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Abstract
Next-generation sequencing (NGS) has made it possible to determine the sequence and

relative abundance of all nucleotides in a biological or environmental sample. A cornerstone
of NGS is the quantification of RNA or DNA presence as counts. However, these counts are
not counts per se: the magnitude of the counts are determined arbitrarily by the sequencing
depth, not by the input material. Consequently, counts must undergo normalization prior
to use. Conventional normalization methods require a set of assumptions: they assume that
the majority of features are unchanged, and that all environments under study have the same
carrying capacity for nucleotide synthesis. These assumptions are often untestable and may
not hold when comparing heterogeneous samples. Instead, methods developed within the field
of compositional data analysis offer a general solution that is assumption-free and valid for all
data. In this manuscript, we synthesize the extant literature to provide a concise guide on how
to apply compositional data analysis to NGS count data. In highlighting the limitations of
total library size, effective library size, and spike-in normalizations, we propose the log-ratio
transformation as a general solution to answer the question, “Relative to some important
activity of the cell, what is changing?”.

Introduction
The advent of next-generation sequencing (NGS) has allowed scientists to probe biological sys-
tems in unprecedented ways. For an ever decreasing sum of money, it is possible to determine
the sequence and relative abundance of all nucleotide fragments in a sample [47]. NGS works
by sequencing a population of DNA fragments, including reverse transcribed RNA isolates. In
addition to its general use for variant discovery and genome assembly, NGS is used to quantify rel-
ative abundances of (a) RNA species from tissue (RNA-Seq) [47], (b) organism diversity from the
environment (metagenomics) [78], (c) RNA species from the environment (meta-transcriptomics)
[6], and (d) regions of the genome targeted by a protein (ChIP-Seq) [50], among others. Recently,
improvements in the sequencing protocols have allowed for these measurements to be carried out at
the single-cell level, with single-cell RNA-Seq being the most mature technology. Most applications
share an analogous procedure whereby DNA or RNA are isolated from samples, optionally filtered
by size or other property [29], converted to a cDNA library of nucleotide fragments, sequenced on
a sequencer, and then mapped to a reference to quantify relative abundance. Since all data derive
from the same assay, one might expect that they would undergo the same analysis. However,
this is not true: rather, methods tailored for one mode of data do not generalize to another (e.g.,

1

Manuscript Click here to access/download;Manuscript;CoDA_protocol.pdf

Click here to view linked References

https://www.editorialmanager.com/giga/download.aspx?id=80257&guid=f1c8cd96-9c8b-4398-a2f9-a8e5933c4775&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=80257&guid=f1c8cd96-9c8b-4398-a2f9-a8e5933c4775&scheme=1
https://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2705&rev=3&fileID=80257&msid=ce3afa58-c346-44f2-af42-b28a4f2a62e4


RNA-Seq methods have inflated false discovery rates (FDR) when applied to metagenomics data
[69, 28]).

Fernandes et al. posited that the analysis of all NGS data can be conceptually unified by
recognizing the compositional nature of these data [18]. By “compositional”, we mean that the
abundance of any one nucleotide fragment is only interpretable relative to another. This property
emerges from the sequencer itself; the sequencer, by design, can only sequence a fixed number of
nucleotide fragments. Consequently, the final number of fragments sequenced is constrained to an
arbitrary limit so that doubling the input material does not double the total number of counts. This
constraint also means that an increase in the presence of any one nucleotide fragment necessarily
decreases the observed abundance of all other transcripts [8], and applies to bulk and single-cell
sequencing data alike. It is especially problematic when comparing cells that produce more total
RNA than their comparator (e.g., high c-Myc cells which up-regulate 90% of all transcripts without
commensurate down-regulation [38]). However, even if a sequencer could directly sequence every
RNA molecule within a cell, the cells themselves are compositional because of the volume and
energy constraints that limit RNA synthesis, as evidenced by the observation that smaller cells of
a single type contain proportionally less total mRNA [48].

Compositional data only carry relative information. Consequently, they exist in a Simplex space
with one fewer dimensions than components. Analyzing relative data as if they were absolute can
yield erroneous results for several common techniques [2, 22, 58] (also demonstrated in the Supple-
mentary Information). First, statistical models which assume independence between features are
flawed because of the mutual dependency between components [75]. Second, distances between
samples are misleading and erratically sensitive to the arbitrary inclusion or exclusion of compo-
nents [3]. Third, components can appear definitively correlated even when they are statistically
independent [53]. For these reasons, compositional data pose specific challenges to the differential
expression, clustering, and correlation analyses routinely applied to NGS data, as well as other
data that measure the relative abundance of small molecules (e.g., spectrometric peak data [19]).
For compositional NGS data, each sample is called a “composition” and each nucleotide species is
called a “component” [22, 58].

There are three general approaches to analyzing compositional data. First, the normalization-
dependent approach seeks to normalize the data in order to reclaim absolute abundances. However,
normalizations depend on assumptions that may not hold true outside of tightly controlled experi-
ments. For example, popular RNA-Seq normalization methods assume that most transcripts have
the same absolute abundance across samples [62, 5], an assumption that does not hold for the high
c-Myc cells discussed above [38]. Second, the transformation-dependent approach transforms the
data with regard to a reference to make statistical inferences relative to the chosen reference [2].
Third, the transformation-independent approach performs calculations directly on the components
[46] or component ratios [25].

The latter two approaches constitute compositional data analysis (CoDA). Unlike normalization-
based methods, CoDA methods will generalize to all data, relative or absolute. In this article, we
describe a unified pipeline for the analysis of NGS count data, with all parts fully capable of
modeling the uncertainty of lowly abundant counts. First, we show how existing CoDA software
tools can be used to draw compositionally valid and biologically meaningful conclusions. Second,
we illustrate how these methods can accommodate complex study design, facilitate the analysis of
horizontally integrated multi-omics data, and accommodate machine learning applications. Third,
we show how compositionality can systematically bias results if ignored. Finally, we conclude with
a discussion of key problems associated with spike-in normalization, and show how the CoDA
framework applies specifically to single-cell sequencing data.

Methods
Overview of pipeline
Our pipeline uses software tools made freely available for the R programming language. It be-
gins with an unnormalized “count matrix” generated from the alignment and read-mapping of a
sequence library. Details regarding quality control, assembly, alignment, and read-mapping are
beyond the scope of this article, and have been covered extensively elsewhere (e.g., [14, 20]). This
count matrix records the number of times each feature (e.g., transcript or operational taxonomic
unit [OTU]) appears in each sample. Most software return measurements as integer counts, al-
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though some use continuous values (e.g., Salmon quasi-counts [51]) or another proportional unit
(e.g., transcripts per million (TPM) [72]). For many CoDA methods, units have no importance.
However, small counts carry more uncertainty than large counts, and our pipeline can model this
directly. Therefore, we recommend using unadjusted “raw counts”. TPM can also be used with
CoDA methods, but can bias the modelling of small counts if the library size differs greatly between
samples. Otherwise, the data should not undergo further normalization or standardization, and
must never contain negative values. Figure 1 provides a schematic of our unified NGS pipeline.

Figure 1: This figure illustrates how our unified NGS pipeline might sit within a larger workflow.
Colored boxes indicate procedures that would apply to any relative data set. In orange, we describe
the optional zero removal and modification steps presented in “Part 1: Zero handling”. In green, we
describe the log-ratio transformation-dependent methods presented in “Part 2a: Transformation-
dependent analyses”. This includes the differential abundance analysis of individual features and
the proportionality analysis of feature pairs. In yellow, we describe the transformation-independent
methods presented in “Part 2b: Transformation-independent analyses”. This includes the analysis
of the differences in the log-ratio means of feature pairs. In gray, we describe other essential steps
unique to the data type under study but not covered here.

