GigaScience

Chromosomal-level assembly of the mustache toad genome using third-generation DNA sequencing and Hi-C analysis --Manuscript Draft--

Manuscript Number:	GIGA-D-19-00099R1	
Full Title:	Chromosomal-level assembly of the mustate DNA sequencing and Hi-C analysis	che toad genome using third-generation
Article Type:	Data Note	
Funding Information:	National Key Research and Development Program of China (2017YFC0505202)	Dr. Dingqi Rao
	National Natural Science Foundation of China (30270175)	Dr. Dingqi Rao
	National Natural Science Foundation of China (30870278)	Dr. Dingqi Rao
	National Natural Science Foundation of China (31372165)	Dr. Dingqi Rao
Abstract:	Background	
	The mustache toad, Vibrissaphora ailaonica, is an endemic species to China belonging to the Megophryidae family. Like other mustache toad species, V. ailaonica males temporarily develop keratinized nuptial spines on their upper jaw during each breeding season that fall off when the breeding season ends, which probably reversed the sexual size dimorphism with males being larger than females. To investigate the genetic mechanism of the repeatedly developed keratinized spines, a high-quality reference genome of mustache toad would be a valuable resource.	
	Findings	
	For genome construction, we generated 22 reads using Illumina and Pacific Bioscience sequencing data were assembled into a 3.5 length of 821 Kb. Additionally, we applied H contigs, then assembled contigs into scaffo 13 chromosomes and a scaffold N50 length protein-coding genes annotated in the gener relationships of the mustache toad with other the mustache toad has a relatively higher e marine toad, bull frog, and Tibetan frog and we identified 201 expanded gene families in enriched in immune pathway, keratin filame Conclusions Using Illumina, PacBio, and Hi-C technolog chromosomal-level mustache toad genome reference genome for functional studies of n	5 Gb of short reads and 277 Gb of long es (PacBio) sequencing, respectively. The 53 Gb genome assembly with a contig N50 Ii-C technology to identify contacts among Ids and identified a genome assembly with n of 412.42 Mb. Based on the 26,227 ome, we analyzed the phylogenetic er chordate species. Results showed that volutionary rate and separated from the estor 206.1 million years ago. Furthermore, in the mustache toad, which were mainly ent, and metabolic processes.
Corresponding Author	Dinggi Rao, Ph.D.	
	Kunming Institute of Zoology Chinese Acad Kunming, Yunnan CHINA	emy of Sciences
Corresponding Author Secondary Information:		
Corresponding Author's Institution:	Kunming Institute of Zoology Chinese Acad	lemy of Sciences

Corresponding Author's Secondary Institution:	
First Author:	Yongxin Li
First Author Secondary Information:	
Order of Authors:	Yongxin Li
	Yandong Ren
	Dongru Zhang
	Hui Jiang
	Zhongkai Wang
	Xueyan Li
	Dingqi Rao, Ph.D
Order of Authors Secondary Information:	
Response to Reviewers:	Responses to Reviewers
	The authors would like to thank the reviewers for the helpful comments, and we have revised our manuscript accordingly. At this time, we hope to have an opportunity to publish this paper in GigaScience.
	Reviewer 1 Comments for the Author
	Reviewer #1: Li et al report the first genome assembly of a mustache toad. They used a combination of PacBio and HiC to generate a highly-contiguous assembly. They used RNA-seq data, ab intio gene prediction and homology to annotate ~26000 genes, analyzed gene family contractions and expansions, and estimated the phylogenetic relationship to other amphibians. Given the sparsity of amphibian genomes, this assembly will be valuable for the community. I recommend accepting the manuscript after a few issues have been addressed, most of which are minor.
	Major comments:
	1) Since k-mer based genome size estimation is often not very precise, I find the redundancy reduction of the assembly potentially problematic. The authors removed contigs that overlap with at least 70% another contig using an alignment identity cutoff of 70%. It feels a bit like these parameters were optimized such that the final assembly matches the k-mer predicted size. E.g. the 70% identity cutoff is not compatible with the error rate of PacBio reads, unless the purpose of the Redundans run was to remove single reads that contain much more than the ~15% expected error rate. Also, heterozygosity and alt haplotypes should not result in 30% divergence. I wonder if the authors can check which contigs were removed in this step and ensure that no real sequences were removed. If there is any doubt that some of the contigs may contain functionally important sequences (genes, etc), then I would suggest to provide the removed contigs with the redundancy-filtered assembly as an extra fasta file. Specifically, I wonder if the slightly lower BUSCO scores can be explained by removing real contigs based on 70% similarity.
	Response: To make sure all the removed contigs not contain real sequences, we checked the BUSCO of the raw genome and the redundancy-filtered genome with eukaryote and metazoan as datasets at the same time. Besides, we also checked the mapping ratio of Illumina reads on the raw genome and the redundancy-filtered genome. The BUSCO results shown that most of the genes were not removed and the mapping ratio results shown that both coding region and non-coding region were remained (Table S5). All these results indicated that the redundancy-filtered step not removed many real sequences. However, as you have said before, we further checked the contigs that were removed in this step, all the removed contigs, the BUSCO results of genome and the redundancy-filtered assembly have been uploaded to GigaDB FTP server. Thank you for your suggestions.

2) The manuscript 'undersells' the contiguity of mustache toad assembly, which has *substantially higher* contig and scaffold N50 values than any other amphibian genome.

I therefore recommend to place Table S8 in the main text.

Response: Done. Table S8 has been removed to main text (Table 4). Thank you.

3) Table 3 is hard to understand as absolute numbers are reported. A much better way would be to report '%complete genes, %complete and duplicated genes, %fragmented genes, %missing genes' which sums to 100%. In addition, these 4 BUSCO percentages for the other amphibian genomes should be added to this table to provide a direct comparison of genome assembly completeness.

Response: Table 3 has been corrected and the BUSCO results of the other amphibian genomes were also added.

4) I wonder how the divergence time estimates would change if first or second codon positions instead of four-fold degenerate sites were used. This may be relevant as four-fold degenerate sites are clearly saturated over these phylogenetic distances. Also, the divergence times shown in Figure 6 are quite different to the times from timetree, where e.g. the Rana - Nanorana split was 89 Mya (Figure 6, 44 Mya) and the Rana - Rhinella split was 160 Mya (Figure 6, 137 Mya).

Response: We added the fossil evidence between Rana - Nanorana and Rana -Rhinella from timetree to run mcmctree tree again, and both four-fold degenerate sites and first or second codon positions were used for the divergence time analysis (Figure 6; Figures S2 and S3). The results shown that these three results are much closed and the divergence time between Rana - Nanorana, Rana - Rhinella are similar to timetree results. We have revised the divergence time results in Figure 6. Thank you. Besides, because the expansion and contraction analysis of gene family are related the divergence time result, so we updated the expansion and contraction results this time, including all the descriptions and Tables (Tables S11-S14). Thank you.

