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I. SUPPORTING INFORMATION

A. Data Processing

The CAMD database stores data using CDISC standards, specifically the Study Data

Tabulation Model (SDTM), which defines a common schema for clinical trial data and is

the required standard for clinical data submissions to the United States Food and Drug

Administration (FDA). In this format the data is already highly structured; therefore it is

possible to develop data processing pipelines that can apply to SDTM data in general and

not simply the particular database used here. We describe the general architecture of our

data processing pipeline and the CAMD-specific processing used.

The goal of our processing pipeline is to arrive at data that may be directly used by

machine learning algorithms to build patient-level models. This means:

• Data must be numerically formatted, such as numeric values, ordinal values for scores,

and one-hot encoding for categorical variables. For text or image data, this may involve

feature extraction, e.g. through a word2vec model or an autoencoder.

• Data must be patient-specific, and can extend over time in regular intervals. For

example, if we have cholesterol measurements for a given patient at 1, 2, 5, and 12

months, but are modeling the population at 3-month intervals, then we may average

the 1- and 2-month time point values and will have a missing entry between the 5-

and 12-month values.

Data arrives in Comma Separated Value (CSV) formatted text files, with abbreviation

encodings for file and variable names. Many of these abbreviation are generic to SDTM and

some apply specifically to disease areas. A translation table, such as one provided by CAMD,

may be used to automatically convert abbreviations to human-readable names. Using this

translation and simple type inference on variables, the data is ingested into a SQL database

via a simple script. We label this data in this form as the raw database.

The main component of the processing pipeline extracts data appropriate for training

and evaluating machine learning algorithms. This is done on a per-variable basis, meaning

the primary functions in the pipeline produce data for only a single variable; this processing

is then repeated over all variables of interest. Processed data is stored in the processed
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database and may directly be used to construct datasets for machine learning. The steps in

the processing are:

• Declare which columns and tables from the raw database will be used to produce the

data for a given variable.

• Declare a processing function to convert this data into the appropriate form.

• Declare a location in the processed database where the data will be stored.

• Query the raw database for the data, apply the processing function, and store the

result in the processed database.

The processing functions may be common, such as one-hot encoding categorical labels, or

they may be custom, such as standardizing units for a particular laboratory measurement.

Such custom functions form the bulk of database-specific code that must be written. All of

the above processing steps can easily be encoded in configuration files, meaning the process

of preparing data for machine learning is simple and repeatable.

Finally, datasets may be constructed from the processed database by merely specifying

which variables are to be used. This step is also performed via a configuration file. Additional

filtering of patients, e.g. by requiring they have data present for a certain number of time

points, is straightforward to apply.

We have developed a python library to process data as described above. This library

fully handles the interface with the SQL database, has common data conversion functions,

and provides utilities to provide summary statistics and type inference for variables in a

dataset. For any specific project, such as the CAMD database, most of the processing is set

up by writing YAML configuration files that are simple, human-readable, and easily verified.

The remainder involves writing custom processing functions in python for specific variables.

This setup makes it straightforward to apply our machine learning models to other clinical

data modeling problems.

1. Variables Used in Training

Variables relevant to modeling AD progression were extracted from the CAMD database

using the method described above, and 44 variables without substantial missing data were
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Category Name Units Notes

ADAS Commands counts 0− 5 ordinal range

ADAS Comprehension counts 0− 5 ordinal range

ADAS Construction counts 0− 5 ordinal range

ADAS Delayed Word Recall counts 0− 10 ordinal range

ADAS Ideational counts 0− 5 ordinal range

ADAS Instructions counts 0− 5 ordinal range

ADAS Naming counts 0− 5 ordinal range

ADAS Orientation counts 0− 8 ordinal range

ADAS Spoken Language counts 0− 5 ordinal range

ADAS Word Finding counts 0− 5 ordinal range

ADAS Word Recall counts 0− 10 ordinal range

ADAS Word Recognition counts 0− 12 ordinal range

MMSE Attention and Calculation counts 0− 5 ordinal range

MMSE Language counts 0− 9 ordinal range

MMSE Orientation counts 0− 10 ordinal range

MMSE Recall counts 0− 3 ordinal range

MMSE Registration counts 0− 3 ordinal range

TABLE I. Cognitive variables included in the model.

identified and used for the model. Tables I and II lists all variables, their units, and specific

processing considerations for each. Each laboratory test variable is converted to the units

given, and all transformations applied to train the models are inverted for analysis. Ordinal

variables are rescaled to maximum value 1 during training, and unscaled for analysis. A

supplemental CSV file is provided containing summary statistics (mean, standard deviation,

and fraction missing) for each variable at each time point, extending the baseline information

provided in Table I in the main text.

Of the 6945 patients in the CAMD database, very few have data after approximately 18

months from baseline. A 3-month (90-day) interval was a suitable interval such that most

patients have data at every time point; shorter intervals yielded groups of patients without
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data at some time points. Therefore, we chose to represent all temporal variables in 3-month

intervals from 0 (baseline) to 18 months, giving 7 available time points for each patient.

2. Patients Used in Training

To model progression, we are most interested in patients with longer trajectories. There-

fore, we selected the 1909 patients that have data at the 15- or 18-month time points. All

evaluation, including CRBMs and supervised models, was performed using 5-fold cross val-

idation (CV) on this dataset. Each fold has a distinct division of these 1909 patients into

training, validation, and testing groups. To construct these CV datasets, we randomly di-

vided the 1909 subjects into equal (up to one patient) groups each containing 20% of the

data. For each fold, the 20% of the data is used as the test dataset, and the remaining data

is divided into a training set (with 75% of all samples) and a validation set (the remaining

5% of all samples). In each fold, models are trained on the training set, hyperparameters

validated on the validation set, and then evaluated on the testing set. All results shown in

this paper are from evaluation on these test sets or other completely out-of-sample data.

