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Supplementary File #1 — The results of the neighbor recommender and label propaga-
tion on each types of similarity

Supplementary Tables S1 and S2 summarizes the calculated criteria for performance of neighbor recommender and label
propagation trained on different similarity matrices in DS1.

Method Similarity AUC AUPR F-measure Recall Precision

NR integrated 0.838 0.731 0.669 0.759 0.599
NR chemical 0.936 0.902 0.804 0.797 0.812
NR target 0.820 0.698 0.667 0.719 0.623
NR transporter 0.734 0.637 0.596 0.647 0.550
NR enzyme 0.756 0.670 0.599 0.690 0.531
NR pathway 0.812 0.774 0.672 0.615 0.742
NR indication 0.912 0.845 0.768 0.803 0.736
NR side effects 0.936 0.901 0.803 0.795 0.813
NR offside effect 0.940 0.913 0.837 0.839 0.843

Supplementary Table S 1. Performance of NR on different similarity matrices in DS1.

Method Similarity AUC AUPR F-measure Recall Precision

LP integrated 0.898 0.831 0.742 0.780 0.708
LP chemical 0.937 0.901 0.804 0.797 0.811
LP target 0.851 0.794 0.703 0.683 0.627
LP transporter 0.721 0.645 0.586 0.664 0.525
LP enzyme 0.770 0.716 0.613 0.653 0.590
LP pathway 0.810 0.779 0.675 0.606 0.767
LP indication 0.940 0.911 0.818 0.808 0.828
LP side effects 0.936 0.903 0.806 0.793 0.820
LP offside effect 0.937 0.904 0.809 0.795 0.823

Supplementary Table S 2. Performance of LP on different similarity matrices in DS1.

Supplementary Tables S3, S4, S5 and S6 summarizes the calculated criteria for performance of neighbor recommender
and label propagation trained on different similarity matrices in CYP and NCYP interactions of DS3.



Method Similarity AUC AUPR F-measure Recall Precision

NR integrated 0.8871 0.100 0.1782 0.196 0.142
NR ATC 0.93462 0.07316 0.13056 0.1573 0.1182
NR Chemical 0.95274 0.12608 0.1964 0.27946 0.1525
NR Distance on PPI 0.94812 0.10974 0.17442 0.18888 0.17174
NR GO 0.95272 0.1235 0.1965 0.2719 0.1541
NR Ligand 0.90548 0.0349 0.08326 0.13464 0.06096
NR Target 0.94396 0.09098 0.15774 0.17638 0.1537
NR Side effect 0.95102 0.09072 0.17144 0.23754 0.13578

Supplementary Table S 3. Performance of NR on different similarity matrices in CYP interactions of DS3.

Method Similarity AUC AUPR F-measure Recall Precision

LP integrated 0.906 0.148 0.225 0.282 0.189
LP ATC 0.94992 0.10684 0.17864 0.1984 0.16478
LP Chemical 0.95256 0.12696 0.20644 0.28222 0.16358
LP Distance on PPI 0.95216 0.1312 0.20672 0.2576 0.18308
LP GO 0.95294 0.12608 0.2061 0.28698 0.1624
LP Ligand 0.94712 0.09672 0.16478 0.2008 0.15184
LP Target 0.95226 0.12692 0.1981 0.23614 0.1838
LP Side effect 0.95324 0.12004 0.1992 0.27844 0.1569

Supplementary Table S 4. Performance of LP on different similarity matrices in CYP interactions of DS3.

Method Similarity AUC AUPR F-measure Recall Precision

NR integrated 0.778 0.184 0.259 0.483 0.192
NR ATC 0.94052 0.38662 0.4159 0.35186 0.51112
NR Chemical 0.90392 0.19562 0.24828 0.38358 0.18366
NR Distance on PPI 0.94436 0.3713 0.4149 0.43926 0.3936
NR GO 0.9144 0.23408 0.28836 0.3494 0.24568
NR Ligand 0.95058 0.40722 0.4375 0.44024 0.43602
NR Target 0.95134 0.42558 0.445 0.43374 0.4574
NR Side effect 0.92392 0.29786 0.34332 0.3448 0.34416

Supplementary Table S 5. Performance of NR on different similarity matrices in NCYP interactions of DS3.

Method Similarity AUC AUPR F-measure Recall Precision

LP integrated 0.667 0.216 0.333 0.449 0.267
LP ATC 0.92698 0.31984 0.37146 0.35212 0.39316
LP Chemical 0.89046 0.1591 0.21636 0.37964 0.15314
LP Distance on PPI 0.8993 0.19242 0.24148 0.2804 0.23194
LP GO 0.88938 0.167 0.22092 0.33466 0.17868
LP Ligand 0.93758 0.33404 0.37756 0.41718 0.34556
LP Target 0.90266 0.2165 0.26842 0.30518 0.24436
LP Side effect 0.89534 0.18118 0.23442 0.28542 0.2081

Supplementary Table S 6. Performance of LP on different similarity matrices in NCYP interactions of DS3.

