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Materials 
GLEAM dataset. The Global Land Evaporation Amsterdam Model (GLEAM) (1) version 3.1a 
provides observationally constrained global daily surface and root-zone SM spanning the period 
from 1980 to 2017. The GLEAM surface SM was produced by employing an improved SM data 
assimilation system using three independent SM datasets, including two satellite-based SM 
products from the European Space Agency (ESA) Climate Change Initiative (CCI) and Soil 
Moisture Ocean Salinity (SMOS) and the surface SM from the Noah model in the Global Land 
Data Assimilation System (GLDAS). The root-zone SM was modelled from a three-layer water-
balance module with input of precipitation infiltration and outputs of evapotranspiration and 
drainage. The forcing data of the water-balance module include Multi-Source Weighted Ensemble 
Precipitation (MSWEP) precipitation, ERA-Interim radiation and air temperature, CCI-LPRM 
vegetation optical depth, ESA CCI and GLDAS-Noah SM, etc. The GLEAM SM datasets perform 
well against SM measurements from eddy covariance towers and soil moisture sensors across a 
broad range of ecosystems (1). The daily SM data were aggregated into monthly values, and the 
SM data at a high spatial resolution of 0.25°×0.25 were bilinearly interpolated to 1°×1° for 
analysis. 
 
MERRA-2 reanalysis. We used monthly climatic data from the Modern-Era Retrospective 
analysis for Research and Applications, Version 2 (MERRA-2) to calculate monthly VPD. 
MERRA-2 is the latest atmospheric reanalysis produced by the NASA Global Modeling and 
Assimilation Office (2). In MERRA-2, global temperature and humidity data are largely 
determined from the direct assimilation of satellite radiances (see 
https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf). We used monthly near-surface (2-m) 
temperature and dew-point temperature data for 1980-2018, with a spatial resolution of  1°×1°. 
Monthly VPD was calculated as the difference between saturated water vapor pressure, determined 
by near-surface temperature, and actual water vapor pressure, determined by dew-point 
temperature. We only used data in the warm season, which was defined as the three-month period 
with highest mean temperature in each grid cell during the study period (Fig. S1), as drought and 
aridity events occur mainly in summer. In addition, focus on the warm season largely removes the 
impact of seasonal cycles of SM and VPD on the SM-VPD coupling. This definition for the warm 
season was also used for the simulations in GLACE-CMIP5 and CMIP5. 
 
GLACE-CMIP5 experiment. We used three models (i.e., ACCESS, ECHAM6 and GFDL) 
participating in the GLACE-CMIP5 experiment, which was designed to assess the impact of land-
atmosphere interactions, and specifically SM-climate feedbacks, in CMIP5 simulations (3). There 
are additional models in GLACE-CMIP5, but they did not provide atmospheric humidity (either 
specific or relative humidity) in the necessary format, so they were not used in this study. In each 
model, we used two twin simulations, i.e., the reference simulation (REF) and the experimental 
simulation (expB), covering the period from 1950 to 2100 (3). These two simulations share the 
same forcing, including sea surface temperature, sea ice, land use and CO2 concentrations, from 
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the corresponding CMIP5 simulations (the historical simulations during 1950-2005, and the 
representative concentration pathway 8.5 scenario during 2006-2100). The difference between the 
two simulations is that SM in expB is prescribed as the mean seasonal cycle over a 30-year running 
mean monthly SM (with the exception of the first and last 15 years using the climatology of 1950-
1979 and 2070-2100, respectively) from the REF simulation (Fig. S3). In addition to the seasonal 
cycle, the expB simulation preserves the long-term trend of REF SM. Therefore, the differences 
of the simulated climatic variables between the two simulations are attributed to the sub-seasonal 
and inter-annual variability of SM due to SM-atmosphere feedbacks. 
 
To perform comparative analyses, we used monthly near-surface air temperature, relative humidity, 
total soil moisture content, and total precipitation in the warm season from the REF and expB 
simulations. VPD was calculated from temperature and relative humidity in the two simulations. 
The global analyses were bilinearly interpolated to 2°×2° spatial resolution to obtain the multi-
model mean results. 
 