Data acquisition
To demonstrate the utility of our pipeline, we use publicly available time course data of the RNA
and protein expressed by mouse dendritic cells following lipopolysaccharide (LPS) exposure, a
potent immunogenic stimulus. RNA-Seq and mass spectrometry (MS) data were acquired already
pre-processed to measure the relative abundance of 3147 genes in TPM-equivalent units [31]. The
RNA-Seq and MS data had 28 overlapping samples, spanning 2 conditions with 7 time points and
2 replicates each.

# Read in the RNA−Seq data
rnaseq <− read . csv ( " rnaseq−x . csv " , row .names=1)
rnaseq . annot <− read . csv ( " rnaseq−y . csv " , row .names=1)

# Read in the Mass Spec HL data
masshl <− read . csv ( " masshl−x . csv " , row .names=1)
masshl . annot <− read . csv ( " masshl−y . csv " , row .names=1)

# We w i l l s u b s e t Mass Spec to inc l ude t imepo in t s
# with a corresponding RNA−Seq measurement
# ( used in ‘ ‘ Ve r t i c a l Data In t e g ra t i on ’ ’ )
inRNAandMS <− masshl . annot$Time %in% rnaseq . annot$Time
masshl <− masshl [ , inRNAandMS ]
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masshl . annot <− masshl . annot [ inRNAandMS , ]

New analyses
In presenting this workflow, we perform a new analysis of the Jovanovic et al. data in order to learn
how mRNA transcript abundance and protein abundance change in response to LPS stimulation.
This includes a relative differential abundance analysis, an analysis of gene-gene coordination,
and an analysis of differential gene-gene coordination. In addition, we integrate the two data
types with a differential proportionality analysis to evaluate how mRNA stoichiometry differs from
protein stoichiometry in response to LPS treatment. Unlike the original analysis presented by
Jovanovic et al., we do not use transcripts per million (TPM) normalization. Rather, we argue
that TPMs re-cast an already compositional data set as yet another compositional data set (just
with a different denominator). In the Supplementary Information, we show how TPMs introduce
systematic errors. This is because when a reference is not explicitly chosen, an arbitrary reference
is still implicitly present. We also include an appendix that benchmarks how several zero handling
procedures impact proportionality and differential proportionality analysis.

Software contributions
This workflow primarily uses three open source software packages, all of which are available for the
R programming language. They include zCompositions [49], ALDEx2 [17, 18], and propr [59, 16].
The reader can download these software from Bioconductor and CRAN.
i n s t a l l . packages ( " zComposit ions " )
i n s t a l l . packages ( " propr " )
i n s t a l l . packages ( " BiocManager " )
# Read ‘ : : ’ as ‘ ‘ the i n s t a l l f unc t i on from the BiocManager package ’ ’
BiocManager : : i n s t a l l ( "ALDEx2" )
l ibrary ( zComposit ions )
l ibrary (ALDEx2)
l ibrary ( propr )

In preparing this workflow, we have made several contributions to the compositional data
analysis software universe. First, we present the new propr::aldex2propr function that integrates
the ALDEx2 and propr packages by calculating an average proportionality coefficient over ALDEx2-
generated Monte Carlo instances. Second, we present the new propr::updateCutoffs function that
permutes a false discovery rate across varying proportionality coefficient cutoffs. Third, we present
the propr::propd function that implements the differential proportionality method described by
Erb et al. [16], including an implementation of a zero handling procedure based on the Box-
Cox transform. These new contributions make a complete compositional data analysis workflow
possible.

Benchmark validation
Although one can devise a “normalizing” reference by invoking a set of assumptions, we prefer an
alternative framework that does not require any normalization. We use this framework because
it provides a more general solution to the analysis of -omics data. As such, our proposed work-
flow could be used to analyze bulk RNA-Seq, single-cell RNA-Seq, metagenomics, metabolomics,
lipidomics, and other data.

Although the software tools presented here do not normalize the data, they can be benchmarked
against conventional methods by invoking the assumption that the explicit reference performs a
kind of “log-ratio normalization”. Under these conditions, ALDEx2 can identify differential abun-
dance with high precision in RNA-Seq data [18, 56], and control false positive rates in highly
sparse 16S metagenomics count data [69]. Meanwhile, proportionality analysis has been shown to
outperform all 15 competing measures of association in single cell clustering and network inference
tasks across 213 data sets [66]. Although differential proportionality analysis has not yet been
benchmarked, it is formally related to an analysis of variance (ANOVA), a foundational test in
most biological research. As a statistical test for significance, it is valid wherever an ANOVA is
valid. We also include an appendix that benchmarks how several zero handling procedures impact
proportionality and differential proportionality analysis.
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Part 1: Zero handling
General strategies for zero handling
CoDA methods depend on logarithms which do not compute for zeros. Therefore, we must address
zeros prior to, or during, the pipeline. Before handling zeros, the analyst must first consider the
nature of the zeros. There exists three types of zeros: (1) rounding, also called sampling, where
the feature exists in the sample below the detection limit, (2) count, where the feature exists in
the sample, but counting is not exhaustive enough to see it at least once, and (3) essential, where
the feature does not exist in the sample at all [45]. The approach to zero handling depends on
the nature of the zeros [45]. For NGS data, a nucleotide fragment is either sequenced or not, and
would not contain rounding zeros. Since there is no general methodology for dealing with essential
zeros within a strict CoDA framework [45], we assume that any feature present in at least one
sample could appear in another sample if sequenced with infinite depth, and thus treat all NGS
zeros as “count zeros”. Others have also suggested that the essential zeros of NGS count data are
sufficiently modeled as sampling zeros [63].

There are two general approaches to zero handling. In feature removal, components with zeros
get excluded, yielding a sub-composition that can be analyzed by any CoDA method. Feature
removal is usually appropriate when a feature contains many zeros, and can always be justified for
essential zeros. In feature modification, zeros get replaced with a non-zero value, with or without
modification to non-zeros. Analysts may choose one or both zero handling procedures, but should
always demonstrate that the removal or modification of zero-laden features does not change the
overall interpretation of the results.

Feature modification with zCompositions
For “count zeros”, Martin-Fernandez et al. recommend replacing zeros by a Bayesian-multiplicative
replacement strategy that preserves the ratios between the non-zero components [45], implemented
in the zCompositions package as the cmultRepl function [49]. Alternatively, one could use a multi-
plicative simple replacement strategy, whereby zeros get replaced with a fixed value less than 1 in
a compositionally robust manner. Here, we use zCompositions to replace zeros.

# Standard f unc t i on s expec t rows as samples
# so we w i l l t ranspose the matrix
rnaseq <− t ( rnaseq )
masshl <− t ( masshl )

# Now we can rep l a c e ze ros wi th a sma l l va lue
# the ‘ ‘ p−counts ’ ’ op t ion has the func t i on re turn
# pseudo−counts in s t ead o f p ropor t i ons
l ibrary ( zComposit ions )
rnaseq . no0 <− cmultRepl ( rnaseq , output = "p−counts " )
masshl . no0 <− cmultRepl ( masshl , output = "p−counts " )

Many compositional software tools have their own built-in zero handling procedures. Although
zCompositions is not necessarily better than these built-in procedures, we recognize that removing
zeros right away has a practical advantage: by using zCompositions in combination with a log-ratio
transformation, analysts can apply most conventional analyses to their compositional data right
away. Since zCompositions empowers readers to use methods beyond the ones presented here, we
decided to include it as the first part of our field guide. However, we recommend that readers look
at our appendix which benchmarks how several zero handling procedures impact proportionality
and differential proportionality analysis.

