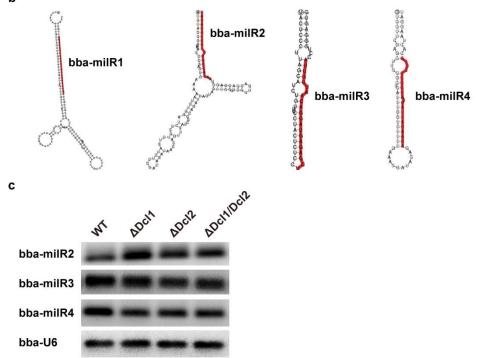
Supplementary Information

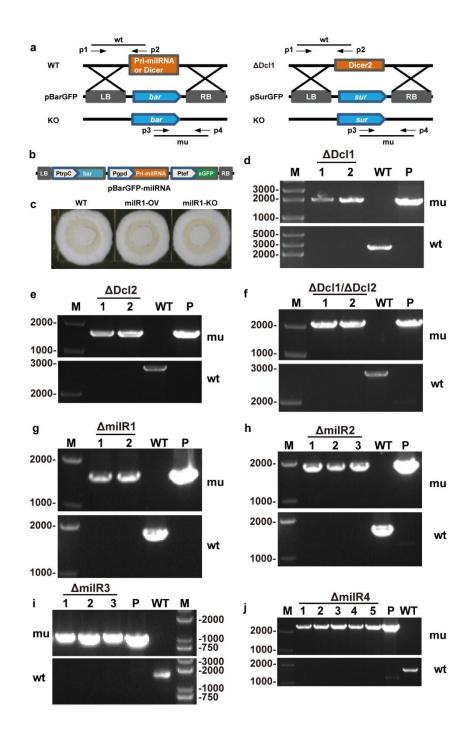
A fungal pathogen deploys a small silencing RNA that attenuates mosquito immunity and facilitates infection


Chunlai Cui, Yan Wang, Jingnan Liu, Jing Zhao, Peilu Sun, Sibao Wang

Corresponding authors: Wang, S. (sbwang@sibs.ac.cn)

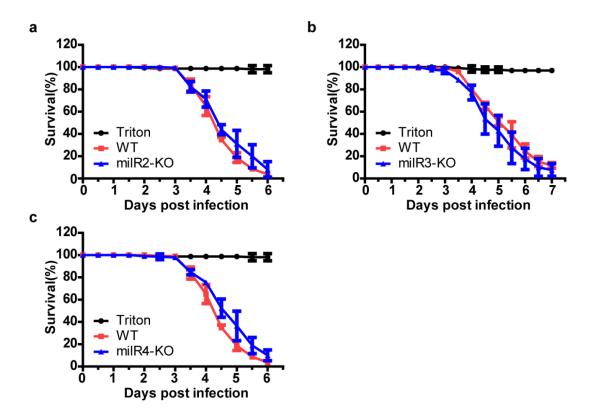
Name	Sequence (5'→3')	Length (nt)	36h (Reads)	60h (Reads)	84h (Reads)
bba-milR1	UGACUGGCUGUUAAUUGACUGG	22	8	-	
bba-milR2	AACACCGGGUGCUGUACAU	19	47	-	-
bba-milR3	UCGAGAGUAGGACAAUUGUUA	21	-	÷	5
bba-milR4	AGAAGAUUAGCAUGGCCCCUG	21	-	-	18

b

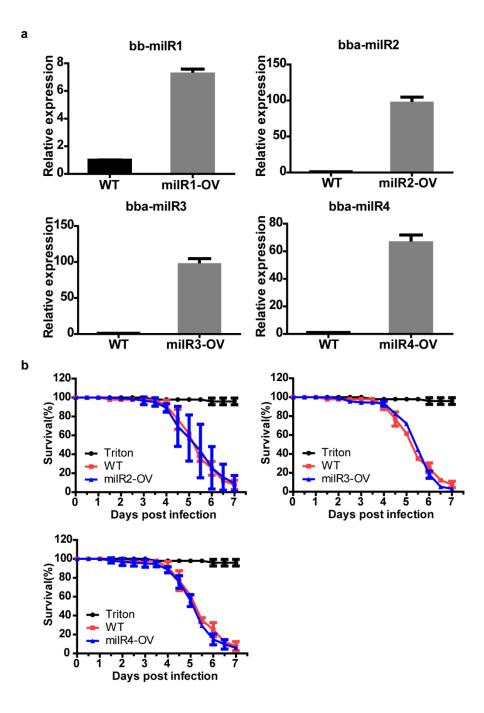

а

Supplementary Figure 1

Sequences and predicted secondary structures of *Beauveria bassiana* miRNA-like RNAs (milRNAs).