Minor comments:

-->

1) The manuscript should be edited by a native speaker to improve the language. A few examples: "Like other mustache toad species, V. ailaonica males develop temporary keratinized nuptial spines on their upper jaw during each breeding season and fall off when the breeding season ends, which probably lead to the reverse of the sexual size dimorphism, namely the size of the male get larger than female." should be improved to "Like other mustache toad species, V. ailaonica males temporarily develop keratinized nuptial spines on their upper jaw during each breeding season that fall off when the breeding season ends, which probably reversed the sexual size dimorphism with males being larger than females."

"To investigate the genetic mechanism of the repeatedly develop the keratinized spines"

"To investigate the genetic mechanism of the repeatedly developed keratinized spines"

"Another unique aspect of the mustache toad is that breeding occurs during the cold season, unlike most frogs and toads which breed in the warmer months"

"Another unique aspect of the mustache toad is that breeding occurs during the cold season, whereas most frogs and toads breed in the warmer months" etc.

Response: Done. We have corrected the above mistakes and other mistakes in our manuscript. Thank you.

2) Please reference Figure 1 in line 55, where the temporary spines are described.

Response: Corrected.

3) Line 75-76: I find this outlook that we will learn from the toad genome (sex

dimorphism) how body size control works in general a bit far-stretched. This could be removed.

Response: Corrected.

4) Line 94/95: Please mention the Illumina read length (paired end 150 bp reads). I find this information more important than library size.

Response: Corrected.

5) Line 164/165: The conclusion that the toad assembly is very complete is justified based on the high percentage of mapping RNA-seq reads and transcripts. However, this sentence should be moved to Line 161 (after "Table S8).", where this analysis is done.

Response: Corrected.

6) Line 180: Please replace 'closely-related' with 'vertebrate' as zebrafish, lamprey and amphibians are not really closely related.

Response: Corrected.

7) Line 179: Would an Augustus model trained from an amphibian (e.g. xenopus) be not more appropriate than a zebrafish model?

Response: The official website of Augustus not included the amphibian species as model. So we selected zebrafish that has high-quality gene set as model. Thank you for your suggestions.

8) Table 4: Please round the percentage to 2 digits (9.94%).

Response: Corrected.

9) Line 204/205: The references don't match: Reference 34 (www.axolotl-omics.org) and 36 refer to the Ambystoma genome assembly. The Rhinella reference is missing.

Response: Corrected.

Reviewer 2 Comments for the Author...

Reviewer #2: Here, Yongxin Li and colleagues reported the chromosome-level genome with the full annotation of the mustache toad, Vibrissaphora ailaonica, using conventional paired-end short read, sufficient amount of PacBio long reads and chromosome conformation capture (Hi-C) data. Although there are several amphibian genomes reported previously, many of them do not have chromosome-level genomes, so I think this is definitely a valuable resource to the community, especially to study the synteny of amphibian genome. So I would like to recommend accepting this manuscript for publication after resolving some issues as mentioned below:

1) On page 5, more details for RNA-Seq library prep construction method should be provided (poly-A capturing or ribosome-depletion? Which library kit do they use?). Also, even the authors mentioned that 9 tissues were dissected from the biospecimen they sequenced the genome (page 4, line 85), it is not clear whether all those tissues were used in this 'mixed RNA-Seq' experiment. Please provide more details for this experiment.

Response: The datails for RNA-seq library construction method were added. About the RNA-seq experiment, after equally mixed the DNA of the 9 tissues, the mixed DNA sample was used for library construction and RNA-seq experiments. Thank you.

2) On page 5, the authors mentioned that they used four Hi-C libraries. Are they constructed from the same samples (blood), with the same parameter (four technical replicates)? Or using different samples? If they used a different parameter to construct these four libraries, it should be specified.

	 Response: Yes, all these four Hi-C libraries were used the same samples with the same parameter. We also clarify these informations in the main text this time. Thank you for your suggestions. 3) Authors claimed that they deposited the data on PRJNA523649, but it looks like they uploaded one single file for each data set. Because they used different libraries, at least for paired-end seq (Table S1) and HiC-seq (Table S4), it would be better to provide those raw data separately. Response: Thank you for your suggestions, we uploaded these sequencing data in the same PROJECT ID, but with different SRA IDs, you could see this by this link (https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA523649). Thank you.
Additional Information:	
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our <u>Minimum Standards Reporting Checklist</u> . Information essential to interpreting the data presented should be made available in the figure legends. Have you included all the information requested in your manuscript?	Yes
Resources A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite <u>Research Resource</u> Identifiers (RRIDs) for antibodies, model organisms and tools, where possible. Have you included the information requested as detailed in our <u>Minimum</u> <u>Standards Reporting Checklist</u> ?	Yes
Availability of data and materials	Yes

All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in <u>publicly available repositories</u> (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.

Have you have met the above requirement as detailed in our Minimum Standards Reporting Checklist?

1	Chromosomal-level assembly of the mustache toad genome using third-generation DNA
2	sequencing and Hi-C analysis
3	
4	Yongxin Li ^{1,2,†} , Yandong Ren ^{2,†} , Dongru Zhang ^{1,†} , Hui Jiang ³ , Zhongkai Wang ² , Xueyan Li ¹ ,
5	Dingqi Rao ^{1,*}
6	
7	1. State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology,
8	Chinese Academy of Sciences, Kunming 650223, China
9	2. Center for Ecological and Environmental Sciences, Northwestern Polytechnical University,
10	Xi'an 710072, China
11	3. National Engineering Laboratory of Marine Germplasm Resources Exploration and
12	Utilization, Zhejiang Ocean University, Zhoushan 316022, China
13	
14	[†] These authors have the equal contribution.
15	*Corresponding author: Dingqi Rao (kizar@mail.kiz.ac.cn).
16	
17	
18	
19	
20	
21	
22	

23 Abstract

24	Background: The mustache toad, Vibrissaphora ailaonica, is an endemic species to China
25	belonging to the Megophryidae family. Like other mustache toad species, V. ailaonica males
26	temporarily develop keratinized nuptial spines on their upper jaw during each breeding season
27	that fall off when the breeding season ends, which probably reversed the sexual size
28	dimorphism with males being larger than females. To investigate the genetic mechanism of
29	the repeatedly developed keratinized spinesLike other mustache toad species, V. ailaonica-
30	males develop temporary keratinized nuptial spines on their upper jaw during each breeding-
31	season and fall off when the breeding season ends, which probably lead to the reverse of the-
32	sexual size dimorphism, namely the size of the male get larger than female. To investigate the
33	genetic mechanism of the repeatedly develop the keratinized spines, a high-quality reference
34	genome of mustache toad would be a valuable resource. Findings: For genome construction,
35	we generated 225 Gb of short reads and 277 Gb of long reads using Illumina and Pacific
36	Biosciences (PacBio) sequencing, respectively. The sequencing data were assembled into a
37	3.53 Gb genome assembly with a contig N50 length of 821 Kb. Additionally, we applied Hi-C
38	technology to identify contacts among contigs, then assembled contigs into scaffolds and
39	identified a genome assembly with 13 chromosomes and a scaffold N50 length of 412.42 Mb.
40	Based on the 26,227 protein-coding genes annotated in the genome, we analyzed the
41	phylogenetic relationships of the mustache toad with other chordate species. Results showed
42	that the mustache toad has a relatively higher evolutionary rate and separated from the marine
43	toad, bull frog, and Tibetan frog ancestor 206.1194.8 million years ago. Furthermore, we
44	identified 201349 expanded gene families in the mustache toad, which were mainly enriched

