Supplemental Material for:

Cell wall inhibition in L-forms or via β -lactam antibiotics induces reactive oxygen-mediated bacterial killing through increased glycolytic flux

Yoshikazu Kawai^{1*}, Romain Mercier², Katarzyna Mickiewicz¹, Agnese Serafini³, Luiz Pedro Sório de Carvalho³, Jeff Errington^{1*}

¹Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, UK

²Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille University UMR 7283, Institut de Microbiologie de la Méditerranée, Marseille, France.

³ Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK

*Corresponding authors <u>yoshikazu.kawai@ncl.ac.uk</u> jeff.errington@ncl.ac.uk

Contents:

Supplementary Figure 1-4, Supplementary Video 1, Supplementary Table 1-3 and Supplementary references.

Supplementary Figure 1. (Related to Figures 1 and 3) Effects of respiratory chain on L-form growth

a, Schematic representation of L-form switch by inhibiting PG precursor pathway in *B. subtilis*. The increase of cellular ROS levels in the wall deficient cells results in cell death and counteraction of the ROS production promotes L-form proliferation.

b, B. subtilis strains YK1450 (P_{spac}-hepS) and YK1454 (P_{xyl}-murE P_{spac}-hepS) were streaked on NA/sucrose plates with or without 1 mM IPTG in the absence of xylose, and incubated at 30°C.
c, Phase contrast micrographs of B. subtilis L-forms were taken from the plates shown in panel b.
d, B. subtilis strains 168CA (wild-type), YK1460 (ctaB::Tn), YK1461 (ndh::Tn) and YK1462 (qoxB::Tn) were streaked on NA/sucrose plates with (middle) or without (left) 200 µg/ml PenG and 100 µg/ml chicken egg white lysozyme, and incubated at 30°C. B. subtilis strains BS115 (P_{xyl}-murE), YK1816 (P_{xyl}-murE ndh::Tn), YK1817 (P_{xyl}-murE qoxB::Tn) and YK1818 (P_{xyl}-murE ctaB::Tn) were streaked on NA/sucrose plates at 30°C.

e, Phase contrast micrographs of *B*. *subtilis* L-forms with a *qoxB* mutation (YK1817) were taken from the plates shown in panel **d**.

The figures are representative of at least three independent experiments (b-e).

Supplementary Figure 2. (Related to Figures 2 and 3) Contrasting effects of carbon sources on Lform growth

a, *B*. *subtilis* strains BS115 (*P_{xyl}-murE*), LR2 (*P_{xyl}-murE ispA*⁻), YK1391 (*P_{xyl}-murE ccpA*::*tn*) and YK1392 (*P_{xyl}-murE ptsI*::*tn*) were streaked on NA/sucrose plates with or without 1% xylose, and incubated at 30°C.

b, Effects of carbon sources on L-form growth on minimal medium (MM). *B. subtilis* strains BS115 $(P_{xyl}\text{-}murE\ ispA^+)$ and LR2 $(P_{xyl}\text{-}murE\ ispA^-)$ were streaked on MM plates with 0.5 M various carbon sources (sucrose, glucose, malate or succinate) in the absence of xylose (MurE OFF), and incubated at 30°C.

c, Phase contrast micrographs of BS115 or LR2 were taken from the plates shown in panel b.

d, Effects of an *ispA* mutation on *B*. *subtilis* L-form growth on sucrose plates containing PenG and lysozyme. *B*. *subtilis* wild-type strain (168CA; $murE^+$ *ispA*⁺) and RM81 ($murE^+$ *ispA*⁻) were streaked on NA/sucrose plates containing 200 µg/ml PenG and 100 µg/ml chicken egg white lysozyme, and incubated at 30°C for 2-3 days.

e, Effects of succinate on *B. subtilis* L-form growth. *B. subtilis* wild-type strain (168CA) was streaked on NA/succinate plates containing 100 μ g/ml cephalexin and 100 μ g/ml lysozyme, and incubated at 30°C. Phase contrast micrograph of *B. subtilis* L-forms was taken from the plate (left). The figures are representative of at least three independent experiments (**a**-**e**).