B. Motivation for CRBMs

Boltzmann machines are a well-known, standard machine learning algorithm for modeling

relationships between data. They provide several features critical to modeling clinical data

not found in most machine learning models:

• They can easily model multimodal data. Different neuron types may be used to model

continuous numeric, ordinal, Bernoulli, or categorical data.

• They allow for conditional and generative sampling. If some clinical data is known for

a patient, it can be used to predict unknown data for that patient. For example, an

initial population of an AD clinical trial may be defined in terms of standard inclusion

criteria, such as age, sex ratio, and ADAS-Cog scores, and the remaining baseline data

and any future data may be predicted.

• As a consequence, they naturally handle missing data. The model itself may be used

to impute missing values from the learned joint probability distribution of the data.
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This may be done during training, meaning missing data can be directly fed into the

model.

• They are stochastic, meaning data may be sampled. Stochastic models naturally

provide an estimate of their uncertainty through this sampling. For clinical data, the

consequence is that the model returns both a prediction and an uncertainty for any

clinical variable being predicted.

Conditional Restricted Boltzmann Machines [1–4] provide a way to model time series

data using the natural capabilities of Boltzmann machines. Our CRBM contains the visible

units for multiple time points, with a standard hidden layer. The visible units are organized

as:

vCRBM = vstatic ⊕ vt ⊕ · · · ⊕ vt+k , (1)

where k is the time lag of the model and ⊕ signifies concatenation. In our model, we

use k = 1, so that two time points are learned simultaneously. The static units are only

used once over all time points, as they are constant over all times. The model learns the

complete joint probability distribution between all k+1 adjacent time points simultaneously,

p(vstatic,vt,vt+1, . . . ,vt+k). That means that any conditional sampling of the data may be

performed, such as predicting the data for a time point given the previous k time points. A

baseline cohort may be simulated by sampling from the model and using the first time point.

This treatment of the data to allow for learning inter-dependence between time points is the

only distinction of a CRBM over a standard RBM.

C. Details of the CRBM Implementation

Unlike feedforward neural networks, there is no widely adopted computational library

providing a high-level interface to build and research Boltzmann machines. However, there

are nascent libraries aimed at providing these tools [5]. Alternatively, the fundamental

algorithms needed to represent, train, and sample from Boltzmann machines may be built

from commonly used tensor manipulation and machine learning libraries. Here we describe

the ingredients in the implementation of CRBMs used in this work.

A CRBM is a type of Restricted Boltzmann Machine (RBM), where the organization of

the visible units is particular to the time-dependence of the data. That is, without particular
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temporal labels on the visible units of the CRBM, the model is simply an RBM. CRBMs

can be trained the same way as RBMs, except that the temporal nature of the data allows

for a different organization of the data used to train the model; the following subsection

describes the particulars of training CRBMs in more detail.

An RBM is a Boltzmann Machine where the connections in the model are restricted to

only being inter-layer, meaning visible units are connected to hidden units but there is no

direct connection between visible units or between hidden units. The model is represented

in terms of a set of parameters, namely those in Equation 1 in the main text. Recalling that

equation,

p(v,h) = Z−1 exp

(∑
j

aj(vj) +
∑
µ

bµ(hµ) +
∑
jµ

Wjµ
vj
σ2
j

hµ
ε2µ

)
, (2)

Each unit of the visible and hidden layers has bias parameters determined by the choice

of functions aj and bµ, as well as scale parameters σj and εµ. The connection between the

layers is parameterized by the weights Wjν .

Simulations with an RBM are performed via sampling. For any particular data type,

Equation 2 specifies how to sample values of the visible or hidden units, where conditioning

on particular unit values may occur. However, for any unit, we need to know the constraints

of the data type for that unit; for example, if the unit represents a Bernoulli variable that only

takes on values 0 and 1, then sampling should only return those values. These constraints are

encoded in sampling functions that define conditional probability distributions for each data

type (and consequently allow for sampling for each unit). Because sampling from Equation 2

directly is computationally infeasible, sampling is performed via Markov Chain Monte Carlo

(MCMC), described well in [6]. In MCMC, all visible units are sampled conditioned upon

all hidden units, and then vice versa, with this procedure repeating many times to sample

from the approximate joint probability distribution defined in Equation 2.

Our implementation of RBMs uses the above methods to parameterize and sample from

models. Training is performed by using the analytically computed gradients from each

parameter under the objective function to determine updates to the model. Like the con-

ditional probabilities used in sampling, these gradients are expressed as functions that are

called as necessary to numerically compute values. Training uses the same essential sam-

pling methods described above, with the samples from the data and the model both used to

compute gradient updates as described in [2].
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D. Details of Training

The CRBM is trained on the data from adjacent pairs of time points. If xt is the vector of

time-dependent variables for a patient at time t and xstatic is the vector of static variables for

the same patient, then the visible units used to train the CRBM are v = {xt+1,xt,xstatic}, a

concatenation of the data from the adjacent time points t and t+ 1 with the static variables

represented only once.

When training the CRBM, the data for each patient in the training and validation groups

are reorganized into all adjacent pairs of frames. Since each patient has data for 7 time

points, they contribute 6 pairs of time points (which we will call samples). Inside of each

group samples are all shuffled so that minibatches contain a mixture of patients and times.

The CRBM has a single hidden layer of 50 ReLU units, and is trained using the methods

described in [7]. The objective function C is a linear combination of log-likelihood L and

adversarial A objectives,

C = −γL − (1− γ)A , (3)

where γ is a parameter weighing the relative size of the two objectives. Parameters used to

train the CRBM are listed in Table III. The training setup is similar to those used in [7]; here

we use a random forest classifier for the adversary. Temperature-driven sampling, where the

temperature is sampled from an autocorrelated Gamma distribution, is not used, though

the model performance is not especially sensitive to this choice.