45	in immune pathway, keratin filament, and metabolic processes. Conclusions: Using Illumina,
46	PacBio, and Hi-C technologies, we constructed the first high-quality chromosomal-level
47	mustache toad genome. This work not only offers a valuable reference genome for functional
48	studies of mustache toad traits, but also provides important chromosome information for
49	wider genome comparisons.
50	
51	Keywords: Mustache toad; Genome assembly; Evolution; PacBio; Hi-C
52	
53	Introduction
54	The mustache toad, Vibrissaphora ailaonica (NCBI Taxonomy ID: 428466), belongs to the
55	Megophryidae family and is an endemic amphibian species to China (including the
56	China-Vietnam border) [1-3]. This mustache toad species exhibits many interesting features,
57	including unique keratinized spines along the upper jaw [1, 4-6]. These spines repeatedly
58	grow in sexually mature males during the breeding season and fall off at the end of this
59	process [5-8] (Figure 1). This morphological difference between males and females is further
60	highlighted by their sexual dimorphism in body size (males are significantly larger than
61	females) and may be used as a weapon for sexually mature individuals to compete for nests
62	and mating opportunities [7, 9, 10]. Another unique aspect of the mustache toad is that
63	breeding occurs during the cold season, whereas most frogs and toads breed in the warmer
64	months Another unique aspect of the mustache toad is that breeding occurs during the cold-
65	season, unlike most frogs and toads which breed in the warmer months-[1]. However, despite
66	the importance of the mustache toad in spine dynamic development and sexual dimorphism in

67	body size, the genomic resources for the species remain limited. To date, no next-generation
68	sequencing (NGS) data have been reported in the Vibrissaphora genus. Therefore, this lack of
69	genome sequence and transcriptome data for this important species (V. ailaonica) has
70	hindered identification of genome-based functional genes related to their attractive dynamic
71	body appearance (e.g., spine and body size). Besides, as there is such a shortage of amphibian
72	genomes in Genome 10K project, and it is necessary to analyze other important genomes to
73	large-scale study the phylogenetic relationships in amphibian [11].
74	In this study, we combined genomic sequencing data from Illumina short reads, PacBio long
75	reads, and Hi-C data to generate the first chromosomal-level reference genome for the
76	mustache toad. The completeness and continuity of the genome were comparable with that of
77	other important amphibian species. The high-quality reference genome generated in this study
78	will facilitate research on population genetic traits and functional gene identification related
79	to important characteristics of the mustache toad, which will, in turn, accelerate the-
80	development of more efficient body size control techniques and improve the artificial-
81	breeding industry for other economically important species.
82	
83	Sampling and sequencing
84	A male mustache toad (V. ailaonica) with keratinized nuptial spines on its upper jaw was
85	caught from the Ailao Mountain during the breeding season for sequencing (Figure 1). To
86	obtain sufficient high-quality DNA for the PacBio Sequel platform (Pacific Biosciences,
87	USA), the mustache toad was dissected, and fresh liver tissue was used for DNA extraction
88	using phenol/chloroform extraction. DNA quality was checked by agarose gel electrophoresis,

89	with excellent integrity DNA molecules were obtained. Other tissues, including spines, brain,
90	stomach, intestine, liver, lung, spleen, blood, and tongue, were snap-frozen in liquid nitrogen
91	for 10 min and then <u>all these 9 organs/tissues were</u> stored at -80°C for- <u>RNA-seq</u>
92	experimentsubsequent use. Isolated total RNA were used to isolate intact poly(A)+ RNA by
93	the NEBNext Poly(A) mRNA Magnetic Isolation Module. The mRNA was further
94	fragmented and randomly primed during the first-strand synthesis by reverse transcription.
95	This procedure was followed by second-strand synthesis with DNA polymerase I to create
96	double-stranded cDNA fragments using Transcriptor First Strand cDNA Synthesis Kit
97	(Roche). In the Hi-C experiments, the collected blood was used for library construction. The
98	blood sample (150 ul) was cross-linked for 10 min with formaldehyde (1% final
99	concentration), after which glycine (0.2 M final concentration) was added for 5 min to stop
100	the cross-linking process, with the sample then stored until the further analysis.
101	Extracted DNA was sequenced using the Illumina and PacBio Sequel platforms. The short
102	reads generated from the Illumina platform were used for estimation of genome size and error
103	correction of the assembled genome, and the PacBio long reads were used for genome
104	assembly. To this end, five libraries with insertion lengths of 220 bp or 500 bp were generated
105	fromsequenced on the Illumina HiSeq 2500 platform generating 150 bp paired-end reads and
106	a 20 Kb library was constructed using the PacBio platform according to the manufacturers'
107	protocols. Finally, we obtained 225.03 Gb of Illumina short reads and 277.15 Gb of PacBio
108	long reads (Table 1; Additional File: Tables S1 and S2). The average subreads N50 length
109	reached to 14.78 Kb, providing ultra-long genomic sequences for the following assembly and
110	analysis (Additional File: Table S2). The RNA-seq samples were obtained by mixing an equal

with excellent integrity DNA molecules were obtained. Other tissues, including spines, brain.

- nalysis (Additional

111	amount of RNA extracted from each tissue stored and used for library construction. After
112	sequencing on the Illumina HiSeq 4000 platform, we obtained 14.18 Gb of sequencing data
113	(Table 1; Additional File: Table S3). Four Hi-C libraries were constructed using the same
114	sample with same parameters and sequenced on the Illumina Hiseq X-ten platform, which
115	generated 378.78 Gb of clean data (Table 1; Additional File: Table S4).