2/7



Supplementary File #2 — Body of evidence for the case studies

Drug1 ID Drug2 ID Drug1 name Drug2 name Evidence

DB00642ă DB01331ă Pemetrexed Cefoxitin DrugBank
DB00642ă DB01060ă Pemetrexed Amoxicillin DrugBank
DB00633ă DB01183ă Dexmedetomidine Naloxone DrugBank
DB00633ă DB00361ă Dexmedetomidine Vinorelbine No
DB00535ă DB00373ă Cefdinir Timolol No
DB01236ă DB01586 Sevoflurane Ursodeoxycholic acid DrugBank
DB01236ă DB00415ă Sevoflurane Ampicillin No
DB00742ă DB00441ă Mannitol Gemcitabine DrugBank
DB00585ă DB01577 Nizatidine Methamphetamine DrugBank
DB01136ă DB00952ă Carvedilol Naratriptan No
DB01203ă DB01188ă Nadolol Ciclopirox No
DB01204ă DB00700ă Mitoxantrone Eplerenone DrugBank
DB00968ă DB00700ă Methyldopa Eplerenone DrugBank
DB01042ă DB01150ă Melphalan Cefprozil No
DB00519ă DB00709ă Trandolapril Lamivudine No
DB01026ă DB00324ă Ketoconazole Fluorometholone No
DB04441ă DB00224ă 2-Fluoroadenosine Indinavir No
DB00441ă DB01036ă Gemcitabine Tolterodine DrugBank
DB00441ă DB00438ă Gemcitabine Ceftazidime DrugBank
DB00492ă DB01115ă Fosinopril Nifedipine DrugBank
DB00472ă DB00558ă Fluoxetine Zanamivir No
DB00426ă DB01068ă Famciclovir Clonazepam DrugBank
DB00586ă DB00790ă Diclofenac Perindopril DrugBank
DB00586ă DB00745ă Diclofenac Modafinil DrugBank
DB01151ă DB00501ă Desipramine Cimetidine DrugBank
DB00557ă DB02300ă Hydroxyzine Calcipotriol No
DB00394ă DB00459ă Beclomethasone dipropionate Acitretin No
DB00402ă DB00548ă Eszopiclone Azelaic Acid DrugBank
DB00398ă DB01223ă Sorafenib Aminophylline DrugBank
DB00346ă DB00224ă Alfuzosin Indinavir DrugBank
DB01240ă DB00822ă Epoprostenol Disulfiram No
DB01265 DB00330ă Telbivudine Ethambutol No
DB00659ă DB00633ă Acamprosate Dexmedetomidine No
DB01033ă DB00331ă Mercaptopurine Metformin No
DB00503ă DB00210ă Ritonavir Adapalene No
DB00577ă DB00953ă Valaciclovir Rizatriptan DrugBank
DB00775ă DB01006ă Tirofiban Letrozole No
DB00268ă DB00495ă Ropinirole Zidovudine No
DB01577 DB00585ă Methamphetamine Nizatidine DrugBank
DB00200ă DB01367ă Hydroxocobalamin Rasagiline DrugBank
DB00555ă DB01026ă Lamotrigine Ketoconazole DrugBank
DB01195ă DB00208ă Flecainide Ticlopidine No
DB01019ă DB00887ă Bethanechol Bumetanide No
DB01053ă DB00570ă Benzylpenicillin Vinblastine DrugBank
DB00580ă DB01045ă Valdecoxib Rifampicin DrugBank
DB01265 DB00330ă Telbivudine Ethambutol No
DB00440ă DB01273 Trimethoprim Varenicline DrugBank
DB01162ă DB00296ă Terazosin Ropivacaine DrugBank
DB01042ă DB00795ă Melphalan Sulfasalazine DrugBank
DB00648ă DB00709ă Lamivudine Mitotane DrugBank

Supplementary Table S 7. Investigation of Top 50 predicted DDIs in DrugBank.
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The DrugBank evidence list for false positive DDIs is presented in Supplementary Table S7. "No" means that no evidence in
DrugBank was found for DDI.

Supplementary File #3 — Two case studies

Case Study 1: Interaction between "DB00798; Gentamicin" and "DB00493; Cefotaxime
Gentamicin has high activity against Gram-positive and Gram-negative bacteria. It is a novel antibiotic compound from
Micromonospora1, 2. It is used for cases with severe infections3 and treatments of febrile patients that have cancer and granu-
locytopenia4.