Part 2a: Transformation-dependent analyses
The log-ratio transformation
All components in a composition are mutually dependent features that cannot be understood in
isolation. Therefore, any analysis of individual components is done with respect to a reference.
This reference transforms each sample into an unbounded space where any statistical method
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can be used. The centered log-ratio (clr) transformation uses the geometric mean of the sample
vector as the reference [1]. The additive log-ratio (alr) transformation uses a single component
as the reference [1]. Other transformations use specialized references based on the geometric
mean of a subset of components (collectively called multi-additive log-ratio (malr) transformations
[56]). One malr transformation is the inter-quartile log-ratio (iqlr) transformation which uses
components in the inter-quartile range of variance [79]. Another, the robust centered log-ratio
(rclr) transformation, only uses the non-zero components [42].

Importantly, transformations are not normalizations: while normalizations claim to recast the
data in absolute terms, transformations do not. The results of a transformation-based analysis
must be interpreted with respect to the chosen reference. Of these, the clr transformation is most
common:

clr(xj) =
[
ln x1,j

g(xj) , ..., ln
xD,j

g(xj)

]
(1)

where xj is the j-th sample and g(xj) is its geometric mean. The other transformations replace
g(xj) with a different reference.

The isometric log-ratio (ilr) transformation uses an orthonormal basis as the reference [13], and
is preferred when a non-singular covariance matrix is needed [46]. When the basis is a branch of a
dendrogram, the ilr offers an intuitive way to contrast one set of components against another set
of components. These contrasts, called balances, have been used to analyze metagenomics data
based on evolutionary trees [64, 77], but could be applied to any data if a similarly meaningful tree
were available.

Each transformation implies its own reference(s). In most practical settings, the choice of
transformation will depend on the preferred interpretation. An analysis of clr data will tell you
how genes (or OTUs) behave relative to the per-sample average. An analysis of alr and malr
data will tell you how genes (or OTUs) behave relative to one or more explicitly-chosen internal
references. An analysis of iqlr data will tell you how genes (or OTUs) behave relative to the
per-sample inter-quartile (“robust”) average. In a compositional framework, none of these are
normalizations: each new variable is a log-ratio of the original variable divided by the reference,
and therefore should get interpreted as a kind of within-sample log-fold difference. Although the
difference between transformation and normalization may seem subtle, it can have a profound
impact on the conclusions drawn from the analysis. Although the temptation will exist, one must
never confuse the transformed data with absolute abundances.

Differential abundance analysis with ALDEx2
Differential abundance (DA) analysis seeks to identify which features differ in abundance between
experimental groups. The ALDEx2 package tests for DA in compositional data by performing
univariate statistical analyses on log-ratio transformed data [17, 18]. It does so with a layer of
complexity that controls for technical variation by finding the expectation of B simulated instances
of the data, each sampled from the Dirichlet distribution. This procedure implicitly models the
uncertainty of low counts while also handling zeros.

Importantly, ALDEx2 identifies DA with respect to the chosen reference. By default, this refer-
ence is the geometric mean of the composition. It is possible, if not likely, that the mean centers
are not the ideal references; if so, differences in the transformed abundances would not reflect
differences in the absolute abundances. On the other hand, if one could assume that the chosen
reference did have fixed absolute abundance across all samples, then the log-ratio transformation
can be benchmarked as a “log-ratio normalization” [58]. Under these conditions, ALDEx2 can
identify DA with high precision in RNA-Seq data [18, 56], and control false positive rates in highly
sparse 16S metagenomics count data [69]. However, the “log-ratio normalization” interpretation
implies a similar assumption implied by other DA tools: that the majority of transcript species
remain unchanged [33]. Alternatively, one could select an arbitrary reference based on a biologi-
cal hypothesis to identify relative DA, even if the reference does not have fixed abundance across
samples. Figure 2 shows how the chosen reference changes the interpretation of DA.

To run ALDEx2, the user must provide count data with integer values, a vector of group labels,
and a reference. The reference could be “all” (for clr), “iqlr” (for iqlr), or one or more user-
specified features (for alr or malr). Here, we use the geometric mean of two NFκB sub-units
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as a hypothesis-based reference, chosen because LPS activates NFκB to control the transcription
of other immune genes [54]. With this reference, up-regulation signifies that a gene’s expression
increases beyond that of NFκB, allowing for a clear biological interpretation. Table 1 lists 47 genes
up-regulated relative to NFκB.

# Let ’ s use Nfkb sub−un i t s as a l r r e f e r ence
r e f <− grep ( "Nfkb " , colnames ( rnaseq ) )

# ALDEx2 expec t s :
# ‘ reads ’ : i n t e g e r counts wi th columns as samples
# ‘ cond i t ions ’ : the exper imenta l outcome
# ‘denom ’ : the log−r a t i o transform re f e r ence
l ibrary (ALDEx2)
cond i t i on s <− factor ( rnaseq . annot$Treatment , levels = c ( "MOCK" , "LPS" ) )
t t <− aldex ( reads = t ( cei l ing ( rnaseq ) ) ,

c ond i t i on s = cond i t i ons ,
denom = r e f )

# ALDEx2 outpu t s a data . frame :
# ‘we .eBH ’ : the FDR−ad ju s t ed p−va lue
# ‘ e f f e c t ’ : the e f f e c t s i z e
# Below , we ge t the names o f genes
# with r e l a t i v e l y more abundance
# in the LPS group
t t . bh05 <− t t [ t t$we . eBH < . 0 5 , ]
up <− rownames( t t . bh05 [ t t . bh05$ e f f e c t > 0 , ] )
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Figure 2: This figure illustrates how the interpretation of differential abundance depends on the
reference chosen. On the left margin, we show the log-abundance of three genes (RPL19, FSCN1,
and IL1B) for the LPS-treated cells (orange) and control (blue). For compositional data, these
abundances carry no meaning in isolation because the constrained total imposes a “closure bias”.
On the top margin, we show the log-abundance of two references: the geometric mean of the
samples (a la the clr) and a hypothesis-based reference NFκB (a la the alr). In the middle,
we show the abundance of the log-ratio of the left margin feature divided by the top margin
reference (equivalent to left margin minus top margin in log space). RPL19 alone appears more
abundant in the control, but actually has equivalent expression when compared with the geometric
mean; however, it has significantly higher expression in the control relative to NFκB. On the other
hand, FSCN1 alone appears more highly expressed in the LPS-treated cells, which remains true
when compared with the geometric mean; however, it has equivalent expression relative to NFκB
(interpreted as NFκB and FSCN1 expression changing similarly in response to LPS stimulation).
IL1B alone appears more highly expressed in the LPS-treated cells, which remains true when
compared with the geometric mean and with NFκB (interpreted as IL1B expression becomes
even higher than NFκB expression in response to LPS stimulation). Choosing a reference makes
normalization unnecessary, but requires a shift in interpretation.

Proportionality analysis with propr
Proportionality analysis is designed to identify feature coordination in compositional data [37, 15],
without assuming sparsity in the association network [21, 34]. The propr package tests for the
presence of feature coordination across all samples, irrespective of group label, by calculating one
of three proportionality measures. Two of these have been shown to outperform all 15 competing
measures of association in single cell clustering and network inference tasks across 213 data sets
[66]. The default measure, ρp, resembles correlation in that it ranges from [−1, 1]. Like DA,
proportionality analysis requires a reference.