117 Genome characteristics estimation

118	The Illumina short reads were quality filtered by the following steps: First, the adaptors were
119	removed from the sequencing reads. Second, read pairs were excluded if any one read had
120	more than 10% "N". Third, read pairs with low quality base more than 50% were removed.
121	Fourth, the PCR duplicates produced during library construction in read pairs were removed.
122	The filtered reads were used for estimation of genome size and other characteristics. Using
123	the k-mer method, we calculated the 17-mer depth frequency distribution in the mustache
124	toad. Genome size was estimated by: $G = TKN_{17-mer} / PKFD_{17-mer}$, where TKN_{17-mer} is the total
125	kmer number and $PKFD_{17-mer}$ is the peak kmer frequency depth of 17-mer. We estimated a
126	genome size of 3.52 Gb (peak = 54) and found a heterozygous and repeat sequences peak,
127	suggesting that the mustache toad genome exhibits complex genome assembly (Figure 2).
128	

129 Genome assembly by PacBio long reads and Hi-C data

Based on 38 single-molecular real-time cells by the PacBio Sequel platform, we generated
277.15 Gb of subreads (Table 1; Additional File: Table S2). The average and N50 length of
subreads were 9.65 Kb and 14.78 Kb, respectively (Additional File: Table S2). All the long

133 reads were used for genome assembly using wtdbg software

134	(https://github.com/ruanjue/wtdbg-1.2.8). As a result, we obtained a 3.95 Gb genome
135	assembly with a contig N50 length of 739.54 Kb. However, although the size of the genome
136	assembly was comparable with the estimation k-mer result, it was a slightly larger. This may
137	be due to the complexity of the mustache toad genome (high heterozygous rate and repeat
138	sequences). Then the redundant sequences in the genome assembly were removed using
139	Redundans software (v0.13c) [12] with an identity of 0.7 and overlap of 0.7, resulting in a
140	genome assembly of 3.58 Gb and contig N50 length of 834.90 Kb. To make sure all the
141	removed contigs not contain real sequences, we checked the BUSCO result and the mapping
142	ratio of Illumina reads in the raw genome and the redundancy-filtered genome. Finally, All
143	these results indicated that the parameters in the redundancy-filtered step are proper in this
144	study (Additional File: Table S5). To further improve the quality and accuracy of our genome
145	assembly, the Illumina short reads were used to polish the genome using Pilon software
146	(RRID:SCR_014731, v1.21) [13] at the single-base level. The Hi-C data were used to
147	improve the connection integrity of the contigs (15,899 contigs). We obtained 378.78 Gb of
148	Hi-C sequencing data, which were first filtered by Hic-Pro (v2.10.0) [14] (Table 1; Additional
149	File: Table S4), and then mapped to the polished mustache toad genome [15]. The location
150	and direction of the contigs were determined by 3D de novo assembly (3d-DNA) software
151	(v180419) [16] with default parameters. Most contigs were then successfully clustered and
152	anchored on 13 groups (Figure 3) [17]. Finally, we obtained the first chromosomal-level high
153	quality mustache toad assembly (3.53 Gb) with a scaffold N50 length of 412.42 Mb,
154	providing a solid genomic resource for further study of the mustache toad (Table 2).

156 Genome assembly evaluation

157	Genome assembly quality is directly related to the accuracy and completeness of
158	protein-coding gene prediction. Therefore, we evaluated the assembled mustache toad
159	genome using three methods. First, the assembled genome was compared with the core gene
160	set in BUSCO software (RRID:SCR_015008, v2.0) [18]. We found 245 (80.8%) and 833
161	(85.1%) conserved core genes in the mustache toad genome using the eukaryote and
162	metazoan databases, respectively (Table 3). When we further considered the fragmented
163	BUSCO genes found in the genome, there were 272 (89.7%) and 881 (90.1%) conserved core
164	genes found in the eukaryote and metazoan databases, respectively. (Table 3) This results
165	indicated that the assembled mustache toad genome is comparable with published amphibian
166	genomes (Table 3). Second, we aligned all filtered short reads generated from the Illumina
167	platform to the genome using BWA software (RRID:SCR_010910, v0.7.12) [19] and found
168	1,778 million clean reads that could be mapped to the genome, accounting for 97.78% of total
169	clean reads (Additional File: Table <u>\$5\$6</u>). Third, the RNA-seq reads were <i>de novo</i> assembled
170	using Bridger software (RRID:SCR_017039, version: r2014-12-01) [20], with redundant
171	transcripts removed by TGICL [21], resulting in 19,876 transcripts (Additional File: Table
172	<u>\$6\$7</u>). These transcripts were then aligned to the genome, with 17,878 transcripts (89.95%)
173	found in the assembled genome and 94.52% of transcripts longer than 1 Kb (Additional File:
174	Table <u>\$758</u>). Besides, we analyzed the N50 length and BUSCO results and found that the
175	mustache toad genome was comparable with other published amphibian genomes (Tables 2-
176	and Table 3-4; Additional File: Table S8). These results indicate that our assembled mustache

177	toad genome exhibited high completeness and accuracy.
178	The GC distribution of the mustache toad and <u>vertebrate</u> elosely related species was
179	calculated using the slide window method. Results showed that their GC distributions were
180	similar to each other, with an average GC content of 43.68% in the mustache toad and 36.60%
181	to 44.49% in other species (Additional File: Figure S1). These results indicate that our-
182	assembled mustache toad genome exhibited high completeness and accuracy.
183	
184	Genome annotation
185	We used Tandem Repeat Finder (TRF, v4.04) [22] to identify repetitive elements and
186	RepeatModeler software (RRID:SCR_015027, v1.0.4) to detect transposable elements (TEs)
187	in the mustache toad genome. Then, the de novo library of repeats produced by
188	RepeatModeler analysis and the repbase (RepBase16.02) database were then used for
189	RepeatMasker (RRID:SCR_012954, version: open-4.0) [23] analysis to identify homologous
190	repeats. RepeatProteinMask was used to query the TE protein database at the protein level.
191	Lastly, we identified 2.45 Gb of repeat sequences, which accounts for 69.48% of the
192	estimated genome size (Additional File: Table S9). Among these repeat sequences, 60.87%
193	(2.15 Gb) was predicted by the <i>de novo</i> method (Table 45).
194	After repeat sequence annotation, we masked all repeats, except for the tandem repeat
195	sequences, for protein-coding gene annotation. Augustus software (RRID:SCR_008417,
196	v2.5.5) [24] was used to <i>de novo</i> predict coding genes using a zebrafish (Danio rerio) dataset
197	as the train species. For the homology-based method, protein sequences of closely-
198	relatedchordate species, including D. rerio (GCF_000002035.6) [25], Nanorana parkeri

- 199 (GCF_000935625.1) [26], Homo sapiens (GCF_000001405.38) [27], Gallus gallus
- 200 (GCF_000002315.5) [28], Pelodiscus sinensis (GCF_000230535.1) [29], Xenopus laevis
- 201 (GCF_001663975.1) [30], and Petromyzon marinus [31]
- 202 (https://genomes.stowers.org/organism/Petromyzon/marinus), were downloaded and aligned
- against the mustache toad genome using the TBLASTN module (BLAST version: 2.3.0). The
- 204 transcripts assembled by RNA-seq reads were first translated into amino acids and then
- 205 aligned to the genome using TBLASTN software for gene annotation. EVidenceModeler
- 206 (RRID:SCR_014659, version: r2012-06-25) [32] was used to integrate results from the three
- 207 methods, and genes with poor transcriptome evidence support were filtered out. Finally,
- 208 26,227 high-quality protein-coding genes were predicted in the mustache toad genome.
- 209 Moreover, the distributions of mRNA, CDS, exon, and intron lengths were comparable with
- 210 closely related species (Figure 4).
- 211 Gene functional annotation can help to elucidate gene function. Thus, we aligned all 26,227
- 212 protein-coding genes to protein databases, including InterProScan, KEGG, SwissProt, and
- TrEMBL. Results showed that most obtained genes could be annotated in these functional
 databases (Table <u>56</u>).
- 215