CMIP5 model simulations. We used 26 CMIP5 models (61 pairs of simulations listed in Table 
S1) covering the historical (1861-2005) and future (2006-2100, the representative concentration 
pathway 8.5 scenario) periods. These models were selected because they make available the 
monthly means of near-surface air temperature, relative humidity, and total soil moisture content 
required for our analyses. VPD was calculated from temperature and relative humidity. The 
historical simulations were appended to the beginning of the future simulations to obtain the 30-
year running mean (centered) monthly values of the variables (i.e., SM and VPD) covering the 
period 1881-2080. The total period was divided into two centennial periods: historical (1881-1980) 
and future (1981-2080). We calculated inter-annual variations for these variables as the difference 
between their monthly values and the 30-year running means for each month. Based on the 30-
year running mean monthly values of the variables, we calculated the mean values in the warm 
season of each year to track their long-term trends, and the remaining components represent the 
seasonal cycles. All model results were bilinearly interpolated to 2°×2° spatial resolution, and the 
multi-model mean results were shown in the figures. 
 
Attribution method for SM-VPD correlation. We used the Pearson’s correlation coefficient to 
measure the correlation between SM and VPD. Here we show that this correlation coefficient can 
be decomposed to derive the contributions from the atmospheric circulation dynamics and LA 
feedbacks (i.e., the sub-seasonal and inter-annual variations in the variables), and the long-term 
trends and seasonality of the variables. 
 
Time series of monthly SM and VPD in the warm season can be decomposed into two components. 
One is the long-term trends and seasonality of SM (𝑆𝑀#) and VPD (𝑉𝑃𝐷#), calculated as the 30-
year running mean monthly values. The other is the sub-seasonal and inter-annual variations in 
monthly SM (𝑆𝑀') and VPD (𝑉𝑃𝐷'): 
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𝑆𝑀 = 𝑆𝑀# + 𝑆𝑀'																																																																	 S1  
𝑉𝑃𝐷 = 𝑉𝑃𝐷# + 𝑉𝑃𝐷'																																																														 S2  

Pearson’s correlation coefficient between SM and VPD (𝑟 𝑆𝑀, 𝑉𝑃𝐷 ) is defined as 

𝑟 𝑆𝑀, 𝑉𝑃𝐷 =
𝑐𝑜𝑣 𝑆𝑀, 𝑉𝑃𝐷
𝜎45 ∙ 𝜎789

																																																	 S3  

where 𝑐𝑜𝑣() represents the covariance between two variables and 𝜎 is the standard deviation. 
Here we substitute Eqs. S1-S2 into Eq. S3, and obtain 

𝑟 𝑆𝑀, 𝑉𝑃𝐷 =
𝑐𝑜𝑣 𝑆𝑀#, 𝑉𝑃𝐷#
𝜎45 ∙ 𝜎789

+
𝑐𝑜𝑣 𝑆𝑀', 𝑉𝑃𝐷'

𝜎45 ∙ 𝜎789
 

+
𝑐𝑜𝑣 𝑆𝑀#, 𝑉𝑃𝐷'
𝜎45 ∙ 𝜎789

+
𝑐𝑜𝑣 𝑆𝑀', 𝑉𝑃𝐷#
𝜎45 ∙ 𝜎789

																																															 S4  

or 
𝑟 𝑆𝑀, 𝑉𝑃𝐷 = 𝑅 𝑆𝑀#, 𝑉𝑃𝐷# + 𝑅 𝑆𝑀', 𝑉𝑃𝐷' + 𝑅 𝑆𝑀#, 𝑉𝑃𝐷' + 𝑅 𝑆𝑀', 𝑉𝑃𝐷# 				 𝑆5  

where 𝑅() is the normalized correlation coefficient, for example 𝑅 𝑆𝑀#, 𝑉𝑃𝐷# = 𝑟 𝑆𝑀#, 𝑉𝑃𝐷# ·
ABCD∙AEFGD
ABC∙AEFG