# propr expec t s :
# ‘ counts ’ : the data matrix wi th rows as samples
# ‘ metric ’ : the p r o p o r t i o n a l i t y metr ic to c a l c u l a t e
# ‘ ivar ’ : the log−r a t i o transform re f e r ence
l ibrary ( propr )
pr <− propr ( counts = rnaseq . no0 ,

metr ic = " rho " ,
i v a r = " c l r " )

The propr package offers two alternatives to zero handling. The propr::aldex2propr function will
calculate the expected proportionality from the simulated instances generated by ALDEx2, again
addressing the uncertainty of low counts [7]. The alpha argument will use a zero handling procedure
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Effect Size Difference (between) Difference (within) Expected BH p-value
Il1b 4.7372 3.9576 0.6912 0.0000
Irg1 4.3462 3.8904 0.7888 0.0000
Il1a 3.5950 3.8242 0.9037 0.0000
Cd40 2.2887 5.3325 2.0422 0.0000
Ifih1 2.2056 2.8529 1.1157 0.0000
Isg15 1.9678 4.4490 1.8330 0.0000
Oasl1 1.9304 5.6562 2.1200 0.0000
Ifit1 1.8317 5.6101 2.0773 0.0000
Ptgs2 1.6923 4.0869 2.0606 0.0002
Gbp5;Gbp1 1.6523 2.4494 1.2349 0.0000
Rsad2 1.4933 6.2747 2.4692 0.0001
Marcksl1 1.4886 1.0748 0.5740 0.0001
BC006779 1.4686 2.2184 1.2465 0.0001
Mndal 1.4163 2.1047 1.5182 0.0000
Parp14 1.3139 1.7655 0.9357 0.0002
Ifi205 1.2916 5.3159 3.4587 0.0026
Slc7a2 1.2883 1.3797 0.9920 0.0002
Ifit2 1.2292 5.4975 2.6744 0.0002
Clic4 1.2037 0.8486 0.5765 0.0003
Sp140 1.1612 1.0030 0.7385 0.0005
Cmpk2 1.1149 5.7323 2.1088 0.0003
Stat5a 1.0806 0.8666 0.6461 0.0017
Ifi47 1.0443 2.0495 1.5704 0.0030
Pyhin1 1.0152 1.9150 1.4752 0.0024
Ifit3 0.9978 4.7313 3.2116 0.0012
Ccl5 0.9962 2.0765 1.6671 0.0015
Acsl1 0.9937 1.0837 1.0073 0.0009
Il1rn 0.9811 0.6795 0.6366 0.0017
Irgm1 0.9755 1.7076 1.0634 0.0094
IIGP;Iigp1 0.9588 3.5610 3.1760 0.0023
Rnf213;AK217856 0.9541 1.2867 1.0478 0.0041
Daxx 0.9118 1.1938 0.9013 0.0119
Flnb 0.8639 1.6654 1.8185 0.0122
Cd274 0.8299 0.6050 0.6354 0.0051
Trex1 0.8171 0.5647 0.6350 0.0090
Car13 0.7586 1.1455 1.2839 0.0140
Xaf1 0.7550 1.5118 1.4338 0.0214
Gbp3 0.7478 1.5118 1.4837 0.0128
Ehd1 0.7460 0.3648 0.4812 0.0078
Gm4902 0.7413 1.9614 1.7899 0.0151
Rasa4 0.7254 0.8805 0.9109 0.0478
Oas3 0.7089 1.5673 1.7756 0.0213
Serpinb2 0.7048 1.7770 2.1734 0.0272
Dhx58;D11lgp2 0.6947 1.4875 1.6956 0.0425
Gbp2 0.6597 1.5376 1.7339 0.0212
Saa3 0.6291 1.0259 1.5384 0.0187
Sbds 0.5522 0.3107 0.5363 0.0443

Table 1: This table shows the 47 genes selected as significantly up-regulated by ALDEx2 when using
the NFκB sub-units as a reference. One can interpret this “up-regulation” to mean that the gene
increases its expression in response to LPS stimulation more than NFκB. All p-values correspond to
the expectation of the Benjamini-Hochberg adjusted p-values computed from a Welch’s t-test over
128 simulated instances of the data. By choosing a reference that is relevant to the biological system
under study, we can gain meaningful insights from the data without any need for normalization. In
this table, between-group differences are the differences between the two conditions (defined for each
Dirichlet instance), within-group differences are the maximum difference across Dirichlet instances
(defined for each condition), and effect sizes are the ratio of the between-group differences to the
maximum of within-group differences (defined for each Dirichlet instance). The columns “Effect
size”, “Difference (between)”, and “Difference (within)” report the median effect size, median
between-group difference, and median within-group difference, respectively.
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based on the Box-Cox transform, a pragmatic approach that allows for essential zeros, but does
not fall under the strict CoDA framework [24]. A Box-Cox transform with α = 0.5 appears to
work well in simulations (see Appendix). For proportionality, we do not calculate parametric p-
values. Instead, we permute the FDR for a given cutoff. From this, we choose the cutoff ρp > 0.45
to control FDR below 5%. The package vignette describes several built-in tools for visualizing
proportionality. Figure 3 shows the output of the getNetwork function.

# We can s e l e c t a good c u t o f f f o r ‘ rho ’
# by permuting the FDR at var ious c u t o f f s
# Below , we use [ 0 , . 05 , . . . , . 95 , 1 ]
pr <− updateCutof f s ( pr , c u t o f f = seq (0 , 1 , . 0 5 ) )
pr@fdr

# Let ’ s v i s u a l i z e us ing a s t r i c t c u t o f f
getNetwork ( pr , c u t o f f = 0 . 9 , c o l 1 = up)
ge tResu l t s ( pr , c u t o f f = 0 . 9 )

Proportionality depends on a log-ratio transformation and must get interpreted with respect to
the chosen reference. Although proportionality appears more robust to spurious associations than
correlation [37, 59], wrongly assuming that the reference has fixed absolute abundance across all
samples could lead to incorrect conclusions [15]. We interpret clr-based proportionality to signify
a coordination that follows the general trend of the data. In other words, these proportional genes
move together as individuals relative to how most genes move on average.
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Figure 3: This figure shows a network where edges indicate a high level of coordination between gene
expression relative to the per-sample geometric mean. Node color indicates differential expression
relative to NFκB. The connections between red nodes indicate genes whose expression increase
more than NFκB in a coordinated manner. The connections between white nodes indicate genes
whose expression increase the same amount as NFκB in a coordinated manner. The connections
between blue nodes indicate genes whose expression either (a) up-regulate less than NFκB, (b)
do not change absolutely, or (c) down-regulate, all in a coordinated manner. The high level of
connectivity between all nodes suggests a strong coordinated response to LPS. Like correlated
pairs, proportional pairs can have any slope in non-log space. Note that this network only shows
highly coordinated events (where ρp > .9).

Part 2b: Transformation-independent analyses
The methods above depend on a log-ratio transformation to standardize the comparison of one
gene’s expression (or one pair’s coordination) with another. However, by comparing the variance
of the log-ratios (VLR) within groups to the total VLR, we do not need a reference to estimate
between-group differences in coordination [16, 76]:

VLRk(xg,xh) = var
[
ln xg,1

xh,1
, ..., ln

xg,Nk

xh,Nk

]
. (2)

for group k with Nk samples, where xg and xh are component vectors. From this equation, we
see that any normalization or transformation factor would cancel. The VLR ranges from [0,∞),
where zero indicates perfect coordination. Otherwise, VLR lacks a meaningful scale [1]. As such, we
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cannot compare the VLR of one pair to the VLR of another pair (hence why we used proportionality
instead) [37, 59]. However, in differential proportionality, we compare the VLR for the same pair
across groups [16].