216 Phylogenetic tree and divergence time analysis

- 217 To reveal the phylogenetic relationships of the mustache toad with other closely related
- 218 species, we identified the single-copy genes among the species. First, protein sequences,
- 219 including those of D. rerio (GCF_000002035.6) [25], N. parkeri (GCF_000935625.1) [26], H.
- 220 sapiens (GCF_000001405.38) [27], G. gallus (GCF_000002315.5) [28], Anolis carolinensis

221	(GCF_000090745.1) [33], Xenopus tropicalis (GCF_000004195.3) [30], Rhinella marina
222	(GigaDB) [34], Rana catesbeiana (GCA_002284835.2) [35], Ambystoma mexicanum
223	(www.axolotl-omics.org) [36, 37], and Alligator sinensis (GCF_000455745.1) [3738], were
224	downloaded from NCBI and the longest transcript of each gene in each species was selected.
225	The BLASTP program (BLAST version: 2.2.24) was then used to align these protein
226	sequences among these 11 species (including the mustache toad) with an e-value of 1e-5. The
227	homolog relationships (including ortholog and paralog) were then determined using
228	OrthoMCL software (v1.4) [3839]. Genes with only one copy in the species were identified as
229	single-copy genes. In total, 238 genes were identified (Figure 5), with the detailed results of
230	gene family statistics shown in the supplementary information (Additional File: Table S10).
231	The 238 single-copy genes were aligned using MUSCLE software (RRID:SCR_011812,
232	v3.8.31) [3940, 4041] and concatenated to supergenes for maximum-likelihood-based
233	phylogenetic analyses. We performed phylogenetic analysis, with zebrafish as the outgroup,
234	using RAxML software (RRID:SCR_006086, v8.2.3) [4142] with the parameter -m for
235	PROTGAMMAAUTO. Results indicated that the mustache toad exhibited a close
236	relationship with the ancestor of the marine toad (R. marina), bull frog (R. catesbeiana), and
237	Tibetan frog (N. parkeri), with topological relationships in other clades found to be the same
238	as reported previously (Figure 6). To further investigate the divergence time of these species,
239	especially toad and frogs, the MCMCTREE model in PAML software (RRID:SCR_014932,
240	v4.8) [4243] was used with three datasets (four-fold degenerate sites (4dTVs); the first-codon
241	sites; the second-codon sites) extracted from the single-copy genes as the input file. Fossil
242	records were downloaded from the TIMETREE website (www.timetree.org) and used to

243 calibrate the results. We found that the results from the three different datasets are very 244 similar and the mustache toad diverged with the common ancestor of the marine toad, bull 245 frog, and Tibetan frog about 194.8206.1 million years ago (Figure 6: Additional File: Figures 246 <u>S2 and S3</u>). 247 248 Gene family expansion and contraction 249 We performed gene family expansion and contraction analysis using CAFÉ software 250 (RRID:SCR_005983, v4.0) [4344], and found 349-201 and 2,607326 expanded and 251 contracted gene families in the mustache toad (P < 0.05), respectively. Using the GO/KEGG 252 databases, functional enrichment analysis of the expanded gene families found 174-210 GO 253 terms (adjusted *P*-value < 0.05) and $\frac{29}{29}$ KEGG pathways (*q*-value < 0.05) to be significantly 254 enriched (Additional File: Tables S11 and S12). The expanded gene families were mainly 255 related to metabolic processes, intermediate filament terms, enzyme activities, and immune 256 terms. For example, the cellular metabolic process (adjusted *P*-value = $\frac{2.376.06\text{E}-14}{2.376.06\text{E}-14}$), 257 intermediate filament (adjusted P-value = 3.923.42E-153), keratin filament (adjusted P-value 258 = $\frac{1.662.94}{2}$ E-1 $\frac{32}{2}$), endoribonuclease activity (adjusted *P*-value = $\frac{1.069.19}{2}$ E-0 $\frac{87}{2}$), and 259 immune response (q-value = $\frac{4.818.36}{2}$ E-0<u>3</u>6) were enriched (Additional File: Tables S11 and 260 S12). In addition, for the contracted gene families, 226-220 GO terms (adjusted P-value < 261 0.05) and $\frac{11-9}{11-9}$ KEGG pathways (q-value < 0.05) were enriched, respectively (Additional File: 262 Tables S13 and S14). These enriched terms were mainly involved in ion binding and 263 transporter activity, including neurotransmitter transporter activity (adjusted P-value = 4.201.89E-1109), sodium ion transmembrane transporter activity (adjusted *P*-value = 264

265	$\frac{1.553.33}{1.553.33}$ E-0 <u>6</u> 8), and secondary active transmembrane transporter activity (adjusted <i>P</i> -value =
266	6.371.86E-08) (Additional File: Tables S13 and S14). Thus, these biological processes may be
267	related to the special characteristics of the mustache toad.
268	
269	Relative evolutionary rate of species
270	The evolutionary rate of species can reflect its evolution history and status. The relative
271	evolutionary rate of the mustache toad to other closely related species was analyzed using
272	LINTRE [4445] and MEGA (RRID:SCR_000667, v7.0.26) softwares. Two-cluster analysis
273	was applied to test the molecular evolution of multiple sequences in a phylogenetic context
274	based on the concatenated supergenes (protein sequences) using tpcv (a module in LINTRE
275	software). The concatenated supergenes were also used for Tajima's relative rate test. We used
276	zebrafish as the outgroup in both methods, and found that, except for the axolotl, the
277	mustache toad had a relatively faster evolutionary rate than its closely related species (e.g.,
278	X.tropicalis, R. marina, R. catesbeiana, and N. parkeri) (Additional File: Tables S15 and S16).
279	The crocodile had a slower evolutionary rate relative to its closely related species, and this
280	result is consistent with previous study [4546] (Additional File: Tables S15 and S16).
281	
282	Conclusions
283	Using Illumina, PacBio, and Hi-C sequencing technologies, we reported on the first
284	chromosomal-level genome assembly of the mustache toad. We successfully annotated 26,227
285	protein-coding genes by integrating the results of three different methods. The phylogenetic
286	analysis results indicated that the mustache toad has a close relationship with the marine toad,

287	bull frog, and Tibetan frog, and diverged at <u>194.8206.1</u> MYA with their common ancestor.
288	Analysis showed that the mustache toad had a faster evolutionary rate relative to most other
289	closely related species studied. Expansion and contraction of gene family analysis identified
290	several biological processes and pathways, such as metabolism and intermediate filaments,
291	suggesting that these terms may relate to the special adaptations of the mustache toad to its
292	habitat.
293	
294	Availability of supporting data
295	The raw sequencing data were deposited in the NCBI database under accession number
296	PRJNA523649. The genome assembly and annotation results are available via the
297	GigaScience repository GigaDB.
298	
299	Additional files
300	Figure S1: The GC content in these genomes.
301	Figure S2: The divergence time of these species (using the first-codon sites).
302	Figure S3: The divergence time of these species (using the second-codon sites).
303	Table S1: The statistics of Illumina sequencing clean data.
304	Table S2: The statistics of PacBio Sequel sequencing data.