Notable dynamics were observed during the training process. Within 100 epochs, metrics

monitored during training such as KL divergence and reverse KL divergence achieve values

close to their final values. Sampling from the model at this stage, the model has relatively

poorer performance for patients with extremal ADAS-Cog scores than those near the mode.

Most importantly, during the early stages of training the model has a strong regression to

the mean effect for ADAS-Cog score outliers, where the model predicts patients with a low

score progress rapidly and those with a high score improve – the opposite of what is observed

in the data. Continuing training allows the model to unlearn this behavior and correctly

learn a progression from the mean, where higher scoring individuals progress more rapidly.

We expect that this feature of training, where it takes a longer time to effectively learn the

behavior of outliers, is common.
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E. Details of Progression Predictions

This subsection gives details on the modeling for Figure 5B. A linear regression, random

forest regression, and neural network were trained to predict the ADAS-Cog score change

from the baseline patient data at a single given readout time. The CRBMs are also used

to predict the same score change. The performance of all the algorithms are very similar;

it is likely additional patients or additional data predictive of patient progression would be

needed to substantially improve the performance of the models. For example, we found

that the addition of the ApoE ε4 allele count to the baseline variables decreases the RMS

error by 5–10%. This section gives details on the training of the supervised models and the

evaluation of all models.

The supervised models are trained from the baseline time point data to predict the ADAS-

Cog score change from baseline to readout. All possible time points (3, 6, 9, 12, 15, and

18 months) are used as readout times, and separate supervised models must be trained for

each readout time. The same CRBM model may be used for all readout times.

However, there is missing data for many patients. We exclude any patients that having

any missing ADAS-Cog components at baseline or readout, ensuring that valid labels can be

defined. For the supervised models, we mean impute other missing baseline variables from

the training data. After this screening, the number of training patients for the supervised

algorithms and testing patients for all algorithms as a function of readout time is given in

Table IV.

Both the CRBMs and supervised models are evaluated using 5-fold cross validation. This

means that for each fold, the models are evaluated only on the test data for that fold. For

the CRBMs, this data is out-of-sample from the training set (as it is for all other figures

in this paper). The supervised models are trained on the training data for each fold, and

cross validation is used within each fold to select the optimal hyperparameter and further

avoid overfitting. All algorithms are evaluated on the same test data for each fold; Figure

5B shows the mean RMS error over all CV folds along with the uncertainty (the standard

deviation over the folds). Table V gives the architectures and hyperparameters for each

of the supervised algorithms. Note that for the supervised algorithms, a new model was

trained for every time point, while the CRBM is the same model over all time points.

Once trained, the supervised algorithms are used to predict the ADAS-Cog score change
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for the test data for each CV fold, and a root mean square (RMS) error over the test

set is computed. This is done for each readout time. The predictions for the CRBM

(over all readout times) are obtained by repeatedly simulating patient trajectories from the

baseline time point. For each simulation, the ADAS-Cog score change is recorded, yielding

a distribution of score changes for each patient that represents the probabilistic distribution

of predictions made by the CRBM. The mean of this distribution is the prediction of the

CRBM for the given patient. The RMS error of these predictions is computed, as it was for

the supervised models. These results make up the data shown in Figure 5B.

F. Details of Trajectory Progression Predictions

This subsection gives details on the modeling for Figures 3 and 4. The approach is the

natural extension of the methodology described in the previous subsection.

On each CV fold, a random forest is trained to predict a single time-dependent variable

at a single readout time, meaning over all 35 time-dependent variables and all 6 possible

readout times, 210 different random forest models are trained. The input data are the

baseline variables, with mean imputation used in the case of missing data. Samples where

either the baseline value or the readout value (the label) are missing are excluded. The root

mean square (RMS) error is computed over the test data, again only using samples where

the variable being modeled is present at both baseline and the readout time. For the CRBM,

predictions are made by repeatedly simulating patients conditioned on their baseline data,

and taking the mean for each patient as the CRBM prediction. The RMS error can then be

computed using the same test samples on which the random forest models were evaluated.

It is helpful to normalize these errors by the standard deviation of the value to be pre-

dicted. An error ratio of 1 implies that the prediction is no better than predicting the mean

of the test data, and an error ratio well below 1 implies that the prediction is highly precise

at a per-patient level.

G. Additional Results

There are many ways to study the performance of an unsupervised model, so we take the

opportunity to present additional results that provide more insight into the CRBM.
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FIG. 1. Stochastic simulations enable individual assessments of risk. Violin plots display

the stochastic evolution of an example patient over 18 months. The width of the blue bars represents

the probability computed using simulations from the CRBM (the one corresponding to the CV fold

where the example patient is part of the test data), and the mean CRBM prediction is shown as the

black line. The red dots show the actual observed values from the chosen patient. The CRBM was

initialized with the observed values at baseline (t = 0). Then, we repeatedly simulated 18-month

trajectories and created histograms of each variable at every time point. The model predicts trends

and imputes values when observations are missing for the patient (e.g., MMSE components at some

time points). Units for these data are given in Table II.
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As discussed in the main text, the CRBM is able to provide accurate estimates of its

uncertainty while forecasting the progression of individual patients. In Figure 1, we take an

example patient from one CV fold and plot the values for each time-dependent variable for

that patient. We condition on the baseline patient data and repeatedly simulate 18-month

trajectories. These simulations form a distribution of predictions for each variable, which

we show along with the mean. The CRBM captures the trends of the data and provides an

uncertainty estimate by virtue of the simulation.