Differential proportionality analysis is designed to identify changes in proportionality between
groups [16], interpretable as a change in gene stoichiometry. The propd function tests for events
where the proportionality factor (i.e., the magnitude of x

y ) differs between the experimental groups.
This is measured by θd which ranges from 0 to 1, where zero indicates a maximal difference
between the groups. As above, users can permute the FDR and build a network, but can also
calculate an exact p-value from θd using the updateF function [16], with the optional application of
limma::voom precision weights [35] and F -statistic moderation [67]. Precision weights eliminate the
mean-variance relationship that affects the results for low counts, while the moderated statistic
helps avoid false positive results in the case of few replicates. When testing the significance of
multiple log-ratio pairs, it is absolutely necessary to correct the p-value for multiple testing. In
addition, this function implements a zero handling procedure based on the Box-Cox transform,
where α = 0.5 appears to work well in simulations (see Appendix). Figure 4 shows significant
differentially proportional pairs containing NFκB in the log-ratio. Most of these companion genes
were also called (relatively) differentially abundant by ALDEx2.

# propd expec t s :
# ‘ counts ’ : the data matrix wi th rows as samples
# ‘ group ’ : the c l a s s l a b e l s
l ibrary ( propr )
pd <− propd ( counts = rnaseq . no0 ,

group = rnaseq . annot$Treatment )

# Ca lcu l a t e an exac t p−va lue
pd <− updateF (pd)
ge tResu l t s (pd)
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Figure 4: This figure shows a parallel coordinate plot of the log-ratio abundance (y-axis) of sig-
nificant differentially proportional pairs that contain NFκB in the log-ratio (x-axis). Each line
represents a single sample, colored by group. Gene pairs toward the left of the x-axis have greater
differences in the log-ratio means between groups (i.e., smaller θd values). This plot only shows
pairs for which the LPS-stimulated samples have different log-ratio means from the control (with
the order of the numerator and denominator chosen such that the LPS average is always greater
than the control average). It is not surprising that many of these significant pairs contain the same
genes found by differential abundance analysis. Indeed, one can think of differential proportionality
analysis as the differential abundance analysis of all pairwise log-ratios. Although pairs toward the
right of the x-axis still have large differences in log-ratio abundance on average, some time points
deviate from the trend. Indeed, this figure incidentally reveals a time-dependent process that we
could test for specifically with models presented in “Complex study design”.

Advanced applications
Complex study design
Above, we used our pipeline to analyze the data as if samples belonged to one of two groups. This
pipeline can also accommodate complex study designs with multiple covariates. For ALDEx2, we
can supply a model.matrix R object to find the expectation of a linear model (instead of a t-test).
On the other hand, proportionality is calculated for all samples regardless of class label, and so
does not require a new procedure. Differential proportionality measures the difference in the log-
ratio abundance between two groups. By design, it is an efficient implementation of the two-group
ANOVA expressed by the formula [log(xg) − log(xh)] ∼ group, for all combinations of features
g and h. Thus, we can extend differential proportionality by modeling each pairwise log-ratio
outcome as a function of any model.matrix. This may become computationally burdensome for
high-dimensional data. When testing the significance of multiple log-ratio pairs, it is absolutely
necessary to correct the p-value for multiple testing, for example by using the p.adjust function in
R.

Vertical data integration
We envision two general strategies for the vertical integration of compositional data. First, the
row join strategy treats other -omics data as additional samples and models the -omics source as
a covariate. This requires that all -omics sources map to the same features. For the RNA-Seq
and MS data used here, both quantify the relative abundance of gene products. This allows us
to use ALDEx2 to find features where mRNA abundance changes more than protein abundance,
relative to a common reference (and vice versa). Likewise, we can use proportionality analysis to
find feature pairs where genes and proteins both have coordinated expression in response to LPS.
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Finally, we can use differential proportionality analysis to find feature pairs with stoichiometric
differences between a gene pair and its respective protein pair. Figure 5 shows some examples of
differentially proportional pairs.
# Get LPS−t r e a t e d c e l l s on ly
rna <− rnaseq . no0 [ rnaseq . annot$Treatment == "LPS" , ]
pro <− masshl . no0 [ masshl . annot$Treatment == "LPS" , ]

# Join as s i n g l e matrix
merge <− rbind ( rna , pro )
group <− c ( rep ( "RNA" , 14) , rep ( " Prote in " , 14) )

# Run propd ana l y s i s
pd .ms <− propd (merge , group )

Second, the column join strategy, treats other -omics data as additional features. This strat-
egy is more complicated, as it requires that each -omics source has its own reference. In practice,
we should perform differential abundance analysis on each -omics source independently. For pro-
portionality and differential proportionality analysis, we would need to log-ratio transform each
-omics source independently, then column join them with cbind. Here, any proportionality occur-
ring between features from different sources would be with respect to two references, and must get
interpreted accordingly.

Figure 5: This figure compares mRNA abundance with newly synthesized protein abundance
following LPS stimulation, illustrating the vertical integration of multi-omics data under a com-
positional framework. On the left margin, we show the log-abundance of three genes (MNDAL,
SERPINB2, and PTGS2) as measured by RNA-Seq (orange) and mass spectrometry (blue). For
compositional data, these abundances carry no meaning in isolation because the constrained total
imposes a “closure bias”. On the top margin, we show the log-abundance of two references: RPL30
(chosen because its abundance is proportional to the geometric mean of the samples) and NFκB
(chosen based on the hypothesis). In the middle, we show the abundance of the log-ratio of the left
margin feature divided by the top margin reference (equivalent to left margin minus top margin in
log space). MNDAL alone appears to exist more as mRNA than protein, which remains true when
compared with both references. This suggests that MNDAL is translated with lower efficiency than
RPL30 and NKκB. On the other hand, SERPINB2 alone appears to exist as mRNA and protein
similarly on average; however, it actually exists more as protein than mRNA when compared with
both references. This suggests that MNDAL is translated with greater efficiency than RPL30
and NKκB. PTGS2 alone appears to exist more as mRNA than protein, but this difference is less
apparent when compared with both references. This suggests that PTGS2 is translated with a sim-
ilar efficiency to RPL30 and NKκB. By choosing a reference shared between two multi-omics data
sets, we can perform an analysis of vertically integrated data without any need for normalization.
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Horizontal data integration
The term “mega-analysis” describes a single analysis of samples collected across multiple studies
[73]. Batch effects pose a major barrier to mega-analyses. Here, we consider two types of batch
effects. The first affects all genes within a sample proportionally (e.g., due to differences in sequenc-
ing depth). A log-ratio transformation will automatically remove this batch effect. The second
affects only some genes within a sample (e.g., due to differences in RNA depletion protocols). This
requires explicit modification of the corrupted features. If needed, one could apply standard batch
correction tools, normally applied to normalized data, to the transformed data instead (c.f., the
moderated log-link sva in [36]).

Clustering and classification
Most distance measures lack sub-compositional dominance, meaning that it is possible to reduce
the distance between samples by adding dimensions [3]. When clustering compositions, methods
that rely on distance, like hierarchical clustering, also lack sub-compositional dominance [44]. In-
stead, one should use the Euclidean distance of clr transformed compositions (called the Aitchison
distance) [44]. Other statistical methods used for clustering, like PCA and t-SNE, also compute
distance and should also get clr transformed prior to analysis. When clustering components, one
could use the proportionality metric φs as a dissimilarity measure [59]. The φs proportionality
metric, like the ρp proportionality metric, is defined for clr-transformed data. If the geometric
mean center changes drastically across samples, some proportional pairs may not be proportional
in an absolute sense. We refer the reader to the sub-section, “Proportionality analysis with propr”,
for further explanation.