b

Supplementary Figure 3. (Related to Figures 3 and 4) Oxidative stress does not prevent L-form growth under gluconeogenic conditions.

a, Schematic representation of L-form death/growth phenotype in *B. subtilis* under glycolytic conditions.

b, Effects of oxidative stress on L-form switch and growth under various culture conditions. *B. subtilis* strains YK1604 (P_{xyl} -murE ispA⁻ P_{spac} -bshB1) and YK2028 (P_{xyl} -murE ispA⁻ P_{spac} -sodA) were streaked on NA/sucrose or succinate plates with or without IPTG in the absence of xylose (MurE OFF), and incubated at 30°C under aerobic (High O₂) or anaerobic (Low O₂) conditions. **c**, **d**, Phase contrast micrographs of L-forms were taken from the NA/sucrose (**c**; No IPTG, Low O₂ / Sucrose) or NA/succinate plate (**d**; No IPTG, High O₂ / Succinate) shown in panel **b**. The figures are representative of at least two independent experiments (**b**-**d**).

We previously showed that the expression levels of many genes required for defence systems against oxidative stress are higher in *B. subtilis* L-forms than those of parental walled cells in NA/sucrose medium, and also that the several antioxidant systems, such as superoxide dismutase (*sodA*) and bacillithiol synthesis (*bshB1*), are essential for L-form growth¹ (**b**, High O₂ / Sucrose). As anticipated, it turned out that these systems are no longer required for L-form growth under anaerobic conditions (**b**, **c**, Low O₂ / Sucrose), consistent with the notion that the ROS originate from aerobic respiration. We then examined the possible role of the antioxidant systems on L-form growth in the presence of succinate under aerobic conditions and found that they are not required (**b**, **d**, High O₂ / Succinate). This suggests that the abnormal increase of ROS in the L-form transition is largely suppressed under gluconeogenic conditions.

Intracellular bacillithiol levels

Culture periods with/without PenG and lysozyme (min)

Supplementary Figure 4. (Related to Figure 4) Effects of the L-form transition on intracellular bacillithiol levels.

The dot plots show the total pool size of intracellular bacillithiol from ~10⁸ cells of *B. subtilis* wildtype (168CA) and *ispA*⁻ (RM81) cultures on NA/glucose plates with PenG (P) and lysozyme (L). Precultures of *B. subtilis*, before incubation in the presence of labelled glucose, were also analysed (Pre.). The identification of bacillithiol is based on m/z ion counts, which are normalised over total ion counts. The each dots represent the averages from four biological replicates (Exp. 1-4).

Supplementary Video 1. (Related to Figure 3) Contrasting effects of glucose and succinate on Lform death/growth phenotype

B. subtilis wild-type cells (strain 168CA) were imaged in NB/glucose (left) or succinate (right) with 0.2% agar in the presence of PenG and lysozyme. PC images were acquired every 5 min (Numbers in the top right corner). The movie displayed at 5 frames per second. Scale bar represents 5 μ m. The figures are representative of at least two independent experiments.

Supplementary Table 1. (Related to Figure 4) Secreted succinate levels under glycolytic conditions in the presence or absence of PenG and lysozyme

	μM/total ions counts*10 ⁹ (standard deviation) ^a			
	Wild-type (strain 168CA)		<i>ispA</i> ⁻ (strain RM81)	
Time (min)	No addition	PenG and lysozyme	No addition	PenG and lysozyme
0 (pre-culture)	0.5795 (0.0259)	-	0.8079 (0.0413)	-
45	0.6531 (0.0353)	0.2810 (0.0103)	0.8211 (0.0567)	0.2975 (0.0076)
90	0.6218 (0.0455)	0.2446 (0.0129)	0.7878 (0.0563)	0.2921 (0.0093)
120	0.6316 (0.0273)	0.2283 (0.0128)	0.7587 (0.0500)	0.2638 (0.0148)

^aThe averages and the standard deviation of succinate concentrations in $\sim 10^8$ cells of wild-type or *ispA* mutant from at least three biological replicates were shown. The samples were identical used for extracellular pyruvate analysis (Fig. 4B)

