Noradrenergic dysfunction accelerates LPS-elicited inflammation-related ascending sequential neurodegeneration and deficits in non-motor/motor functions Sheng Song^{1,4}, Qingshan Wang^{1,2}, Lulu Jiang^{1,3}, Esteban Oyarzabal^{1,4}, Natallia V. Riddick⁵, Belinda Wilson¹, Sheryl S. Moy⁵, Yen-Yu Ian Shih⁴, Jau-Shyong Hong¹ - 1 Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA. - 2 Department of Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China. - 3 Institute of Toxicology, School of Public Health, Shandong University, Jinan, Shandong, China. - 4 Biomedical Research Imaging Center, University of North Caroline at Chapel Hill, Chapel Hill, NC, USA. - 5 Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA. ## Correspondence to: Jau-Shyong Hong, Ph.D. E-mail: hong3@niehs.nih.gov P.O. Box 12233 Mail Drop F1-01 Research Triangle Park, North Carolina 27709 USA ## **Supplementary Materials** **Supplementary Fig. 1.** Representative images of staining in SN, hippocampus, cortex, and striatum at 3 (A) and 10 (B) months after DSP-4/LPS injection. Dopaminergic neurons in the SNpc were stained with anti-TH antibody. Neurons in hippocampal granule layer, cortex and striatum were stained with anti-Neu-N antibody. Scales as indicated in the pictures. (C, D) Quantitative analysis of neuron loss in the different brain regions at 3 (C) and 10 (D) months after DSP-4/LPS injection. Results are expressed as a percentage of age-matched vehicle controls (mean \pm SEM) from 3-5 mice in each group at each time point. *p<0.05 and *p<0.01 compare with time-matched saline controls, *p<0.05 compare with indicated group. **Supplementary Fig. 2.** (A) High-power images show the changes of neuron number in hippocampus, cortex, and striatum at 6 months after injection. Neurons in hippocampal granule layer were labeled with hematoxylin; Neurons in cortex and striatum were stained with anti-Neu-N antibody. (B) High quality immunofluorescent images show the loss of TH⁺ cell in SNpc rather than in VTA at 10 months after DSP-4/LPS injection. Scales as indicated in the pictures. **Supplementary Fig. 3.** Representative images of CD11b staining in SN, VTA, hippocampus, cortex, and striatum at 3 (A) and 10 (B) months after DSP-4/LPS injection. Scales as indicated in the pictures. (C-D) Quantitative analysis of microglial activation in the different brain regions by measuring alterations of CD11b density at 3 (C) and 10 (D) months after DSP-4/LPS injection. Results are expressed as a percentage of age-matched vehicle controls (mean \pm SEM) from 3-5 mice in each group at each time point. *p<0.05 and *p<0.01 compare with age-matched vehicle controls, *p<0.05 compare with indicated group. **Supplementary Fig. 4.** Representative images show the increased oxidative stress (3-NT, red) in all those LC-innervated regions, including CA1, DG, and cortex after 6 months of DSP-4/LPS injection. Scales as indicated in the pictures. **Supplementary Fig. 5.** There were no differences in body weight between treated groups vs. controls during these studies. **Supplementary Table 1.** Lack of treatment effects on vision and swimming ability in the Morris water maze. Data are means (\pm SEM) of 4 trials per day. | | Vehicle | DSP-4 | LPS | DSP-4+LPS | |--------------------------------------|--------------|--------------|--------------|--------------| | Visible platform, escape latency (s) | | | | | | Day 1 | 22 ± 4 | 25 ± 4 | 23 ± 4 | 26 ± 4 | | Day 2 | 8 ± 2 | 9 ± 2 | 15 ± 3 | 7 ± 1 | | Swim speed (cm/s) | | | | | | Day 1 of visible platform test | 18 ± 0.3 | 19 ± 0.8 | 19 ± 0.5 | 18 ± 1.1 | | Day 1 of acquisition | 20 ± 0.8 | 21 ± 0.5 | 20 ± 0.3 | 18 ± 0.9 | | Day 1 of reversal learning | 18 ± 1.2 | 18 ± 1.2 | 18 ± 1.3 | 17 ± 1.3 |