- 305 Table S3: The statistics of RNA-seq clean data.
- Table S4: The statistics of Hi-C sequencing clean data.
- 307 <u>Table S5. The comparison of BUSCO and Illumina reads mapping results in these two</u>
- 308 genome versions.

- 309 Table S<u>6</u>5: The statistics of Illumina reads mapping ratio to the assembled genome.
- Table S<u>7</u>6: The statistics of assembled transcripts by Bridger software.
- 311 Table S $\underline{87}$: The statistics of transcripts mapping ratio to the assembled genome.
- 312 Table S8: The quality statistics of several published amphibian genomes.
- 313 Table S9: The statistics of the annotated repeat sequences in our assembled genome.
- Table S10: The statistics of gene family among these species.
- 315 Table S11: The GO enrichment analysis of expanded gene families.
- 316 Table S12: The KEGG enrichment analysis of expanded gene families.
- 317 Table S13: The GO enrichment analysis of contracted gene families.
- 318 Table S14: The KEGG enrichment analysis of contracted gene families.
- 319 Table S15: Two cluster analysis of mustache toad and other species.
- 320 Table S16: The relative evolutionary rate of mustache toad and other species analyzed by
- 321 Tajima's Test.
- 322

323 Abbreviations

- 324 BLAST: Basic Local Alignment Search Tool; BUSCO: Benchmarking Universal Single-Copy
- 325 Orthologs; BWA: Burrows-Wheeler Aligner; CDS: Coding DNA Sequence; DNA:
- 326 Deoxyribonucleic Acid; GO: Gene Ontology; Hi-C: High-throughput chromosome
- 327 conformation capture; KEGG: Kyoto Encyclopedia of Genes and Genomes; MHC: Major
- 328 Histocompatibility Complex; NCBI: National Center for Biotechnology Information; NR:
- 329 Non-Redundant Protein Sequence Database; PCR: Polymerase Chain Reaction; RNA:

331	
332	Conflicts of interest
333	The authors declare that they have no competing interests.
334	
335	Funding
336	This work was supported by the National Key Research and Development Program of China
337	(NO. 2017YFC0505202) and National Natural Science Foundation of China (NO.
338	NSFC-30270175; NO. NSFC-30870278; NO. NSFC-31372165).
339	
340	Author contributions
341	D.R. designed the project; D.R. and D.Z. collected the samples; Y.L. and Y.R. estimated the
342	genome size and assembled the genome; Y.L. polished the assembled genome and employed
343	the Hi-C analysis; H.J. performed the genome annotation; Y.L. and Z.W. assessed the quality
344	of the genome assembly; Y.L. and Y.R. constructed the phylogenetic tree and determined
345	divergence time, relative evolutionary rate of species, and expansion and contraction of gene
346	families. Y.L., D.R., Y.R., and X.L. wrote the manuscript.
347	
348	References

Ribonucleic Acid; RNA-seq: RNA sequencing.

349	1.	Liang F and Changyuan Y. Amphibians of China. Science Press: Beijing; 2016.
350	2.	Matsui M, Hamidy A, Murphy RW, Khonsue W, Yambun P, Shimada T, et al.
351		Phylogenetic relationships of megophryid frogs of the genus Leptobrachium
352		(Amphibia, Anura) as revealed by mtDNA gene sequences. Molecular Phylogenetics
353		& Evolution. 2010;56 1:259-72.
354	3.	Matsui M. A New Leptobrachium (Vibrissaphora) from Laos (Anura: Megophryidae).
355		Current Herpetology. 2013;32 2:182-9.

356	4.	Liu C HS, Zhao EJAHS, Chengdu, Old Ser. Preliminary study of genus Vibrissaphora
357		(Amphibia: Salientia) and discussion on problems of amphibian classification.
358		Copeia. 1980;3:1-9.
359	5.	Rao DQ and Wilkinson JA. Phylogenetic relationships of the mustache toads inferred
360		from mtDNA sequences. Molecular Phylogenetics & Evolution. 2008;46 1:61-73.
361	6.	Zheng Y, Li S and Fu J. A phylogenetic analysis of the frog genera Vibrissaphora and
362		Leptobrachium, and the correlated evolution of nuptial spine and reversed sexual size
363		dimorphism. Molecular Phylogenetics & Evolution. 2008;46 2:695-707.
364	7.	Zheng Y, Deng D, Li S and Fu J. Aspects of the breeding biology of the Omei
365		mustache toad (Leptobrachium boringii): Polygamy and paternal care.
366		Amphibia-Reptilia. 2010;31 2:183-94.
367	8.	Zhang W, Guo Y, Li J, Huang L, Kazitsa EG and Wu H. Transcriptome analysis
368		reveals the genetic basis underlying the seasonal development of keratinized nuptial
369		spines in Leptobrachium boringii. Bmc Genomics. 2016;17 1:978.
370	9.	Zheng Y, Rao D, Murphy RW and Zeng X. Reproductive Behavior and Underwater
371		Calls in the Emei Mustache Toad, Leptobrachium boringii. Asian Herpetological
372		Research. 2011;02 4:199-215.
373	10.	Hudson CM, Xianjin HE and Jinzhong FU. Keratinized Nuptial Spines Are Used for
374		Male Combat in the Emei Moustache Toad (Leptobrachium boringii). Asian
375		Herpetological Research. 2011;02 3:142-8.
376	11.	Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate
377		species. The Journal of heredity. 2009;100 6:659-74. doi:10.1093/jhered/esp086.
378	12.	Pryszcz LP and Gabaldón T. Redundans: an assembly pipeline for highly
379		heterozygous genomes. Nucleic Acids Research. 2016;44 12:e113-e.
380	13.	Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an
381		integrated tool for comprehensive microbial variant detection and genome assembly
382		improvement. PLoS One. 2014;9 11:e112963. doi:10.1371/journal.pone.0112963.
383	14.	Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an
384		optimized and flexible pipeline for Hi-C data processing. Genome Biology. 2015;16
385		1:259.
386	15.	Durand N, Shamim M, Machol I, Rao SP, Huntley M, Lander E, et al. Juicer Provides
387		a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Systems.
388		2016;3 1:95-8.
389	16.	Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, et al. De
390		novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length
391		scaffolds. Science. 2017;356 6333:92.
392	17.	Wilkinson JA. A New Species of the Genus Vibrissaphora (Anura: Megophryidae)
393		from Yunnan Province, China. Herpetologica. 2006;62 1:90-5.
394	18.	Simão FA, Waterhouse RM, Panagiotis I, Kriventseva EV and Zdobnov EM.
395		BUSCO: assessing genome assembly and annotation completeness with single-copy
396		orthologs. Bioinformatics. 2015;31 19:3210-2.
397	19.	Li H and Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
398		transform. 2009.