Supplementary Table 2. (Related to Figure 5) Total viable *S. aureus* cells counts (CFU/ml) under various growth conditions

	Experi	ment 1ª	Experiment 2		
Time after addition of PenG (hr)	NB/Glucose	NB/Succinate	NB/Glucose	NB/Succinate	
0	1.8 x 10 ⁸	1.7 x 10 ⁸	3.2 x 10 ⁸	2.2 x 10 ⁸	
1	9.8 x 10 ⁷	1.1 x 10 ⁸	1.8 x 10 ⁸	1.8 x 10 ⁸	
3	6.5 x 10 ⁷	1.1 x 10 ⁸	9.2 x 10 ⁷	1.6 x 10 ⁸	
5	3.4 x 10 ⁷	1.1 x 10 ⁸	2.6 x 10 ⁷	6.2 x 10 ⁷	
24	7.0 x 10 ⁴	7.1 x 10 ⁷	5.0 x 10⁵	4.0 x 10 ⁷	

^aThe data from Experiment 1 was used to generate figure 5E.

Sun	nlementary	Table 3	Bacterial	strains	oligon	ucleotides	and	nlasmids
Jup	piementar	y lable 3.	Datteriai	su anis,	Uligun	ucieotiues	anu	piasiillus

Bacterial strains	
Bacillus subtilis	
168CA; <i>trpC2</i> (wild-type)	Lab. stock
RM81; 168CA xseB::Tn kan (ispA ⁻)	2
BS115; 168CA ΩspoVD::cat P _{xvl} -murE ΩamyE::(tet xylR)	3
LR2; BS115 xseB* (Frameshift 22T>-) (ispA ⁻)	2
BS116; 168CA Ω spoVD::spc P_{xyl} -murE Ω amyE::(tet xylR)	Lab. stock
YK1450; 168CA ΩhepS::pMutin4-erm P _{spac} -hepS	{Kawai 2015}
YK1454; BS116 ΩhepS::pMutin4-erm P _{spac} -hepS	{Kawai 2015}
YK1391; BS115 ccpA::Tn kan	4
YK1392; BS115 ptsl::Tn kan	4
YK1460; 168CA ctaB::Tn kan	{Kawai 2015}
YK1461; 168CA ndh::Tn kan	{Kawai 2015}
YK1462; 168CA qoxB::Tn kan	{Kawai 2015}
YK1563; LR2 ΩglmM::pMutin4-erm P _{spac} -glmM	This work
YK1571; BS115 Ω gapA::pMutin4-erm P _{spac} -gapA	This work
YK1601; BS115 ΩptsHI::pMutin4-erm P _{spac} -ptsHI	This work
YK1602; BS115 ΩptsG::pMutin4-erm ΔptsG	This work
YK1604; LR2 ΩbshB1::pMutin4-erm P _{spac} -bshB1	1
YK1621; BS116 Ω gapA::pMutin4-erm P _{spac} -gapA amyE::P _{spacHY} -	This work
gapA cat	
YK1763; YK1563 ndh::Tn kan	{Kawai 2015}
YK1764; YK1563 goxB::Tn kan	{Kawai 2015}
YK1765; YK1563 ctaB::Tn kan	{Kawai 2015}
YK1816; BS115 ndh::Tn kan	{Kawai 2015}
YK1817; BS115 qoxB::Tn kan	{Kawai 2015}
YK1818; BS115 ctaB::Tn kan	{Kawai 2015}
YK1995; YK1563 mhqR::Tn kan	{Kawai 2015}
YK2028; LR2 ΩsodA::pMutin4-erm P _{spac} -sodA	1
YK2124; BS115 ΩsacP::pMutin4-erm ΔsacP	This work
YK2125; BS115 ΩfruA::pMutin4-erm ΔfruA	This work
YK2126; BS115 ΩlevD::pMutin4-erm Δ levD	This work
Listeria monocytogenes	
EDGe	5
EDGe $\Delta oatA\Delta pgdA$	5
Staphylococcus aureus	
RN4220	6
Enterococcus faecium	
ATCC19434	Lab. stock
Oligonucleotides	
pM4SD-gapA-F; GGGGAATTCTCTCTCACTTATTTAAAGGAG	This work
pM4-gapA-R; GGGGGATCCAACGCCTTGTTTGCCCCAG	This work
pPL82-gapA-F; TCTTCTAGATCTCTCACTTATTTAAAGG	This work
pPL82-gapA-R; GCAGCATGCTCGAAAGAACCAAGTCAGG	This work
pM4SD-ptsHI-F; GAAGAATTCAAGCTTTAAGTTAAAAGGAG	This work
pM4-ptsHI-R; GGAGGATCCTTAGCGATACCTAAAGAC	This work
pM4-ptsG-F; GAAGAATTC GGTCCTGCATTTCTTGAG	This work
pM4-ptsG-R; GGAGGATCCATAATACCGCCGAACACC	This work
pM4-sacP-F; GAAGAATTCTTATCAGCGCGGCTCATTG	This work

