trap size was
performed 10,000 times. Shown are mean strain fraction range and standard deviation with
linear least-squares �t.
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Figure S12: Seeded cells clumped together. This image is of the cells seeded into the
last open trap from Fig. 5. As can be seen in the zoom in of the far left hand side of the
trap, many cells have clumped together during the attempt to load a high number of cells
into the trap. About 40 of the 123 cells seeded into the trap are in this small segment of the
trap. Cells that are already clumped together when seeded will e�ectively act like one cell or
colony and form one total band rather then each from their own band of cells when growing
and �lling the trap. We count touching cells of the same strain as one initial �colony� for
the x-axis of Fig. 5.

Figure S13: Signalling in open trap. (a) Distribution of CFP intensity of receiver cells in
a well mixed open trap. All cells have �uorescence levels above background. (b) Distribution
of CFP intensity of receiver cells in a less mixed open trap. Receiver cells further away from
sender cells do not express signi�cant levels of CFP.
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