How best to classify compositional data remains an open question, but ilr transforming the data
prior to model training would grant the data favorable properties, as done for linear discriminant
analysis [71]. Alternatively, one could train models on the log-ratios themselves, though this may
not scale to high-dimensional data. Recently, balances have been used for feature selection and
classification [61, 57], where they achieve both accuracy and interpretability [10].

Selected topics
Closure bias and the implicit reference
NGS count data measure relative abundances because of the arbitrary limit imposed by the cell,
the environment, and the sequencer. This is sometimes called the “constant sum constraint”
because the sum of the relative abundances must equal a constant. Anything that introduces a
constant sum constraint is a kind of “closure”; all closures irreversibly make a data set relative
(i.e., “closed”). One could think of a cell (in the case of RNA-Seq) or the environment (in the case
of metagenomics) as natural closures, and sequencers as technical closures.

Total library size normalizations, like TPM, are not normalizations at all: they are actually yet
another closure, imposing the constant sum constraint of transcripts per million. TPMs do not
convert closed sequencing data into an “open” unit such as concentration. Analyzing TPMs as if
they were concentrations is theoretically flawed, and can substantially affect the modeling of cellular
processes. Our own analysis indicates that in Jovanovic et al., mRNA translation rates could have
been systematically over-estimated due to compositional bias. In the Supplementary Information,
we show that at the latest time point, the error compared to normalized data is around 13% in
the control condition, reaching 35% in LPS-stimulated samples. This bias is due to the closure
operation: if the analyst does not select a reference, the estimates must get interpreted with regard
to the unknown and immeasurable “closure bias”. Since the magnitude of this closure bias can be
large for samples that range widely in terms of nucleotide synthesis capacity, a reference should
always be used when modeling the univariate features of compositional data. If a reference is not
chosen, then the closure bias acts as an “implicit reference” that makes interpretation impossible.

Count compositions and low-count imprecision
Closed count data differ from idealized compositional data because additive variation affects small
counts more than large counts [59]. As such, the difference between 1 and 2 counts is not the same
as the difference between 1000 and 2000 counts. Moreover, NGS experiments often have many
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more features than samples, leading to severe under-estimation of the technical variance; indeed,
the technical variance can be much larger than the biological variance at the low-count margin [17].
“Count zero” features are those that are observed as a non-zero value in at least one sample, and
thus are expected to be observed at or near the margin in other samples. While not intuitive, the
distribution of the relative “count zero” values is quite large and spans many orders of magnitude
[23]. In addition, the expected value of a “count zero” feature must be greater than zero because
a value greater than zero was observed in at least one sample.

As mentioned above, the “count zero” values can be modified to give a point-estimate of their
expected value, but this leads to under-estimation of their true variance since we are estimating
the expected value of the feature. In the approach instantiated in the aldex.clr function used by
the ALDEx2::aldex.ttest, ALDEx2::aldex.effect, and propr::aldex2propr functions, a distribution of
“count zero” values is determined by sampling from the Dirichlet distribution (i.e., a multivariate
generalization of the β distribution). Another way to think about the Dirichlet distribution is
a multivariate Poisson sampling with a constant sum constraint. The distribution of relative
abundances near the low-count margin can be surprisingly wide, both as estimated by sampling
from the Dirichlet distribution, and as observed in real data [23]. By sampling from the Dirichlet
distribution, we get a set of multivariate probability vectors, each of which is as likely to have
been observed from the underlying data as the one actually observed from the sequenced sample.
From this, ALDEx2 and propr can account for low-count technical imprecision (which can be much
larger than the biological variation) by reporting the expected values of a test statistic instead of
the point estimate [17].

Spike-in “log-ratio normalization”
Transformations are not normalizations because they do not claim to recast the data in absolute
terms. However, if one were to choose a set of references with a priori known fixed abundance
across all samples, one could use this “ideal reference” to normalize the data (something we call
a “log-ratio normalization” [58]). The use of spike-in controls, consisting of multiple synthetic
nucleotide sequences with known absolute abundance, may offer one such option. For RNA-Seq,
the External RNA Controls Consortium (ERCC) spike-in set consists of 92 polyadenylated RNA
transcripts with varying length (250-2000 nt) and GC content (5-51%) with a 106-fold range in
abundance [30]. The spike-in set is added to a standardized amount of purified RNA in equimolar
concentrations, then both the spike-in and target transcripts are processed together to create a
cDNA library. Since 23 of the ERCC transcripts are designed to have the same absolute abundance,
one could use their geometric mean as a reference to recast the data in absolute terms. Similarly,
one could spike-in a known quantity of bacteria cells or synthetic plasmids to standardize the
abundance of PCR-amplified metagenomics samples [68, 70].

However, two important assumptions underly the use of spike-ins for normalization. First,
it is assumed that the spike-in and target sequences have the same capture efficiency of RNA
conversion, in that they are both equally affected by the technical biases of cDNA library creation.
Second, it is assumed that the spike-ins are calibrated to the number of RNA molecules per cell. In
other words, it is assumed that the amount of spike-in is added per molecule of RNA and that each
cell yielded the same number of RNA molecules. The latter is a particular issue for bulk RNA-Seq
due to the technical difficulty of adding an appropriate amount of spike-in at a cell population level
[60]. However, even when controlling for technical variation, cells may produce less total RNA in
one of the experimental groups [38] or over time [41]. In this case, standardizing the spike-in to
the total amount of input RNA will invalidate this assumption. Without standardizing the spike-
in to the total number of cells, it is impossible to reclaim absolute abundances (i.e., in units of
transcripts per cell) [11]. Even if it were possible to standardize spike-ins to the total number of
cells, the interpretation may be difficult if the cells within a single batch produce varying amounts
of total RNA.

Beyond ERCC spike-ins, several other spike-ins have been proposed. For RNA-Seq studies,
example spike-ins include sequins [26, 12], control plasmid spiked-in genomes [65], and isoform-
specific spike-in RNA variants [52]. For metagenomics studies, example spike-ins include exogenous
bacteria [68] and sequins [27]. It is beyond the scope of this field guide to compare and contrast
all of the different spike-ins. However, we must emphasize that if the spike-ins are calibrated to the
total weight of input RNA, they do not automatically normalize the data to absolute abundances.
The reason for this follows logically from how spike-ins work: when spike-ins are added at a
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fixed proportion to an arbitrary mass of RNA, sequencing will return counts at the same fixed
proportion. As such, spike-ins only tell us the amount of RNA sequenced. However, the term
“absolute abundances” refers to the amount of RNA present in the biological sample (e.g., in
units of transcripts/cell for RNA-Seq or bacteria/L for metagenomics). Therefore, spike-ins will
normalize to absolute abundances if and only if the amount of RNA sequenced is equal to the
amount of RNA present in the biological sample. Even if the difference between the absolute RNA
and the input RNA – which we call δ – is proportional, this δ must be the same for all samples.
Otherwise, the δ becomes yet another a closure bias that could introduce systematic errors. In this
case, spike-in “normalization” causes the same problem as TPM “normalization”: the analyst has
transformed their old compositions into new compositions under the mistaken belief that the new
compositions are absolute concentrations. Before using spike-in normalization, the analyst should
critically evaluate their protocol to assess whether they can safely assume that δ is fixed for all
samples. On the other hand, a transformation with respect to an internal reference is not affected
by global differences in δ.