pM4-sacP-R; GGAGGATCCTTAATAGGCCGCTGGCTAC	This work
pM4-fruA-F; GAAGAATTCGTCACTGTTCTTGATAAGG	This work
pM4-fruA-R; GGAGGATCCTTCAGACTCAGCTTCAAGG	This work
pM4-levD-F; GAAGAATTCATTATCAGCGGTCATGGAG	This work
pM4-levD-R; GGAGGATCCAAGCTGCCGCGTTATATGG	This work
pM4SD-glmM-F; GGGGAATTCAAAGGAGCGATTATAAAATGGG	This work
pM4-glmM-R; GGGGGATCCCCGCCTCTGCATCCATCG	This work
Plasmids	
pMutin4	7
pM4-P _{spac} -gapA	This work
pM4-P _{spac} -ptsHI	This work
рМ4- <i>ΔptsG</i>	This work
рМ4- <i>ДsacP</i>	This work
pM4-∆fruA	This work
рМ4- <i>ΔlevD</i>	This work
pM4-P _{spac} -glmM	This work
pPL82	8
pPL82-P _{spacHY} -gapA	This work

Supplementary References

- 1 Kawai, Y. *et al.* Cell growth of wall-free L-form bacteria is limited by oxidative damage. *Curr. Biol.* **25**, 1613-1618, doi:10.1016/j.cub.2015.04.031 (2015).
- 2 Mercier, R., Kawai, Y. & Errington, J. Excess membrane synthesis drives a primitive mode of cell proliferation. *Cell* **152**, 997-1007, doi:10.1016/j.cell.2013.01.043 (2013).
- 3 Leaver, M., Dominguez-Cuevas, P., Coxhead, J. M., Daniel, R. A. & Errington, J. Life without a wall or division machine in *Bacillus subtilis*. *Nature* **457**, 849-853, doi:10.1038/nature07742 (2009).
- 4 Kawai, Y., Daniel, R. A. & Errington, J. Regulation of cell wall morphogenesis in Bacillus subtilis by recruitment of PBP1 to the MreB helix. *Mol. Microbiol.* **71**, 1131-1144, doi:10.1111/j.1365-2958.2009.06601.x (2009).
- 5 Aubry, C. *et al.* OatA, a peptidoglycan O-acetyltransferase involved in *Listeria monocytogenes* immune escape, is critical for virulence. *J. Infect. Dis.* **204**, 731-740, doi:10.1093/infdis/jir396 (2011).
- 6 Kreiswirth, B. N. *et al.* The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. *Nature* **305**, 709-712 (1983).
- 7 Vagner, V., Dervyn, E. & Ehrlich, S. D. A vector for systematic gene inactivation in *Bacillus* subtilis. *Microbiology* **144 (Pt 11)**, 3097-3104, doi:10.1099/00221287-144-11-3097 (1998).
- 8 Quisel, J. D., Burkholder, W. F. & Grossman, A. D. In vivo effects of sporulation kinases on mutant SpoOA proteins in *Bacillus subtilis*. *J. Bacteriol.* **183**, 6573-6578, doi:10.1128/JB.183.22.6573-6578.2001 (2001).