. The cross-correlation coefficients (𝑅 𝑆𝑀#, 𝑉𝑃𝐷'  and 𝑅 𝑆𝑀', 𝑉𝑃𝐷# ) on the right side 

of Eq. S5 are very small (within ±0.05, indicating an independent relationship between 𝑆𝑀# and 
𝑉𝑃𝐷', and between 𝑆𝑀' and 𝑉𝑃𝐷#) and can be omitted (Fig. S12). Then we can get 

𝑟 𝑆𝑀, 𝑉𝑃𝐷 ≈ 𝑅 𝑆𝑀#, 𝑉𝑃𝐷# + 𝑅 𝑆𝑀', 𝑉𝑃𝐷' 																																			 S6  
𝑅 𝑆𝑀#, 𝑉𝑃𝐷#  can be further decomposed to assess the contributions from the long-term trends 
and from the seasonal cycles of SM and VPD, so we can better understand how 𝑅 𝑆𝑀#, 𝑉𝑃𝐷#  
changes between historical and future simulations (see results in Fig. S9). 
 
Attribution method for compound extreme events. There is a near-linear relationship between 
the natural logarithm of PMF and r(SM,VPD) across all grid cells (Fig. 3E and F, Table S2), that 
is 

𝑙𝑜𝑔(𝑃𝑀𝐹) ≈ 𝑎 + 𝑏×𝑟 𝑆𝑀, 𝑉𝑃𝐷 																																															 S7  
where 𝑎 and 𝑏 represent intercept and slope parameters (see Table S2 for their values). The slope 
𝑏  represents the sensitivity of 𝑙𝑜𝑔(𝑃𝑀𝐹)  to 𝑟 𝑆𝑀, 𝑉𝑃𝐷 , while the intercept 𝑎  measures the 
impact of tail (in)dependence on PMF. As the Pearson’s correlation coefficient 𝑟 𝑆𝑀, 𝑉𝑃𝐷  only 
detects the linear dependency between SM and VPD, it may not well capture the co-occurrence 
frequency of extreme events if there is strong tail (in)dependence, which could be modeled by 
copulas (4). A positive intercept 𝑎 indicates that the PMF is larger than unity when SM and VPD 
are linearly independent, because of the tail dependence in extreme deviations; on the contrary, a 
negative intercept 𝑎 is induced by tail independence in extreme deviations. We observed positive 
values of the intercept 𝑎 in both periods (Table S2), indicating the existence of tail dependence 
between SM and VPD in the simulations. The tail dependence is attributed to large-scale 
atmospheric dynamics and LA feedbacks that lead to SM and VPD extremes, as shown in GLACE-
CMIP5 simulations. 
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We further separate PMF into 𝑃𝑀𝐹# induced by the long-term trends and seasonality of SM and 
VPD, and 𝑃𝑀𝐹' by large-scale atmospheric dynamics and SM-VPD feedback. Substituting Eq. S6 
into Eq. S7, we can get 

𝑙𝑜𝑔 𝑃𝑀𝐹#×𝑃𝑀𝐹' = 𝑎 + 𝑏×[𝑅 𝑆𝑀#, 𝑉𝑃𝐷# + 𝑅 𝑆𝑀', 𝑉𝑃𝐷' ]											 S8  
and 

𝑃𝑀𝐹# = 𝑒U×V 45D,789D 																																																							 S9  
𝑃𝑀𝐹' = 𝑒XYU×V 45Z,789Z 																																																					 S10  

The dependence structure of SM and VPD varies, resulting in varying levels of tail dependence, 
and therefore varying parameters 𝑎 and 𝑏, across different grid cells. The calibrated parameters 𝑎 
and 𝑏 in Eq. S8 may lead to uncertainties of 𝑃𝑀𝐹# and 𝑃𝑀𝐹' in some grid cells, but weakly impact 
their relative magnitudes, which depend mainly on 𝑅 𝑆𝑀#, 𝑉𝑃𝐷#  and 𝑅 𝑆𝑀', 𝑉𝑃𝐷'  (𝑎 is one 
order of magnitude smaller than 𝑏 , see Table S2). Therefore, we used this method for the 
attribution of compound extreme events. 
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Table S1. Model ensembles from the CMIP5 experiments (historical and RCP8.5 simulations) 
used in this study. 