Single-cell RNA sequencing
Single-cell RNA sequencing (scRNA-Seq) resembles bulk RNA-Seq, except that the RNA of in-
dividual cells are captured and barcoded separately prior to building the cDNA library [4]. This
RNA capture step involves a non-exhaustive sample of the total RNA which acts as another clo-
sure operation to make the data relative. The sequencer would then re-close the already closed
data. Interestingly, if the sequence libraries were then expressed in TPMs, the per-million divisor
would act as yet another closure of the data. For these reasons, scRNA-Seq resembles other NGS
count data in that each sample is a composition of relative parts. Like other NGS count data, it
is impossible to estimate absolute RNA abundance without a per-cell spike-in reference.

scRNA-Seq analysis is described as being more difficult than bulk RNA-Seq analysis for two
reasons. First, scRNA-Seq library sizes vary more between samples [40]. This is due to differences
in the capture efficiency of RNA extraction, sequencing depth, and so-called “doublet” events
where two cells get captured at once [40]. To address these differences in library size, the data
are normalized by effective library size normalization or by reference normalization (via a set of
house-keeping or spike-in transcripts). Effective library size normalization assumes that most genes
are unchanged; this assumption is especially problematic for scRNA-Seq data because single-cell
experiments study heterogeneous cell populations [39]. Reference normalization has limitations
too. House-keeping genes may not have consistent expression at the single-cell level due to tran-
scriptional bursting or tissue heterogeneity [39]. Meanwhile, scRNA-Seq spike-ins imply the same
assumptions as bulk RNA-Seq: that the spike-ins and target sequences have the same capture ef-
ficiency of RNA conversion and that the spike-ins are calibrated to the number of RNA molecules
per cell. The second assumption is problematic for scRNA-Seq because it implies that all cells were
similarly affected by the capture efficiency of RNA extraction [39]. Since spike-ins are added to
the lysis buffer, spike-in normalization can only reveal how much RNA was captured from the cell,
not how much RNA was present in the cell: as such, spike-ins cannot normalize away differences in
cell lysis efficiency (which are common, and an important cause of “dropout”) [32]. On the other
hand, a transformation with respect to an internal reference is not affected by global differences in
cell lysis efficiency. This is analogous to the discussion of δ from the preceding sub-section.

Second, scRNA-Seq contains many zeros. Although some zeros are described as “biological
zeros” (i.e., essential zeros) [74], most are described as “dropout zeros”. For “dropout zeros”, a
zero is a missing value that occurs because the “mRNA molecules are not captured...at the same
proportion” for all cells [4]. By this definition, “dropout zeros” are simply count zeros caused
by non-exhaustive sampling. Since differences in cell lysis efficiency are an important cause of
dropout, spike-ins cannot solve the dropout problem [32]. However, these “dropout” zeros are
really no different than the under-sampling zeros found in metagenomics data (which are already
handled by our pipeline [17]). However, if an analyst wishes to impute zeros, there exists imputation
methods designed specifically for compositional data [43, 9].

Discussion
Compositional data analysis (CoDA) provides a conceptual framework for studying relative data.
In this paper, we present a collection of software tools designed for NGS count data that together
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form a pipeline which unifies the analysis of all compositional data, including RNA-Seq, metage-
nomics, single-cell and spectrometric peak data. Unlike existing pipelines, ours does not seek to
normalize the data to reclaim absolute abundances. Instead, it transforms the data with regard to a
reference, allowing the analyst to study any relative data set without invoking the often untestable
assumptions underpinning NGS data normalization.

The CoDA framework has evolved independently from much of the alternative techniques cur-
rently applied to NGS data. Interestingly, although not explicitly tailored for compositional data,
the most rigorous of the NGS methods have converged on similar solutions for handling composi-
tional bias. They rely on effective library size normalizations (and offsets) that make use of the
(pseudo-counted) log-transformed data in a manner similar to log-ratio transformations. In CoDA,
such transformations are explicitly derived to address the constrained nature of the data. From
this perspective, explicit references and pairwise log-ratios apply to a broader range of experiments,
including less well-controlled studies where effective library size normalizations may not work. The
analysis of count compositions, especially the handling of low-count imprecision, has now reached
a state of maturity that allows for NGS analysis without any loss of formal rigor.

An important aspect of CoDA is that it better quantifies the coordination between features
than correlation, the latter of which is often spurious when the compositional constraint is ignored.
Meanwhile, applying differential abundance analysis with respect to a reference remains valid
even across the most widely varying conditions. For clustering and classification, the fully ratio-
based Aitchison distance provides a superior inter-sample distance that is still under-appreciated
in current applications. Last but not least, CoDA opens up new perspectives with respect to the
integration of big multi-omics data sets where explicit references may play an important role in
the future.

1 Declarations
1.1 Abbreviations
NGS: next-generation sequencing

RNA-Seq: RNA sequencing
OTU: operational taxonomic unit
LPS: lipopolysaccharide
MS: mass spectrometry
TPM: transcripts per-million
clr: centered log-ratio
alr: additive log-ratio
malr: multi-additive log-ratio
iqlr: inter-quartile log-ratio
rclr: robust centered log-ratio
ilr: isometric log-ratio
DA: differential abundance
VLR: log-ratio variance
ERCC: External RNA Controls Consortium
scRNA-Seq: single-cell RNA sequencing
CoDA: compositional data analysis
CoDa: compositional data
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1.4 Availability of source code and requirements
• Project name: CoDa-Protocol

• Project home page: http://doi.org/10.5281/zenodo.3270954

• Operating systems: Platform independent

• Programming language: R

• Other requirements: R packages zCompositions, ALDEx2, propr, patchwork, ggplot2, knitr,
and plyr

• License: GPLv3

1.5 Availability of data and material
All data and scripts are publicly available at http://doi.org/10.5281/zenodo.3270954 [55].
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Abstract
Next-generation sequencing (NGS) has made it possible to determine the sequence and

relative abundance of all nucleotides in a biological or environmental sample. A cornerstone
of NGS is the quantification of RNA or DNA presence as counts. However, these counts are
not counts per se: the magnitude of the counts are determined arbitrarily by the sequencing
depth, not by the input material. Consequently, counts must undergo normalization prior
to use. Conventional normalization methods require a set of assumptions: they assume that
the majority of features are unchanged, and that all environments under study have the same
carrying capacity for nucleotide synthesis. These assumptions are often untestable and may
not hold when comparing heterogeneous samples. Instead, methods developed within the field
of compositional data analysis offer a general solution that is assumption-free and valid for all
data. In this manuscript, we synthesize the extant literature to provide a concise guide on how
to apply compositional data analysis to NGS count data. In highlighting the limitations of
total library size, effective library size, and spike-in normalizations, we propose the log-ratio
transformation as a general solution to answer the question, “Relative to some important
activity of the cell, what is changing?”.

Introduction
The advent of next-generation sequencing (NGS) has allowed scientists to probe biological sys-
tems in unprecedented ways. For an ever decreasing sum of money, it is possible to determine
the sequence and relative abundance of all nucleotide fragments in a sample [47]. NGS works
by sequencing a population of DNA fragments, including reverse transcribed RNA isolates. In
addition to its general use for variant discovery and genome assembly, NGS is used to quantify rel-
ative abundances of (a) RNA species from tissue (RNA-Seq) [47], (b) organism diversity from the
environment (metagenomics) [78], (c) RNA species from the environment (meta-transcriptomics)
[6], and (d) regions of the genome targeted by a protein (ChIP-Seq) [50], among others. Recently,
improvements in the sequencing protocols have allowed for these measurements to be carried out at
the single-cell level, with single-cell RNA-Seq being the most mature technology. Most applications
share an analogous procedure whereby DNA or RNA are isolated from samples, optionally filtered
by size or other property [29], converted to a cDNA library of nucleotide fragments, sequenced on
a sequencer, and then mapped to a reference to quantify relative abundance. Since all data derive
from the same assay, one might expect that they would undergo the same analysis. However,
this is not true: rather, methods tailored for one mode of data do not generalize to another (e.g.,
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RNA-Seq methods have inflated false discovery rates (FDR) when applied to metagenomics data
[69, 28]).