Cefotaxime is the first choice antibiotics for primary treatment of spontaneous bacterial peritonitis in cirrhosis with serious
infections5, 6. It is verified that Cefotaxime has influence on stimulating growth, regeneration and inducing embryogenesis7.

A growing body of evidence in the literature confirms the interaction of these two drugs. Some of the literature confirma-
tions are presented here.

• An extensive study on this interaction is done by Bryan et al8, which is published in American Journal of Diseases of
Children.

• Murry et al.9 have done a broad investigation of the interaction between these two drugs and proved the resistance to
Gentamicin in patients that were consuming Cefatoxime.

• An in vitro studies conducted by Elliott et al.10 suggests that cefotaxime and gentamicin may provide some activity
against enterococci.

0.0.1 Case Study 2: Interaction between "DB00945; Acetylsalicylic acid (Aspirin)" and "DB00424; Hyoscyamine"
Acetylsalicylic acid is prescribed in diverse situations for alleviating pain, fever, and inflammation. It can help the patients
that had transient ischaemic attack and stroke to decrease the stroke risk11. It has some effects on reducing the possibility of
the colorectal cancer and some other types of cancer12.

Hyoscyamine can be found commonly in the stems and leaves of young Datura stramonium plants13. It is helpful in the
treatment of disorders of the gastrointestinal (GI) tract. It is used in therapies for patients with irritable bowel syndrome, peptic
ulcer disease, bladder spasms, colic, pancreatitis, and diverticulitis. Its influence in the treatment of Parkinson is proved14, 15.
Hyoscyamine is effective in short-term tremor abatement15.

There is an abundant body of evidence for interaction between Aspirin and Hyoscyamine. First, we enquired into "Drugs"
database, which is the most popular, wide-ranging and up-to-date source of drug information online16. This database declared
that Aspirin has an interaction with Hyoscyamine that is available at17 and also18. There is also evidence in "RxList" which
is an online medical resource dedicated to offering detailed and current pharmaceutical information on the brand and generic
drugs19. The information at20 verified the interaction of mentioned drugs.

Supplementary File #4 — Performance of dimension reduction methods on DS1
We tried to reduce feature dimensions by applying multiple methods and evaluating them. The evaluation criteria in Supple-
mentary Table S8 shows that using common dimension reduction methods does not help the improvement of model.

Method Dimension AUC AUPR F −measure Recall Precision

NMF 600 0.783 0.629 0.617 0.787 0.507
PCA 600 0.802 0.651 0.631 0.729 0.556
SAE 500 0.671 0.504 0.543 0.879 0.393
SAE 128 0.676 0.506 0.545 0.862 0.398
chi2 800 0.801 0.655 0.626 0.806 0.512
chi2 600 0.786 0.639 0.607 0.885 0.461
chi2 300 0.754 0.613 0.577 0.923 0.420

Supplementary Table S 8. Performance of dimension reduction methods on DS1.
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Supplementary File #5 — About similarity types
The following information is compiled from the literature and internet.

Similarity measures:

• Chemical-based: "Canonical simplified molecular input line entry specification (SMILES) of the drug molecules were
downloaded from DrugBank. Hashed fingerprints were computed using the Chemical Development Kit (CDK) with
default parameters. The similarity score between two drugs is computed based on their fingerprints according to the
two-dimensional Tanimoto score, which is equivalent to the Jaccard score of their fingerprints, that is, the size of the
intersection over the union when viewing each fingerprint as specifying a set of elements."21

• Ligand-based: The Similarity Ensemble Approach (SEA) relates protein receptors based on the chemical 2D similarity
of the ligand sets modulating their function. Given a drugs canonical SMILES, the SEA search tool compares it against
a compendium of ligand sets and computes E-values for those ligand sets. To compute a drugdrug similarity drugs
are queried using their canonical SMILES on the SEA tool. To obtain robust results, the drug is queried against the
two ligand databases provided in the tool (MDL Drug data report and WOMBAT) and used two different methods to
compute the drug fingerprint (Scitegic ECFP4 and Daylight), resulting in four lists of similar ligand sets. Unifying the
four lists and filtering drugligand set pairs with E-values410 _5, a list of relevant protein is obtained receptor families for
each drug. Finally, the similarity between a pair of drugs was computed as the Jaccard score between the corresponding
sets of receptor families."21

• Side-effect based: "Drug side effects were obtained from SIDER, an online database containing drug side effects
associations extracted from package inserts using text mining methods. This list is augmented by side effect predictions
for drugs that are not included in SIDER based on their chemical properties. Following this latter work, the similarity
between drugs is defined according to the Jaccard score between either their known side effects or top 13 predicted side
effects in case they are unknown."21