The marginal distributions of the CRBM are plotted in Figures 2, 3, and 4. In Figure 2,

the CRBM models are used to freely generate simulated patients (without conditioning on

any data) and the distribution for each variable is plotted against the data. In Figure 3 and 4,

the marginal distributions for each variable at each time point are plotted, conditioning the

CRBM models on the baseline patient data in the test group for each CV fold. In all figures,

missing values for a particular variable are not used when computing the data distribution

(these values are dropped), while imputation with the CRBM models is performed. The

data shown includes all CV models together, combining data from each fold to form higher-

statistics distributions. Additionally, in Figure 5, the first two moments (the mean and

standard deviation) of the conditional marginal distributions shown in Figure 3 and 4 are

compared. A t-test is used to quantify the agreement of the means, and Levene’s test is used

to quantify the agreement of the standard deviations [8]. Excellent agreement is observed,

indicating these moments of the marginal distributions are accurate.

Figure 2 in the main text shows that the CRBM captures the correlations and autocor-

relations when the model is conditioned upon baseline data. In Figure 6, we show the same

is true when freely generating virtual patients. For each CV fold, we simulate 18-month

trajectories. For the data and these simulated patients, we compute the correlations and

autocorrelations between variables. This figure is the companion to Figure 2 in the main

text, where in that figure we conditioned synthetic patients on baseline data while in Fig-

ure 6 we generated synthetic patients without conditioning. Because the synthetic patients

in this case are more closely related to the data, the correlation coefficients from the CRBMs

are closer to the data than in this case, as evidenced by the R2 values of the correlation and

autocorrelation relationships.

Similarly, Figure 7 provides a complementary figure to Figure 5C in the main text. In

that figure, we used the model to generate cohorts of fast and slow progressing patients with

12



MCI and an ADAS-Cog score of 10. In this case we adopt the same methodology, but with.a

different initial condition: we use AD patients with an initial ADAS-Cog score of 20.

To further validate of the performance of the CRBMs, in Figure 8 we compare data

from the control arm of a 12-month clinical trial in the CODR-AD database to each of

the 5 CRBM models trained during CV. The CRBMs agree reasonably well with the data,

predicting the progression more accurately for the later time points in the trial, especially

the 12-month time point. The early-time progression predicted by the CRBMs is higher than

the data, likely due to the placebo effect [9]. To perform this comparison, we conditioned

the CRBMs on baseline data of subjects in the trial and simulated 12-month trajectories

for each patient. The values shown at each time point only include data from the subjects

who remained in the trial with a valid ADAS-Cog score; any subject who drops out is not

included and is also dropped from the CRBM simulations at the corresponding time point.

In Figure 9, we show a statistical measure of the ADAS-Cog progression predictions from

the CRBM, using data generated for Figure 5B in the main text. The CRBM predictions

form a distribution, and from this distribution we calculate the mean and standard deviation,

µ and σ. These, together with the observed progression value in the data, ν, can form a

normalized score, z = (µ − ν)/σ. The distribution of z-scores should be approximately

normal when sampling from the true data population, which is the goal of the simulation.

One can see that the distribution of z-score values is close to normal, and the confidence of

the CRBM (the standard deviation of its prediction) is uncorrelated with the z-score value.

Like Figure 1, particular example patients are of interest. In Figure 10 we plot the dis-

tribution of ADAS-Cog progression predictions from the CRBM for three example patients,

showing the CRBM mean prediction (the mean value of the distribution) against the true

progression in the data. The examples highlight the range of predictions from the CRBM;

it is more confident for some subjects, having a distribution with lower standard deviation,

and less confident for other subjects. In Figure 11, we show example ADAS component

progression for three example patients. The CRBM is conditioned on the baseline data

for these patients and repeated simulations are made of each patient’s trajectory. Each

ADAS-Cog component is averaged and plotted in the figure. This highlights the fact that

the ADAS-Cog is a multidimensional endpoint, showing the different ways in which patients

progress.

Finally, in Figure 12 we show the performance of the CRBM models against a “global”
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random forest that predicts all variables at a single time point. This model is described

above, and the figure is a direct companion to Figure 3 in the main text. Such a model

would be able to accurately capture the covariance between variables, but lacks the precision

necessary to be useful – it rarely performs better than the CRBM.
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Category Name Units Notes

Laboratory Alanine aminotransferase µkat/l log-standarized for training

Laboratory Alkaline phosphatase µkat/l log-standarized for training

Laboratory Aspartate aminotransferase µkat/l log-standarized for training

Laboratory Cholesterol mmol/l log-standarized for training

Laboratory Creatine kinase iu/cl log-standarized for training

Laboratory Creatinine mg/dl log-standarized for training

Laboratory Gamma glutamyl transferase iu/dl log-standarized for training

Laboratory Hematocrit counts log-standarized for training

Laboratory Hemoglobin g/dl log-standarized for training

Laboratory Hemoglobin a1c % log-standarized for training

Laboratory Indirect bilirubin mg/dl log-standarized for training

Laboratory Potassium mmol/l log-standarized for training

Laboratory Sodium mmol/cl log-standarized for training

Laboratory Triglycerides g/l log-standarized for training

Clinical Blood pressure (diastolic) mmHg log-standarized for training

Clinical Blood pressure (systolic) mmHg log-standarized for training

Clinical Heart rate bpm log-standarized for training

Clinical Weight kg log-standarized for training

Clinical Dropout - 1 for dropout before the next time

Background Age at baseline Years ‘>89’ → 90, log-stdized for training

Background Geographic region - 1-hot, 7 labels built from country

Background Initial diagnosis (AD or MCI) - Bernoulli

Background Past cardiovascular event - Bernoulli

Background ApoE ε4 allele count counts 0, 1, or 2

Background Race - 1-hot, 6 labels

Background Sex - Bernoulli, 1 if female

Background Height cm log-standarized for training

TABLE II. Laboratory, clinical, and background variables included in the model.
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Hyperparameter Value / Notes

number of epochs 2000

batch size 100

training/validation fractions 93.75% / 6.25%

learning rate 0.005 initial; 0 final; linear decay

optimizer ADAM, beta (0.9, 0.999)

Monte Carlo steps (sampling) 50

Monte Carlo steps (imputation in training) 2

driven sampling β 0

likelihood weight γ (Equation 3) 0.3

adversary random forest, 5 trees with max depth 5

weight penalty `2 penalty with coefficient 10−1

TABLE III. Hyperparameters used to train the CRBM.