Model Name Ensemble Institute ID Modeling Center 

ACCESS1-0 r1i1p1 
CSIRO-BOM 

Commonwealth Scientific and 
Industrial Research Organization 

(CSIRO) and Bureau of Meteorology 
(BOM), Australia ACCESS1-3 r1i1p1 

CanESM2 
r1i1p1, r2i1p1, 
r3i1p1, r4i1p1, 

r5i1p1 
CCCMA 

Canadian Center for Climate 
Modelling and Analysis 

CCSM4 
r1i1p1, r2i1p1, 
r3i1p1, r4i1p1, 
r5i1p1, r6i1p1 

NCAR 
National Center for Atmospheric 

Research 

CSIRO-Mk3-6-0 

r1i1p1, r2i1p1, 
r3i1p1, r4i1p1, 
r5i1p1, r6i1p1, 
r7i1p1, r8i1p1, 
r9i1p1, r10i1p1 

CSIRO-QCCCE 

Commonwealth Scientific and 
Industrial Research Organization in 

collaboration with Queensland 
Climate Change Centre of 

Excellence 

FGOALS-s2 r2i1p1, r3i1p1 LASG-IAP 
LASG, Institute of Atmospheric 
Physics, Chinese Academy of 

Sciences 
GFDL-ESM2G r1i1p1 

NOAA GFDL 
NOAA Geophysical Fluid Dynamics 

Laboratory GFDL-ESM2M r1i1p1 

GISS-E2-H 
r1i1p1, r1i1p2, 
r1i1p3, r2i1p1, 

r2i1p3 

NASA GISS 
NASA Goddard Institute for Space 

Studies 
GISS-E2-H-CC r1i1p1 

GISS-E2-R 
r1i1p1, r1i1p2, 
r1i1p3, r2i1p1, 

r2i1p3 
GISS-E2-R-CC r1i1p1 

HadGEM2-AO r1i1p1 NIMR/KMA 
National Institute of Meteorological 

Research/Korea Meteorological 
Administration 

HadGEM2-CC r1i1p1 

MOHC 
(additional 

realizations by 
INPE) 

Met Office Hadley Centre 
(additional HadGEM2-ES 

realizations contributed by Instituto 
Nacional de Pesquisas Espaciais) 
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HadGEM2-ES 
r1i1p1, r2i1p1, 
r3i1p1, r4i1p1 

 

inmcm4 r1i1p1 INM Institute for Numerical Mathematics 

IPSL-CM5A-LR 
r1i1p1, r2i1p1, 
r3i1p1, r4i1p1 

IPSL 
Institut Pierre Simon Laplace, 

France 
IPSL-CM5A-

MR 
r1i1p1 

IPSL-CM5B-LR r1i1p1 

MIROC5 
r1i1p1, r2i1p1, 

r3i1p1 
MIROC 

Atmosphere and Ocean Research 
Institute (The University of Tokyo), 
National Institute for Environmental 

Studies, and Japan Agency for 
Marine-Earth Science and 

Technology 

MIROC-ESM r1i1p1 

MIROC 

Japan Agency for Marine-Earth 
Science and Technology, 

Atmosphere and Ocean Research 
Institute (The University of Tokyo), 

and National Institute for 
Environmental Studies 

MIROC-ESM-
CHEM 

r1i1p1 

MRI-CGCM3 r1i1p1 
MRI Meteorological Research Institute 

MRI-ESM1 r1i1p1 
NorESM1-M r1i1p1 

NCC Norwegian Climate Centre 
NorESM1-ME r1i1p1 
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Table S2. The established functions to predict probability multiplication factor (PMF) using 
correlation coefficient between soil moisture (SM) and vapor pressure deficit (VPD). 