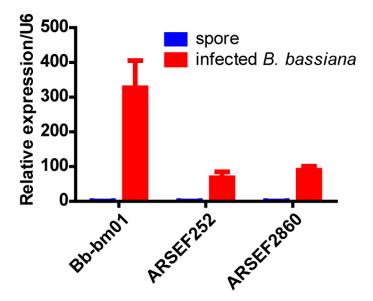

(a) Sequences, length and reads of four milRNAs identified in sRNA libraries from *B. bassiana*infected mosquitoes. (b) Predicted secondary structure of the bba-milR1, bba-milR2, bba-milR3 and bba-milR4 precursors (pre-milRNAs). The mature milRNAs are highlighted in red. (c) bbamilR2, bba-milR3 and bba-milR4 can be detected in WT, *Dicer1* deletion mutant (Δ Dcl1), *Dicer2* deletion mutant (Δ Dcl2) and *Dicer1/Dicer2* double mutant (Δ Dcl1/Dcl2). Source data are provided as a Source Data file.

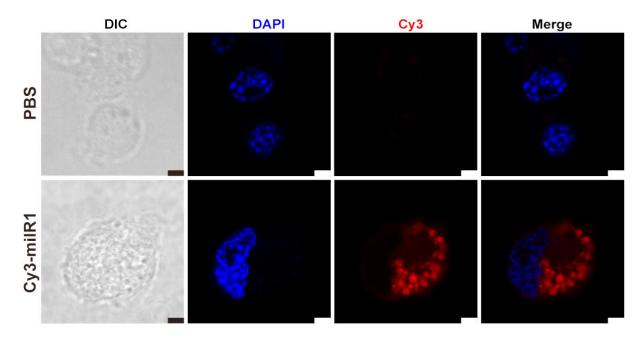
Knockout or over-expression of milRNA genes and Dicer in B. bassiana RESEF252.


(a) Schematic diagram of the milRNA gene or *Dicer* wild type locus and the plasmids pBar-GFP and pSur-GFP containing flanking regions of the pre-milRNA or *Dicer*, which were used for milRNA genes or *Dicer* disruption through double crossover recombination. LB, left border; RB,

right border; bar, the Ignite/basta-resistance (bar) gene; sur, the sulfonylurea resistance (sur) gene. Primer pairs p1 and p2 were used to amplify WT genome DNA fragment, p3 and p4 were used to verify knock-out mutants. (b) Schematic diagram of the vector pBarGFP-miRNA that was used for milRNAs overexpression (OV). Pgpd, *Aspergillus nidulans gpdA* promoter; PtrpC, *A. nidulans trpC* terminator; Ptef, *Trichoderma reesei* translation elongation factor 1 alpha gene promoter. (c) Growth and conidia production of milR1-OV and milR1-KO are similar to wildtype strain (WT). Verification of $\Delta Dcl1$ (d), $\Delta Dcl2$ (e), $\Delta Dcl1/\Delta Dcl2$ (f), $\Delta milR1$ (g), $\Delta milR2$ (h), $\Delta milR3$ (i) and $\Delta milR4$ (j) mutant strains by PCR using two relevant primer pairs of p1 and p2, p3 and p4. $\Delta Dcl1/\Delta Dcl2$ double mutants were generated by disrupting *Dcl2* in a *Dcl1* mutant strain, and verified by PCR detecting *Dcl2* gene in the putative transformants using the two relevant primer pairs of p1 and p2, p3 and p4 (see right diagram of the panel a). The plasmid pBar-GFP or pSur-GFP was used as a positive control. Source data are provided as a Source Data file.

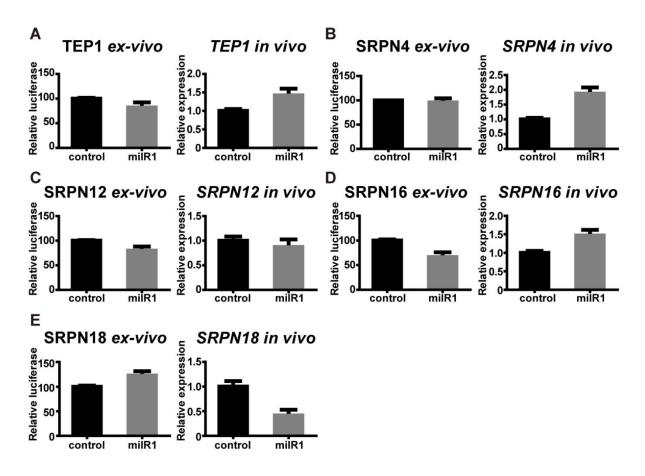
Supplementary Figure 3


Survival of adult female *A. stephensi* mosquitoes after topical infection with suspension of 10^8 conidia/ml of wild type strain ARSEF252 (WT), Knockout strains bba-milR2-KO (a), milR3-KO (b) and milR4-KO (c). Survival percentages are means of three biological replicates of 50 mosquitoes each (mean \pm s.e.m). The statistical significance of survival curves was analyzed with the log-rank (Mantel-Cox) test. There is no significant difference in the virulence between WT and milR2-KO, milR3-KO or milR4-KO to the mosquitoes. The experiment was repeated three times with similar results. Source data are provided as a Source Data file.