Time [months] Training Patients Testing Patients

3 1506 / 1508 / 1505 / 1505 / 1508 377 / 375 / 378 / 378 / 375

6 1504 / 1501 / 1502 / 1501 / 1504 374 / 377 / 376 / 377 / 374

9 1492 / 1489 / 1488 / 1489 / 1494 371 / 374 / 375 / 374 / 369

12 1498 / 1485 / 1493 / 1488 / 1488 365 / 378 / 370 / 375 / 375

15 1506 / 1503 / 1498 / 1500 / 1505 372 / 375 / 380 / 378 / 373

18 1385 / 1380 / 1384 / 1386 / 1393 347 / 352 / 348 / 346 / 339

TABLE IV. Number of training and testing patients used to predict ADAS-Cog score progression

as a function of readout time for each CV fold.

16



Model Architecture Hyperparameters

Linear Regression ridge (L2 regularization) α ∈ {10k}2k=−3

Random Forest 100 trees max depth ∈ {2k}6k=2

Neural Network
2 hidden layers (30, 10) units

ReLU activations

ADAM learning rate = 0.02

batch size = 25

20 epochs

TABLE V. Supervised models used to predict ADAS-Cog score progression.

17



0 1 2 3 4 5
0.0

0.2

0.4

0.6

fr
ac

tio
n

  ADAS Commands data
CRBM

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

fr
ac

tio
n

  ADAS Comprehension

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

0.5

fr
ac

tio
n

  ADAS Construction

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

fr
ac

tio
n

  ADAS Delayed Word Recall

0 1 2 3 4 5
0.0

0.2

0.4

0.6

fr
ac

tio
n

  ADAS Ideational

0 1 2 3 4 5
0.0

0.2

0.4

0.6

fr
ac

tio
n

  ADAS Naming

0 1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

0.20

0.25

fr
ac

tio
n

  ADAS Orientation

0 1 2 3 4 5
0.0

0.2

0.4

0.6

fr
ac

tio
n

  ADAS Remember Instructions

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

fr
ac

tio
n

  ADAS Spoken Language

0 1 2 3 4 5
0.0

0.2

0.4

0.6

fr
ac

tio
n

  ADAS Word Finding

0 1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

0.20

0.25

fr
ac

tio
n

  ADAS Word Recall

0 1 2 3 4 5 6 7 8 9 101112
0.000

0.025

0.050

0.075

0.100

0.125

fr
ac

tio
n

  ADAS Word Recognition

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

fr
ac

tio
n

  MMSE Attention Calculation

0 1 2 3 4 5 6 7 8 9
0.0

0.1

0.2

0.3

0.4

fr
ac

tio
n

  MMSE Language

0 1 2 3 4 5 6 7 8 9 10
0.00

0.05

0.10

0.15

fr
ac

tio
n

  MMSE Orientation

0 1 2 3
0.0

0.2

0.4

0.6

fr
ac

tio
n

  MMSE Recall

0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

tio
n

  MMSE Registration

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

fr
ac

tio
n

  E4 Count

0 1
0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

tio
n

  Had Dropout

0 1
0.0

0.2

0.4

0.6

0.8

fr
ac

tio
n

  Has Alzheimers

0 1
0.0

0.2

0.4

0.6

fr
ac

tio
n

  Medical Cardiovascular

0 1
0.0

0.2

0.4

0.6

fr
ac

tio
n

  Sex F

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

tio
n

Asian

B
lack

N
ative Am

erican

O
ther

Pacific Islander

W
hite

  Race

0.0

0.2

0.4

0.6

0.8

fr
ac

tio
n

Asia

E
astern E

urope

Latin Am
erica

N
orth Am

erica

N
orthern E

urope

Southern E
urope

W
estern E

urope

  Region

60 80 100
0.00

0.05

0.10

0.15

0.20

fr
ac

tio
n

  Age

140 160 180 200
0.00

0.05

0.10

0.15

fr
ac

tio
n

  Height

50 100 150
0.00

0.05

0.10

0.15

0.20

fr
ac

tio
n

  Weight

50 100 150
0.00

0.05

0.10

0.15

0.20

0.25

fr
ac

tio
n

  Diastolic Blood Pressure

100 150 200
0.00

0.05

0.10

0.15

0.20

0.25

fr
ac

tio
n

  Systolic Blood Pressure

40 60 80 100 120
0.00

0.05

0.10

0.15

0.20

0.25

fr
ac

tio
n

  Heart Rate

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

fr
ac

tio
n

  Alanine Aminotransferase

0 5 10
0.0

0.2

0.4

0.6

fr
ac

tio
n

  Alkaline Phosphatase

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

fr
ac

tio
n

  Aspartate Aminotransferase

5 10 15
0.0

0.1

0.2

0.3

fr
ac

tio
n

  Cholesterol

0.0 2.5 5.0 7.5
0.0

0.1

0.2

0.3

0.4

0.5

fr
ac

tio
n

  Creatine Kinase

1 2 3
0.0

0.1

0.2

0.3

fr
ac

tio
n

  Creatinine

0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

tio
n

  Gamma Glutamyl Transferase

0.3 0.4 0.5 0.6
0.00

0.05

0.10

0.15

0.20

fr
ac

tio
n

  Hematocrit

10 15 20
0.00

0.05

0.10

0.15

0.20

0.25

fr
ac

tio
n

  Hemoglobin