 Historical period Future period 

Function 
Log(PMF)=0.4557-2.2057×

r(SM,VPD) 
Log(PMF)=0.6440-1.9204×

r(SM,VPD)	

Predictive 
performance 

R2=0.77 R2=0.79 
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Fig. S1. Warm season in defined based on MERRA-2 temperature (1980-2017). The starting 
month of the three-month period (warm season) with highest mean temperature in each grid cell 
is shown.
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Fig. S2. Relationship between GLEAM surface SM and MERRA-2 VPD. (A) Correlation 
coefficient between surface SM and VPD during the period 1980-2017 (warm season in Fig. S1). 
(B) Mean probability of each percentile bin of surface SM and VPD across all land grid cells. 
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Fig. S3. Illustration of total column soil moisture in the simulations REF and expB in GLACE-
CMIP5. Soil moisture data shown in the figure are obtained from a grid cell (13.75°N, 35.625°E) 
in the ACCESS model. The total soil column depth is 3164 mm.  
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Fig. S4. Distributions of SM and VPD in GLACE-CMIP5 expB and REF simulations. Mean 
probability of each percentile bin of VPD and SM across all grid cells in (A-C) REF and (D-F) 
expB. (A and D) ACCESS; (B and E) ECHAM6; (C and F) GFDL. 
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Fig. S5. Frequency ratio of extreme low precipitation between expB and REF simulations in 
GLACE-CMIP5. (A) Ratio of the frequency of extreme low precipitation (below 5th percentile 
precipitation in REF) between expB and REF (expB over REF). (B and C) The same as (A), but 
for (B) 10th percentile precipitation and (C) 15th percentile precipitation. 
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Fig. S6. Future changes in the SM-VPD correlation and probability multiplication factor (PMF) in 
CMIP5. (A) Changes in mean correlation coefficient (r(SM,VPD)) between historical and future 
simulations (future minus historical values). (B) Changes in model mean PMF of concurrent 
extreme VPD above its 95th percentile and extreme SM below its 5th percentile between the two 
simulations.  
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Fig. S7. SM-TAS and SM-RH correlations and probability multiplication factor (PMF) in CMIP5. 
(A and B) Mean correlation coefficient (r(SM,TAS)) between SM and TAS across 61 pairs of 
historical and future simulations. (C and D) Model mean PMF of concurrent extreme TAS above 
its 95th percentile and extreme SM below its 5th percentile. (E and F) Mean correlation coefficient 
(r(SM,-RH)) between SM and negative RH. (G and H) Model mean PMF of concurrent extreme 
RH and extreme SM below their 5th percentiles. 
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Fig. S8. Dependence of the SM-VPD correlation on SM variability in CMIP5. (A and B) The 
standard deviation (SD) of SMv in (A) historical (1881-1980) and (B) future (1981-2080) 
simulations. SMv was obtained by removing the long-term trends and seasonal cycles of SM. (C) 
Relationship between R(SMv,VPDv) and the SD of SMv. 
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Fig. S9. Long-term trends in SM and VPD and the contributions of trends and seasonality to 
probability multiplication factor (PMF) in CMIP5. (A-F) Long-term linear trends in warm season 
SM and VPD normalized by their standard deviation in each grid cell. (G-L) Separated 
contributions of the (G-I) long-term trends and (J-L) the seasonal cycles of SM and VPD. The 
long-term trends of SM and VPD for attribution were tracked according to the 30-year running 
mean values in the warm season, which are different from the linear trends shown in A-F. The last 
column shows the difference between historical (1881-1980) and future (1981-2080) periods 
(future minus historical values). 
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Fig. S10. Changes in the thresholds and mean values for compound extreme events from historical 
to future periods in CMIP5. (A and C) Changes (future minus historical values) in thresholds of 
extreme low SM and extreme high VPD. (B and D) Changes in mean SM and mean VPD for 
compound extreme events. The changes in the thresholds and mean values of SM and VPD for 
compound extreme events are normalized by mean SM and VPD in historical simulations, 
respectively. 
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Fig. S11. Comparison of the probability multiplication factor (PMF) in CMIP5. PMF for 
compound SM and VPD extremes is derived (A and B) with copulas and (C and D) by counting in 
historical (1881-1980) and future (1981-2080) simulations.	  
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Fig. S12. Cross-correlation coefficients in CMIP5 during the two periods. (A and C) Historical 
simulations (1881-1980). (B and D) Future simulations (1981-2080). 
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