Supplementary Figure 4

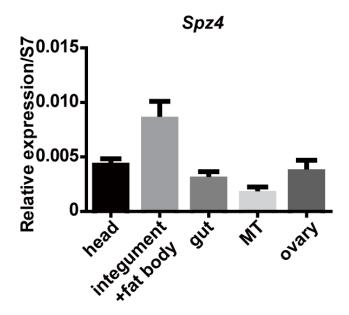
Effect of overexpression of bba-milR2, bba-milR3 and bba-milR4 on fungal virulence to adult female *A. stephensi* mosquitoes.

(a) Analysis of expression of bba-milR1, bba-milR2, bba-milR3 and bba-milR4 relative to U6 in *B. bassiana* ARSEF252 and overexpression strains, as determined by qPCR. The expression values are normalized to WT. (b) Survival curves of female mosquitoes following topical inoculation with suspension of 10^7 conidia/ml of the wild-type and milR2-OV, milR3-OV and milR4-OV strains. Survival percentages are means of three biological replicates of 50 mosquitoes each (mean \pm s.e.m). The statistical significance of survival curves was analyzed with the log-rank (Mantel-Cox) test. There is no significant difference in the virulence between WT and milR2-OV, milR3-OV or milR4-OV against the mosquitoes. Similar results were obtained in three biological repeats. Source data are provided as a Source Data file.

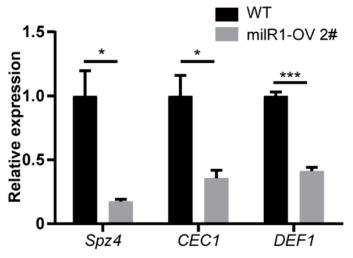


bba-milR1 is expressed at 36 h after infection of *A. stephensi* **mosquitoes with the** *B. bassiana* **strains Bb-bm01, ARSEF252 and ARSEF2860**. The *B. bassiana* U6 small nuclear RNA (U6) was used as an internal reference in qRT-PCR assays. The expression values are normalized to spore. The experiment was repeated three times with similar results. Source data are provided as a Source Data file.

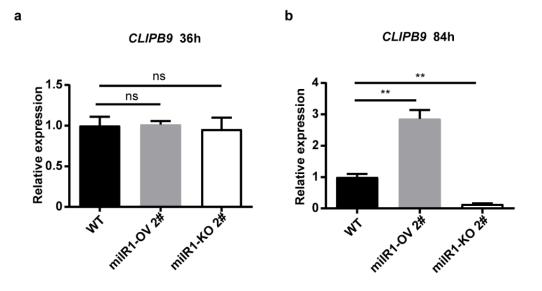
bba-milR1 sRNAs are translocated into cultured Drosophila cells via vesicles.


bba-milR1 was translocated into *Drosophila* cells via vesicles. Cy3-labelled bba-milR1 (2 μM) was added in *Drosophila* S2 cell cultures for 24 h, then washed with PBS, fixed in 4% paraformaldehyde and stained with DAPI. DIC, differential interference contrast microscopy; Red, Cy3; blue, DAPI. Scale bars, 3 μm.

Supplementary Figure 7

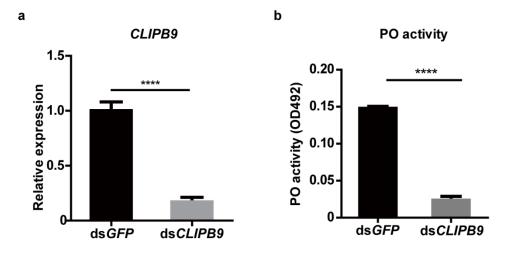

Verification the predicted targets of bba-milR1 ex-vivo and in vivo.

The candidate target genes were separately verified *ex-vivo* in HEK293T cells and *in vivo* in *Anopheles* mosquitoes. (a) bba-milR1 down-regulated the expression of TEP1 *ex-vivo*, but up-regulated the expression of *TEP1 in vivo*. (b) bba-milR1 down-regulated the expression of SRPN4 *ex-vivo*, but up-regulated the expression of *SRPN4 in vivo*. (c) bba-milR1 down-regulated the expression of SRPN12 *ex-vivo*, but had no effect on the expression of *SRPN12 in vivo*. (d) bba-milR1 down-regulated the expression of SRPN16 *in vivo*. (e) Expression of SRPN18 was up-regulated *ex-vivo* but down-regulated *in vivo* by bba-milR1. The experiments were repeated three times with similar results. The expression values are normalized to control. Source data are provided as a Source Data file.