399 20. Chang Z, Li G, Liu J, Zhang Y, Ashby C, Liu D, et al. Bridger: a new framework for

400		de novo transcriptome assembly using RNA-seq data. Genome Biology. 2015;16
401		1:30.
402	21.	Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, et al. TIGR
403		Gene Indices clustering tools (TGICL): a software system for fast clustering of large
404		EST datasets. Bioinformatics. 2003;19 5:651-2.
405	22.	Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic
406		Acids Res. 1999;27 2:573-80.
407	23.	Bedell JA, Korf I, . and Gish W, . MaskerAid: a performance enhancement to
408		RepeatMasker. Bioinformatics. 2000;16 11:1040-1.
409	24.	Stanke M and Waack S. Gene prediction with a hidden Markov model and a new
410		intron submodel. Bioinformatics. 2003;19 suppl_2:21525.
411	25.	Kerstin H, Clark MD, Torroja CF, James T, Camille B, Matthieu M, et al. The
412		zebrafish reference genome sequence and its relationship to the human genome.
413		Nature. 2013.
414	26.	Yan-Bo S, Zi-Jun X, Xue-Yan X, Shi-Ping L, Wei-Wei Z, Xiao-Long T, et al.
415		Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative
416		evolution of tetrapod genomes. Proc Natl Acad Sci U S A. 2015;11 112:E1257-E62.
417	27.	Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial
418		sequencing and analysis of the human genome. Nature. 2001;409 6822:860-921.
419		doi:10.1038/35057062.
420	28.	Sequence and comparative analysis of the chicken genome provide unique
421		perspectives on vertebrate evolution. Nature. 2004;432 7018:695-716.
422		doi:10.1038/nature03154.
423	29.	Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, et al. The draft
424		genomes of soft-shell turtle and green sea turtle yield insights into the development
425		and evolution of the turtle-specific body plan. Nat Genet. 2013;45 6:701-6.
426		doi:10.1038/ng.2615.
427	30.	Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. Genome
428		evolution in the allotetraploid frog Xenopus laevis. Nature. 2016;538 7625:336-43.
429		doi:10.1038/nature19840.
430	31.	Smith JJ and Timoshevskaya N. The sea lamprey germline genome provides insights
431		into programmed genome rearrangement and vertebrate evolution. 2018;50 2:270-7.
432		doi:10.1038/s41588-017-0036-1.
433	32.	Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, et al. Automated
434		eukaryotic gene structure annotation using EVidenceModeler and the Program to
435		Assemble Spliced Alignments. Genome Biology. 2008;9 1:R7.
436	33.	Jessica AL, Federica DP, Manfred G, Christina W, Lesheng K, Evan M, et al. The
437		genome of the green anole lizard and a comparative analysis with birds and
438		mammals. Nature. 2011.
439	34.	Edwards RJ, Tuipulotu DE, Amos TG, O'Meally D, Richardson MF, Russell TL, et al.
440		Draft genome assembly of the invasive cane toad, Rhinella marina. GigaScience.
441		2018;7 9 doi:10.1093/gigascience/giy095.
442	34.	Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, et al. The
443		axolotl genome and the evolution of key tissue formation regulators. Nature.
•		

444		2018:	554 7690.						
445	35.	Hamı	nond SA, Warren H	RL, Vandervalk	BP, Kucuk E,	Khan H, Gibb EA, et al. The			
446		North	American bullfrog	g draft genome	provides insigl	nt into hormonal regulation of			
447		long	noncoding RNA. 2	017;8 1:1433. d	loi:10.1038/s4	1467-017-01316-7.			
448	36.	Smith	n JJ, Timoshevskay	a N, Timoshevs	skiy VA, Keina	th MC, Hardy D and Voss SR.			
449		A chr	omosome-scale as	sembly of the a	xolotl genome.	Genome Res. 2019;29			
450		2:317	-24. doi:10.1101/g	r.241901.118.	U				
451	37.	Now	oshilow S, Schloiss	nig S, Fei JF, D	Dahl A, Pang A	WC, Pippel M, et al. The			
452		axolo	tl genome and the	evolution of ke	y tissue format	ion regulators. Nature.			
453		2018:	554 7690.		-				
454	37<u>38</u>.	Wan	QH, Pan SK, Hu L	, Zhu Y, Xu PW	V, Xia JQ, et al.	Genome analysis and signature			
455		disco	very for diving and	sensory prope	rties of the end	angered Chinese alligator. Cell			
456		resea	rch. 2013;23 9:109	1-105. doi:10.1	038/cr.2013.10)4.			
457	38<u>39</u>.	Li L,	Jr SC and Roos DS	6. OrthoMCL: i	dentification o	f ortholog groups for eukaryotic			
458		genoi	nes. Genome Rese	arch. 2003;13 9	9:2178-89.				
459	39<u>40</u>.	Edga	r RC. MUSCLE: m	ultiple sequence	e alignment w	ith high accuracy and high			
460		throu	ghput. Nucleic Aci	ds Res. 2004;32	2 5:1792-7. doi	:10.1093/nar/gkh340.			
461	<u>4041</u> .	Edga	r RC. MUSCLE: a	multiple seque	nce alignment	method with reduced time and			
462		space	space complexity. Bmc Bioinformatics. 2004.						
463	<u>4142</u> .	Alexa	Alexandros S. RAxML version 8: a tool for phylogenetic analysis and post-analysis						
464		of lar	ge phylogenies. Bi	oinformatics. 2	014;30 9:1312	-3.			
465	4 <u>243</u> .	Yang	Z. PAML 4: phylog	genetic analysis	s by maximum	likelihood. Molecular biology			
466		and e	volution. 2007;24 8	8:1586-91. doi:	10.1093/molbe	v/msm088.			
467	<u>4344</u> .	Tijl E	B, Nello C, Demu	th JP and Hahn	MW. CAFE: a	computational tool for the			
468		study of gene family evolution. Bioinformatics. 2006;22 10:1269-71.							
469	<u>4445</u> .	Takez	zaki N, Rzhetsky A	, and Nei M. Pl	hylogenetic tes	t of the molecular clock and			
470		linear	ized trees. Molecul	lar Biology & I	Evolution. 1995	5;12 5:823-33.			
471	<u>4546</u> .	Green	n RE, Braun EL, Jo	el A, Dent E, N	lgan N, Glenn	H, et al. Three crocodilian			
472		genoi	nes reveal ancestra	l patterns of ev	olution among	archosaurs. Science. 2014;346			
473		6215:	1254449.						
474	Tables	and F	igures						
475									
476	Table	1: Sequ	uencing data used	for mustache	toad genome a	assembly and annotation.			
	Sequen	cing	Platform	Library size	Clean data	Application			
	type	e	Tationi	(bp)	(Gb)	Application			
	Genome	e long	PacBio Sequel	20.000	277 15	Contig assembly			
	read	ls	i actilo Sequei	20,000	211.13	Contrg assentory			
	Geno	me	Illumina HiSea			Genome survey, genome base			
	Genome		mannamseq	250	225.02	composition and con			

reads	Faciblo Sequel	20,000	277.13	Contrg assembly
Genome short reads	Illumina HiSeq 2500	250	225.03	Genome survey, genome bas correction, and genome assessment
Genome Hi-C reads	Illumina HiSeq X-Ten	250	378.78	Chromosome construction
Transcriptom e short reads	Illumina HiSeq 4000	250	14.18	Genome annotation and assessment