5.0 7.5 10.0 12.5
0.0

0.1

0.2

0.3

0.4

0.5

fr
ac

tio
n

  Hemoglobin A1C

0 1 2 3
0.0

0.1

0.2

0.3

0.4

fr
ac

tio
n

  Indirect Bilirubin

3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

fr
ac

tio
n

  Potassium

1.2 1.4 1.6
0.0

0.1

0.2

0.3

fr
ac

tio
n

  Sodium

0.0 2.5 5.0 7.5 10.0
0.0

0.1

0.2

0.3

0.4

fr
ac

tio
n

  Triglycerides

FIG. 2. Marginal distributions in the generative mode for all variables. For each fold,

the CRBM is used to generate 18-month patient trajectories with the same number of virtual

patients as the number of patients in the test group for that fold. The marginal distributions for

the test group patients and the CRBMs are shown for all variables, combined over all folds. For

each variable, patients with missing data are not included in the data distribution (no imputation

is performed), though for the CRBM imputation is performed and all patients are included.

18



0 1
0.00

0.25

0.50

0.75

1.00

fr
ac

tio
n

  Had Dropout  Had Dropout  Had Dropout  Had Dropout  Had Dropout  Had Dropout  Had Dropout
0 months

data
CRBM

0 1

3 months

0 1

6 months

0 1

9 months

0 1

12 months

0 1

15 months

0 1

18 months

25 50 75 100 125 150
0.00

0.05

0.10

0.15

0.20

fr
ac

tio
n

  Weight  Weight  Weight  Weight  Weight  Weight  Weight
0 months

25 50 75 100 125 150

3 months

25 50 75 100 125 150

6 months

25 50 75 100 125 150

9 months

25 50 75 100 125 150

12 months

25 50 75 100 125 150

15 months

25 50 75 100 125 150

18 months

40 60 80 100 120
0.0

0.1

0.2

0.3

fr
ac

tio
n

  Diastolic Blood Pressure  Diastolic Blood Pressure  Diastolic Blood Pressure  Diastolic Blood Pressure  Diastolic Blood Pressure  Diastolic Blood Pressure  Diastolic Blood Pressure
0 months

40 60 80 100 120

3 months

40 60 80 100 120

6 months

40 60 80 100 120

9 months

40 60 80 100 120

12 months

40 60 80 100 120

15 months

40 60 80 100 120

18 months

75 100 125 150 175 200
0.0

0.1

0.2
fr

ac
tio

n

  Systolic Blood Pressure  Systolic Blood Pressure  Systolic Blood Pressure  Systolic Blood Pressure  Systolic Blood Pressure  Systolic Blood Pressure  Systolic Blood Pressure
0 months

75 100 125 150 175 200

3 months

75 100 125 150 175 200

6 months

75 100 125 150 175 200

9 months

75 100 125 150 175 200

12 months

75 100 125 150 175 200

15 months

75 100 125 150 175 200

18 months

40 60 80 100
0.00

0.05

0.10

0.15

0.20

fr
ac

tio
n

  Heart Rate  Heart Rate  Heart Rate  Heart Rate  Heart Rate  Heart Rate  Heart Rate
0 months

40 60 80 100

3 months

40 60 80 100

6 months

40 60 80 100

9 months

40 60 80 100

12 months

40 60 80 100

15 months

40 60 80 100

18 months

0 1 2 3 4
0.0

0.2

0.4

0.6

fr
ac

tio
n

  Alanine Aminotransferase  Alanine Aminotransferase  Alanine Aminotransferase  Alanine Aminotransferase  Alanine Aminotransferase  Alanine Aminotransferase  Alanine Aminotransferase
0 months

0 1 2 3 4

3 months

0 1 2 3 4

6 months

0 1 2 3 4

9 months

0 1 2 3 4

12 months

0 1 2 3 4

15 months

0 1 2 3 4

18 months

0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

fr
ac

tio
n

  Alkaline Phosphatase  Alkaline Phosphatase  Alkaline Phosphatase  Alkaline Phosphatase  Alkaline Phosphatase  Alkaline Phosphatase  Alkaline Phosphatase
0 months

0.0 2.5 5.0 7.5 10.0

3 months

0.0 2.5 5.0 7.5 10.0

6 months

0.0 2.5 5.0 7.5 10.0

9 months

0.0 2.5 5.0 7.5 10.0

12 months

0.0 2.5 5.0 7.5 10.0

15 months

0.0 2.5 5.0 7.5 10.0

18 months

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

fr
ac

tio
n

  Aspartate Aminotransferase  Aspartate Aminotransferase  Aspartate Aminotransferase  Aspartate Aminotransferase  Aspartate Aminotransferase  Aspartate Aminotransferase  Aspartate Aminotransferase
0 months

0.0 0.5 1.0 1.5 2.0 2.5

3 months

0.0 0.5 1.0 1.5 2.0 2.5

6 months

0.0 0.5 1.0 1.5 2.0 2.5

9 months

0.0 0.5 1.0 1.5 2.0 2.5

12 months

0.0 0.5 1.0 1.5 2.0 2.5

15 months

0.0 0.5 1.0 1.5 2.0 2.5

18 months

2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

fr
ac

tio
n

  Cholesterol  Cholesterol  Cholesterol  Cholesterol  Cholesterol  Cholesterol  Cholesterol
0 months