• Annotation-based: The World Health Organization (WHO) ATC classification system is used. "This hierarchical
classification system categorizes drugs according to the organ or system on which they act, their therapeutic effect, and
their chemical characteristics. ATC codes were obtained from DrugBank. To define a similarity between ATC terms the
semantic similarity algorithm of (Resnik, 1999) is used. This algorithm associates probabilities p(x) with all the nodes
(i.e., ATC levels) x in the ATC hierarchy by computing the number of levels below x; it then calculates the similarity of
two drugs as the maximum over all their common ancestors ATC level c of log (p(c))."21

• Sequence-based: "Based on a SmithWaterman sequence alignment score between the corresponding drug targets (pro-
teins). Following the normalization suggested in Bleakley and Yamanishi (2009), the SmithWaterman score is divided
by the geometric mean of the scores obtained from aligning each sequence against itself."21

• Closeness in a PPI network: "The distances between each pair of drug targets were calculated using an all-pairs
shortest paths algorithm on the human PPI network. Distances were transformed to similarity values using the formula
described in Perlman et al (2011):

S(p, p′) = Ae−D(p,p′) (1)

where S(p, p′) is the computed similarity value between two proteins, D(p, p′) is the shortest path between these proteins
in the PPI network and A was chosen according to Perlman et al (2011) to be 0.9.e. Self-similarity was assigned a value
of 1."21

• GO based: "Semantic similarity scores between drug targets were calculated according to Resnik (1999), using the
csbl.go R package selecting the option to use all three ontologies."21

• Off-label side effect: "OFFSIDES20 is a side effect database built by mining FAERS system while controlling con-
founding factors such as concomitant medications, patient demographics, and patient medical histories. There are 1,332
drugs and 10,093 side effects in the dataset. We called side effects extracted from OFFSIDES as Off-Label Side Effect22.
The sets of Off-Label Side Effect of drugs can be vectorized by a binary vector. The similarity of drugs is defined as
Jaccard score between either their known Off-Label Side Effects.
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• Target similarity: "Targets are biological components that drugs interact with and alter their function to induce thera-
peutic effect(s)"23. "If a carrier, transporter, enzyme or target of a given drug is occupied or changed by another drug,
then the pharmacological activity of the given drug is changed"24. "In order to calculate the similarity between two
drugs, we extract the information from drug-target interactions. The underlying assumption made here is that two drugs
that share more common target proteins are more similar"25.

• Transporter similarity: "Drug transporters play an important role in modulating drug absorption, distribution, and
elimination. Acting alone or in concert with drug metabolizing enzymes they can affect the pharmacokinetics and
pharmacodynamics of a drug. This commentary will focus on the potential role that drug transporters may play in
drug-drug interactions and what information may be needed during drug development and new drug application (NDA)
submissions to address potential drug interactions mediated by transporters"26. The Jaccard score between either the
known transporters of drug pairs is defined as their similarity.

• Indication similarity: "In medical terminology, an "indication" for a drug refers to the use of that drug for treating a
particular disease. For example, diabetes is an indication for insulin. Another way of stating this relationship is that
insulin is indicated for the treatment of diabet. Medicinenet often have more than one indication, which means that
there is more than one disease for which it is used. The Food and Drug Administration (FDA) classifies indications for
drugs in the United States"27. The Jaccard score between either the known indication of drug pairs is defined as their
similarity.

• Pathways similarity: ’The pathways of drugs are important information for not only understanding the mechanisms of
drug action and metabolism but also for drug repositioning, which finds new therapeutic indications for approved drugs
and experimental drugs that fail approval in their initial indication. Therefore, databases collecting drug pathways are
increasingly important. Currently, several databases have included drug pathways, such as DrugBank. These databases
are useful to drug-related studies. However, most of the drug pathways in the above databases are pathways for drug
action and drug metabolism. Actually, besides its targets, one drug can induce expression changes of a number of genes,
and thus can deregulate a number of pathways. In recent years, high-throughput technologies such as microarray and
RNA-sequencing have produced a lot of drug-induced gene expression profiles. As a result, molecular activity generated
from global gene expression profiling now emerges as a promising resource for drug research and then identify the drug-
induced pathways"28. The Jaccard score between either the known patways of drug pairs is defined as their similarity.

• Enzymes similarity: "Enzymes are the proteins in the drug design that act as drug targets for the diseases in the process
of drug discovery and development"29. The majority of drugs which act on enzymes act as inhibitors and most of
these are competitive, in that they compete for binding with the enzyme’s substrate- for example the majority of the
original (first generation) kinase inhibitors bind to the ATP pocket of the enzyme. Some inhibitors are non-competitive,
binding away from the substrate binding domain, competing for co-factor/co-enzyme binding, or causing an allosteric
conformational change in the 3-dimensional protein structure that prevents substrate interaction"30. The Jaccard score
between either the known enzymes that drugs affect them, is defined as their similarity
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