478 Table 2: Assembly statistics of the mustache toad genome.

	Wtdb	g contig	Hi-C scaffold			
Term	Size (bp)	Number	Size (bp)	Number		
N90	153,029	4,866	134,864,763	11		
N80	301,658	3,285	181,461,513	8		
N70	456,829	2,334	220,042,448	6		
N60	624,716	1,671	359,321,214	5		
N50	821,125	1,180	412,424,790	4		
Max length (bp)	9,978,207		592,710,058			
Total size (bp)	3,530,531,046		3,535,795,546			
Total number (>100bp)	15	15,899		5,370		

479 Note: Statistics of genome assembly. Wtdbg contig was the genome assembled by wtdbg and

480 2-round pilon error-correction. Hi-C scaffold was the genome finished by Hi-C assembly.

481

482 <u>Table 3: The BUSCO results of the mustache toad and other amphibian genomes.</u>

		V ailaonica	V ailaonica	<u>Nanorana</u>	<u>Xenopus</u>	<u>Rhinella</u>	<u>Rana</u>	<u>Ambystoma</u>
	<u>Library</u>	(oultomoto)	<u>v. unuonicu</u>	<u>parkeri</u>	<u>tropicalis</u>	<u>marina</u>	<u>catesbeiana</u>	<u>mexicanum</u>
		(eukaryota)	(metazoa)	(eukaryota)	<u>(eukaryota)</u>	<u>(eukaryota)</u>	(eukaryota)	<u>(eukaryota)</u>
<u>%Co</u>	mplete genes	<u>80.8%</u>	85.1%	<u>90.1%</u>	<u>90.1%</u>	90.4%	<u>58.0%</u>	<u>24.4%</u>
<u>%C</u>	omplete and	78.20/	92 60/	97 90/	<u>99 10/</u>	96 10/	55 40/	22 40/
singl	ngle-copy genes	10.2%	<u>83.0%</u>	01.0%	00.170	80.1%	<u>55.4%</u>	<u>23.470</u>
<u>%C</u>	omplete and	2 60/	1 50/	2.20/	2.00/	4 20/	2.60/	1.00/
<u>dup</u> l	icated genes	2.0%	1.5%	2.3%	2.0%	4.3%	2.0%	<u>1.0%</u>
<u>%</u> I	Fragmented	8 0.04	4 004	2 60/	2 0.04	2 204	20.8%	24 404
	genes	0.7%	4.7%	<u>3.0%</u>	2.0%	<u>3.3%</u>	<u>20.0%</u>	<u>24.4%</u>
<u>%M</u>	issing genes	<u>10.3%</u>	<u>10.0%</u>	<u>6.3%</u>	<u>7.9%</u>	<u>6.3%</u>	<u>21.2%</u>	<u>51.2%</u>

483 Note: Both "eukaryote" and "metazoan" are two core gene sets in BUSCO database.

484 Table 3: The BUSCO results of the mustache toad genome.

Library	eukaryota	metazoa		Formatted: Left
Complete BUSCOs (C)	245	833	4(Formatted: Left
Complete and single-copy BUSCOs (S)	237	818	•	Formatted: Left
Complete and duplicated BUSCOs (D)	8	15	4	Formatted: Left
Fragmented BUSCOs (F)	27	4 8	4	Formatted: Left
Missing BUSCOs (M)	31	97	-	Formatted: Left
Total BUSCO groups searched	303	978		Formatted: Left
Summarize	80.8%	85.1%	+	Formatted: Left

- 485
- 486
- 487 488
- 489

105

490 <u>Table 4: The quality statistics of several published amphibian genomes.</u>

Species	Contig N50	Scaffold N50	Genome size	Genome BUSCO
	<u>(bp)</u>	<u>(bp)</u>	<u>(bp)</u>	(eukaryota)
<u>Nanorana parkeri</u>	<u>32,798</u>	<u>1,069,101</u>	<u>2,053,867,363</u>	<u>90.1%</u>
<u>Xenopus tropicalis</u>	<u>71,041</u>	<u>135,134,832</u>	<u>1,440,398,454</u>	<u>90.1%</u>
<u>Rhinella marina</u>	<u>166,489</u>	<u>167,498</u>	<u>2,551,759,918</u>	<u>90.4%</u>
<u>Rana catesbeiana</u>	5,415	<u>39,363</u>	6,250,353,185	<u>58.0%</u>
Ambystoma mexicanum	216,366	3,052,786	32,393,605,577	24.4%

Table 45: The statistics of *de novo* annotated repeat sequences in mustache toad genome.

Туре	Length (bp)	Percentage in genome (%)
DNA	350,793,270	9.94 3777
LINE	297,954,803	8.4 <u>5</u> 45989
SINE	11,009,363	0.31 2077
LTR	307,317,539	8.71 1390
Other	43,867,330	1.24 <mark>3487</mark>
Satellite	9,696,790	0.27 4870
Simple repeat	125,397,072	3.55 4574
Unknown	1,114,326,962	31. 587320<u>59</u>
Total	2,147,505,764	60.87 <mark>4369</mark>

493 494

Table <u>30</u> : The functional annotation results of protein-coding genes in mustache toad.					
Database	Annotated gene number	Percent (%)			
Interpro	12,997	49.56			
KEGG	10,035	38.26			
SwissProt	12,410	47.32			
Trembl	17,916	68.31			

⁴⁹⁵

Figure 1: The mustache toad, *Vibrissaphora ailaonica*. (A) The adult male individual with spines in the upper jaw. (B) The adult female individual. (C) The adult male individual during the fall off process of spines in the upper jaw. (D) The adult male individual without spines (after fall off process of spines) in the upper jaw. (E) The body size of mustache toad in side view, male (left) and female (right). (F) The body size of mustache toad in top view, male (left) and female (right).

502

503 Figure 2: The 17-mer analysis of *Vibrissaphora ailaonica* genome characteristics.

Figure 3: The circos graph showing genome characteristics. From outer circle to inner ring
are: gene distribution, tandem repeats (TR), long tandem repeats (LTR), long interspersed

507 nuclear elements (LINE), short interspersed nuclear elements (SINE), and GC content.

508 509 510

509 Figure 4: The length distributions of annotated protein-coding genes in these species.

511 Figure 5: The statistics of gene family among these 11 species.

- 513 Figure 6: The phylogenetic relationships among these species. The blue numbers represent
- 514 divergence time. The red dot represents the fossil record used in the node.

Figure 6

Click here to access/download;Figure;Figure 6.pdf ±

Supplementary Material

Click here to access/download Supplementary Material Supplementary Materials.doc