2.5 5.0 7.5 10.0 12.5 15.0

3 months

2.5 5.0 7.5 10.0 12.5 15.0

6 months

2.5 5.0 7.5 10.0 12.5 15.0

9 months

2.5 5.0 7.5 10.0 12.5 15.0

12 months

2.5 5.0 7.5 10.0 12.5 15.0

15 months

2.5 5.0 7.5 10.0 12.5 15.0

18 months

0 2 4 6 8
0.0

0.2

0.4

fr
ac

tio
n

  Creatine Kinase  Creatine Kinase  Creatine Kinase  Creatine Kinase  Creatine Kinase  Creatine Kinase  Creatine Kinase
0 months

0 2 4 6 8

3 months

0 2 4 6 8

6 months

0 2 4 6 8

9 months

0 2 4 6 8

12 months

0 2 4 6 8

15 months

0 2 4 6 8

18 months

0.5 1.0 1.5 2.0 2.5
0.0

0.1

0.2

fr
ac

tio
n

  Creatinine  Creatinine  Creatinine  Creatinine  Creatinine  Creatinine  Creatinine
0 months

0.5 1.0 1.5 2.0 2.5

3 months

0.5 1.0 1.5 2.0 2.5

6 months

0.5 1.0 1.5 2.0 2.5

9 months

0.5 1.0 1.5 2.0 2.5

12 months

0.5 1.0 1.5 2.0 2.5

15 months

0.5 1.0 1.5 2.0 2.5

18 months

0 10 20 30 40
0.0

0.2

0.4

0.6

0.8

fr
ac

tio
n

  Gamma Glutamyl Transferase  Gamma Glutamyl Transferase  Gamma Glutamyl Transferase  Gamma Glutamyl Transferase  Gamma Glutamyl Transferase  Gamma Glutamyl Transferase  Gamma Glutamyl Transferase
0 months

0 10 20 30 40

3 months

0 10 20 30 40

6 months

0 10 20 30 40

9 months

0 10 20 30 40

12 months

0 10 20 30 40

15 months

0 10 20 30 40

18 months

0.3 0.4 0.5 0.6
0.00

0.05

0.10

0.15

0.20

fr
ac

tio
n

  Hematocrit  Hematocrit  Hematocrit  Hematocrit  Hematocrit  Hematocrit  Hematocrit
0 months

0.3 0.4 0.5 0.6

3 months

0.3 0.4 0.5 0.6

6 months

0.3 0.4 0.5 0.6

9 months

0.3 0.4 0.5 0.6

12 months

0.3 0.4 0.5 0.6

15 months

0.3 0.4 0.5 0.6

18 months

10.0 12.5 15.0 17.5 20.0
0.0

0.1

0.2

fr
ac

tio
n

  Hemoglobin  Hemoglobin  Hemoglobin  Hemoglobin  Hemoglobin  Hemoglobin  Hemoglobin
0 months

10.0 12.5 15.0 17.5 20.0

3 months

10.0 12.5 15.0 17.5 20.0

6 months

10.0 12.5 15.0 17.5 20.0

9 months

10.0 12.5 15.0 17.5 20.0

12 months

10.0 12.5 15.0 17.5 20.0

15 months

10.0 12.5 15.0 17.5 20.0

18 months

4 6 8 10 12 14
0.0

0.2

0.4

fr
ac

tio
n

  Hemoglobin A1C  Hemoglobin A1C  Hemoglobin A1C  Hemoglobin A1C  Hemoglobin A1C  Hemoglobin A1C  Hemoglobin A1C
0 months

4 6 8 10 12 14

3 months

4 6 8 10 12 14

6 months

4 6 8 10 12 14

9 months

4 6 8 10 12 14

12 months

4 6 8 10 12 14

15 months

4 6 8 10 12 14

18 months

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

fr
ac

tio
n

  Indirect Bilirubin  Indirect Bilirubin  Indirect Bilirubin  Indirect Bilirubin  Indirect Bilirubin  Indirect Bilirubin  Indirect Bilirubin
0 months

0.0 0.5 1.0 1.5 2.0

3 months

0.0 0.5 1.0 1.5 2.0

6 months

0.0 0.5 1.0 1.5 2.0

9 months

0.0 0.5 1.0 1.5 2.0

12 months

0.0 0.5 1.0 1.5 2.0

15 months

0.0 0.5 1.0 1.5 2.0

18 months

3 4 5 6
0.00

0.05

0.10

0.15

0.20

fr
ac

tio
n

  Potassium  Potassium  Potassium  Potassium  Potassium  Potassium  Potassium
0 months

3 4 5 6

3 months

3 4 5 6

6 months

3 4 5 6

9 months

3 4 5 6

12 months

3 4 5 6

15 months

3 4 5 6

18 months

1.25 1.30 1.35 1.40 1.45 1.50
0.0

0.1

0.2

0.3

fr
ac

tio
n

  Sodium  Sodium  Sodium  Sodium  Sodium  Sodium  Sodium
0 months

1.25 1.30 1.35 1.40 1.45 1.50

3 months

1.25 1.30 1.35 1.40 1.45 1.50

6 months

1.25 1.30 1.35 1.40 1.45 1.50

9 months

1.25 1.30 1.35 1.40 1.45 1.50

12 months

1.25 1.30 1.35 1.40 1.45 1.50

15 months

1.25 1.30 1.35 1.40 1.45 1.50

18 months

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

fr
ac

tio
n

  Triglycerides  Triglycerides  Triglycerides  Triglycerides  Triglycerides  Triglycerides  Triglycerides
0 months

0 2 4 6 8 10

3 months

0 2 4 6 8 10

6 months

0 2 4 6 8 10

9 months

0 2 4 6 8 10

12 months

0 2 4 6 8 10

15 months

0 2 4 6 8 10

18 months

FIG. 3. Marginal distributions conditioned on baseline for clinical variables. For each

fold, the CRBM is conditioned on the patient data at baseline, and one trajectory is simulated for

each patient in the test group for that fold. The marginal distributions for the patients and the