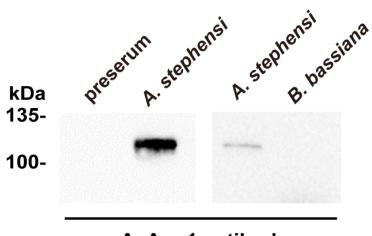

Expression patterns of Spz4 in different tissues of the adult female A. stephensi mosquito.

MT, Malpighian tubule. Similar results were obtained in three biological repeats. Source data are provided as a Source Data file.

bba-milR1 suppresses mosquito innate immunity by down-regulating expression of Spz4.


The relative transcript levels of *Spz4*, *cecropin 1* (*CEC1*) and *defensin 1* (*DEF1*) in mosquitoes at 48 h post infection (hpi) with WT and milR1-OV 2#. The expression values are normalized to WT. The results confirm the phenotypes shown in Fig. 4. * P < 0.05, *** P < 0.001. P value < 0.05 was regarded as statistically significant (Student's *t* test). Source data are provided as a Source Data file.

Bba-milR1 up-regulates CLIPB9 expression at the later infection stage.


CLIPB9 transcription levels during infection progress with WT, milR1-OV 2# and milR1-KO 2# strains. (a) The relative transcript levels of *CLIPB9* in mosquitoes at 36 h post infection with WT, milR1-OV or milR1-KO strains. There was no significant difference in *CLIPB9* expression among the groups at this time point. (b) The relative transcript levels of *CLIPB9* in mosquitoes at 84 h post infection with WT, milR1-OV 2# or milR1-KO 2# strains. The expression values are normalized to WT. The results confirm the phenotypes with the strains milR1-OV 1# and milR1-KO 1# shown in Fig. 5. ** P < 0.01 was regarded as statistically significant (Student's *t* test). Source data are provided as a Source Data file.

13

CLIPB9 modulates the PO activity of A. stephensi hemolymph.

(a) Analysis of silencing efficiency of *CLIPB9* in adult female *A. stephensi* mosquitoes. Systemic injection of *CLIPB9* dsRNA (dsCLIPB9) significantly reduced *CLIPB9* transcript levels. The expression values are normalized to ds*GFP*. (b) Silencing of *CLIPB9* results in significant decrease in *A. stephensi* hemolymph PO activity. Values are mean \pm s.e.m. The experiments were repeated three times with similar results. *****P* < 0.0001 (Student's *t* test). Source data are provided as a Source Data file.

AsAgo1 antibody

Supplementary Figure 12

Specificity analysis of AsAGO1 antibody.

The protein sample of *Anopheles stephensi* and *Beauveria bassiana* were applied to western-blot analysis. AsAGO1 antibody recognizes ~110kD band in the protein sample of *A. stephensi*, but not with *B. bassiana* proteins. The preimmune serum of rabbit was used as the negative control. Source data are provided as a Source Data file.

Supplementary Table 1 | bba-milR1 target prediction in *Anopheles stephensi* mosquito using the multi-algorithm and multi-model strategy.

Gene ID	Gene Name	mfe	Target Site	e	
ASTE010227	TEP1	-16.8 kcal/mol	miRNA:	3'	GGTCAGTTAATTGTCGGTCAGT 5'
			Target:	5'	CGAACCTACTCAC-GCCAGTCA 3'
ASTE011729	Spz4	-22.9 kcal/mol	miRNA:	3'	GGTCAGTTAATTGTCGGTCAGT 5'
			Target:	5'	GCCCAGAAAGAACCGCCAGTCG 3'
ASTE002770	CLIPB9	-22.8 kcal/mol	miRNA:	3'	GGTCA-GTTAATTGTCGGTCAGT 5'
			Target:	5'	GTTGTACCGTCACCGGCCAGTCC 3'
ASTE010655	SRPN4	-22.3 kcal/mol	miRNA:	3'	GGTCAGTTAATTGTCGGTCAGT 5'
			Target:	5'	ACAG-CAACTGCAACAGCCAGTAC 3'
ASTE008874	SRPN12	-24.2 kcal/mol	miRNA:	3'	GGTCAGTTAATTGTCGGTCAGT 5'
			Target:	5'	AACACGGATGAACGGCCAGTCA 3'
ASTE001474	SRPN16	-21.3 kcal/mol	miRNA:	3'	GGTCAGTTAATTGTCGGTCAGT 5'
			Target:	5'	GCAGCCGTCTTCTCGCCAGTCA 3'
ASTE001727	SRPN18	-23.4 kcal/mol	miRNA:	3'	GGTCAGTTAATTG-TCGGTCAGT 5'
			Target:	5'	CCAGACGACGCTCGAGCCAGTCG 3'