CRBM are shown for clinical variables, combined over all folds. Because the CRBM is conditioned

on the data at baseline, the 0-month distributions always match except when the data is missing

values and the model performs imputation. For each variable at each time point, patients with

missing data are not included in the data distribution (no imputation is performed), though for

the CRBM imputation is performed and all patients are included.19
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FIG. 4. Marginal distributions conditioned on baseline for cognitive variables. For each

fold, the CRBM is conditioned on the patient data at baseline, and one trajectory is simulated

for each patient in the test group for that fold. The marginal distributions for the patients and

the CRBM are shown for cognitive variables, combined over all folds. Because the CRBM is

conditioned on the data at baseline, the 0-month distributions always match except when the data

is missing values and the model performs imputation. For each variable at each time point, patients

with missing data are not included in the data distribution (no imputation is performed), though

for the CRBM imputation is performed and all patients are included.20
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FIG. 5. Agreement between moments for marginal distributions. For a random CV

fold, the mean and standard deviation are compared between the data (the test set for the fold)

and synthetic patients produced by the CRBM conditioned on the baseline data, for every time-

dependent variable (except dropout) and every time point. The means are compared with a t-test,

and the standard deviations are compared with Levene’s test. For each, p-values are shown. No

significant p-values (p < 0.05) are observed after a Bonferroni correction, implying accuracy in

the CRBM for these two moments of the marginal distributions. For each variable at each time

point, patients with missing data are not included in either the data or CRBM statistical moment

calculations. The units are given in Tables I and II.
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A
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B

FIG. 6. Goodness-of-fit. A) Correlations between variables as predicted by the model (below the

diagonal) generating purely synthetic patients and calculated from the data (above the diagonal).

Components of the cognitive scores are strongly correlated with each other, but not with other

clinical data. B) Scatterplot of observed vs predicted correlations for each time point, over all

times. C) Scatterplot of observed vs predicted autocorrelations with time lag of 3 months. D)

Scatterplot of observed vs predicted autocorrelations with time lag of 6 months. Color gradient

in B-D represents the fraction of observations where the variables used to compute the correlation

were present; lighter colors mean more of the data was missing. This figure is a complement to

Figure 2 in the main text; in that case the CRBMs were conditioned upon the subject data at

baseline, while in this case the models are used purely generatively.
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Clinical
Patients with an AD diagnosis and a baseline ADAS-Cog of 20

FIG. 7. Using simulations to interpret prognostic signals for AD progression. We created

a simulated patient population with AD and an initial ADAS score of 20 (typical for AD), and

simulated the evolution of each virtual patient for 18 months. The 5% of virtual patients with

the largest ADAS score increase were designated “fast progressors” and the bottom 5% of patients

with the smallest ADAS score increase were designated “slow progressors”. Differences between

the fast and slow progressors (the “absolute effect size”) were quantified using the absolute value of

Cohen’s d-statistic. The statistic values are averaged over CV folds. This figure is a complement to

Figure 5C in the main text; in that case the effect size for MCI patients with an initial ADAS-Cog

of 10 was examined.
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FIG. 8. The model accurately simulates clinical trials. The prediction of the model for

the progression of ADAS-Cog in a 12-month CODR-AD study is shown. The study is not part of

the training data. Predictions for all 5 CV models are shown compared to the progression of the

data. The models over-predict progression at the initial 3-month visit, but have good accuracy for

later visits. The error bars shown are 95% confidence intervals derived from the standard error of

the data and the CRBMs; for each CRBM 100 simulations were used to compute the mean and

standard error.
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FIG. 9. Confidence in ADAS-Cog score progression by the CRBM. For each patient with

a valid ADAS-Cog score at baseline and 18 months, the CRBM is used to repeatedly simulate

18-month trajectories. The mean of the ADAS-Cog score changes from these trajectories is the

CRBM prediction, and the standard deviation is a measure of the CRBM confidence. These values

are used to compute a standard z score for each patient by taking the difference between the

CRBM prediction and the true ADAS-Cog score change and dividing by the standard deviation

of predictions. These z scores are 0-centered, tend to be fairly normally distributed (A), and do

not correlate with the CRBM confidence (B). The color of the points in (B) corresponds to the

density; darker points are in a higher-density region. Data from all CV folds aggregated together

are shown in these plots.
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FIG. 10. Predictions of ADAS score progression for example patients. Starting with

baseline data for 3 example patients, the CRBM was used to predict the change in ADAS score

over 18 months. By repeatedly simulating trajectories for each patient, the CRBM provides a set

of predictions per patient that forms a probability distribution. The mean of this distribution is

the CRBM prediction, which is compared with the true value of the ADAS score change for the

patient. The width of the distribution is a measure of the confidence of the CRBM prediction.
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FIG. 11. Expected evolution of ADAS score components for example patients. Starting

with baseline data for 3 example patients, the CRBM was used to repeatedly simulate 18-month

trajectories for each patient. The mean value of each of the ADAS-Cog score components for each

time point is shown as a blue bar, demonstrating the ability of the CRBM to simulate the granular

ADAS score components. The total mean ADAS score for each time point is shown at the top.
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FIG. 12. The model accurately forecasts across variables. Relative errors of the model

(CRBM) and a “global” random forest (RF(g)) trained to predict the value of all variables at a

single time point. The root mean square (RMS) errors are scaled by the standard deviation of the

data to be predicted. Predictions are shown for every time-dependent variable except dropout.

At each time point and for each variable, the better of the random forest and CRBM predictions

is shown in bold, with uncertainties across CV folds shown in parentheses below the mean value.

The CRBM strongly outperforms the global random forest. This figure is a complement to Figure

3, where here the random forest is trained to predict all variables at a time point instead of having

separate random forests for each variable.
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