Fernandes et al. posited that the analysis of all NGS data can be conceptually unified by
recognizing the compositional nature of these data [18]. By “compositional”, we mean that the
abundance of any one nucleotide fragment is only interpretable relative to another. This property
emerges from the sequencer itself; the sequencer, by design, can only sequence a fixed number of
nucleotide fragments. Consequently, the final number of fragments sequenced is constrained to an
arbitrary limit so that doubling the input material does not double the total number of counts. This
constraint also means that an increase in the presence of any one nucleotide fragment necessarily
decreases the observed abundance of all other transcripts [8], and applies to bulk and single-cell
sequencing data alike. It is especially problematic when comparing cells that produce more total
RNA than their comparator (e.g., high c-Myc cells which up-regulate 90% of all transcripts without
commensurate down-regulation [38]). However, even if a sequencer could directly sequence every
RNA molecule within a cell, the cells themselves are compositional because of the volume and
energy constraints that limit RNA synthesis, as evidenced by the observation that smaller cells of
a single type contain proportionally less total mRNA [48].

Compositional data only carry relative information. Consequently, they exist in a Simplex space
with one fewer dimensions than components. Analyzing relative data as if they were absolute can
yield erroneous results for several common techniques [2, 22, 58] (also demonstrated in the Supple-
mentary Information). First, statistical models which assume independence between features are
flawed because of the mutual dependency between components [75]. Second, distances between
samples are misleading and erratically sensitive to the arbitrary inclusion or exclusion of compo-
nents [3]. Third, components can appear definitively correlated even when they are statistically
independent [53]. For these reasons, compositional data pose specific challenges to the differential
expression, clustering, and correlation analyses routinely applied to NGS data, as well as other
data that measure the relative abundance of small molecules (e.g., spectrometric peak data [19]).
For compositional NGS data, each sample is called a “composition” and each nucleotide species is
called a “component” [22, 58].

There are three general approaches to analyzing compositional data. First, the normalization-
dependent approach seeks to normalize the data in order to reclaim absolute abundances. However,
normalizations depend on assumptions that may not hold true outside of tightly controlled experi-
ments. For example, popular RNA-Seq normalization methods assume that most transcripts have
the same absolute abundance across samples [62, 5], an assumption that does not hold for the high
c-Myc cells discussed above [38]. Second, the transformation-dependent approach transforms the
data with regard to a reference to make statistical inferences relative to the chosen reference [2].
Third, the transformation-independent approach performs calculations directly on the components
[46] or component ratios [25].

The latter two approaches constitute compositional data analysis (CoDA). Unlike normalization-
based methods, CoDA methods will generalize to all data, relative or absolute. In this article, we
describe a unified pipeline for the analysis of NGS count data, with all parts fully capable of
modeling the uncertainty of lowly abundant counts. First, we show how existing CoDA software
tools can be used to draw compositionally valid and biologically meaningful conclusions. Second,
we illustrate how these methods can accommodate complex study design, facilitate the analysis of
horizontally integrated multi-omics data, and accommodate machine learning applications. Third,
we show how compositionality can systematically bias results if ignored. Finally, we conclude with
a discussion of key problems associated with spike-in normalization, and show how the CoDA
framework applies specifically to single-cell sequencing data.

Methods
Overview of pipeline
Our pipeline uses software tools made freely available for the R programming language. It be-
gins with an unnormalized “count matrix” generated from the alignment and read-mapping of a
sequence library. Details regarding quality control, assembly, alignment, and read-mapping are
beyond the scope of this article, and have been covered extensively elsewhere (e.g., [14, 20]). This
count matrix records the number of times each feature (e.g., transcript or operational taxonomic
unit [OTU]) appears in each sample. Most software return measurements as integer counts, al-
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though some use continuous values (e.g., Salmon quasi-counts [51]) or another proportional unit
(e.g., transcripts per million (TPM) [72]). For many CoDA methods, units have no importance.
However, small counts carry more uncertainty than large counts, and our pipeline can model this
directly. Therefore, we recommend using unadjusted “raw counts”. TPM can also be used with
CoDA methods, but can bias the modelling of small counts if the library size differs greatly between
samples. Otherwise, the data should not undergo further normalization or standardization, and
must never contain negative values. Figure 1 provides a schematic of our unified NGS pipeline.

Figure 1: This figure illustrates how our unified NGS pipeline might sit within a larger workflow.
Colored boxes indicate procedures that would apply to any relative data set. In orange, we describe
the optional zero removal and modification steps presented in “Part 1: Zero handling”. In green, we
describe the log-ratio transformation-dependent methods presented in “Part 2a: Transformation-
dependent analyses”. This includes the differential abundance analysis of individual features and
the proportionality analysis of feature pairs. In yellow, we describe the transformation-independent
methods presented in “Part 2b: Transformation-independent analyses”. This includes the analysis
of the differences in the log-ratio means of feature pairs. In gray, we describe other essential steps
unique to the data type under study but not covered here.

Data acquisition
To demonstrate the utility of our pipeline, we use publicly available time course data of the RNA
and protein expressed by mouse dendritic cells following lipopolysaccharide (LPS) exposure, a
potent immunogenic stimulus. RNA-Seq and mass spectrometry (MS) data were acquired already
pre-processed to measure the relative abundance of 3147 genes in TPM-equivalent units [31]. The
RNA-Seq and MS data had 28 overlapping samples, spanning 2 conditions with 7 time points and
2 replicates each.

# Read in the RNA−Seq data
rnaseq <− read . csv ( " rnaseq−x . csv " , row .names=1)
rnaseq . annot <− read . csv ( " rnaseq−y . csv " , row .names=1)

# Read in the Mass Spec HL data
masshl <− read . csv ( " masshl−x . csv " , row .names=1)
masshl . annot <− read . csv ( " masshl−y . csv " , row .names=1)

# We w i l l s u b s e t Mass Spec to inc l ude t imepo in t s
# with a corresponding RNA−Seq measurement
# ( used in ‘ ‘ V e r t i c a l Data In t e g ra t i on ’ ’ )
inRNAandMS <− masshl . annot$Time %in% rnaseq . annot$Time
masshl <− masshl [ , inRNAandMS ]

4



masshl . annot <− masshl . annot [ inRNAandMS , ]

New analyses
In presenting this workflow, we perform a new analysis of the Jovanovic et al. data in order to learn
how mRNA transcript abundance and protein abundance change in response to LPS stimulation.
This includes a relative differential abundance analysis, an analysis of gene-gene coordination,
and an analysis of differential gene-gene coordination. In addition, we integrate the two data
types with a differential proportionality analysis to evaluate how mRNA stoichiometry differs from
protein stoichiometry in response to LPS treatment. Unlike the original analysis presented by
Jovanovic et al., we do not use transcripts per million (TPM) normalization. Rather, we argue
that TPMs re-cast an already compositional data set as yet another compositional data set (just
with a different denominator). In the Supplementary Information, we show how TPMs introduce
systematic errors. This is because when a reference is not explicitly chosen, an arbitrary reference
is still implicitly present. We also include an appendix that benchmarks how several zero handling
procedures impact proportionality and differential proportionality analysis.

Software contributions
This workflow primarily uses three open source software packages, all of which are available for the
R programming language. They include zCompositions [49], ALDEx2 [17, 18], and propr [59, 16].
The reader can download these software from Bioconductor and CRAN.
i n s t a l l . packages ( " zComposit ions " )
i n s t a l l . packages ( " propr " )
i n s t a l l . packages ( " BiocManager " )
# Read ‘ : : ’ as ‘ ‘ the i n s t a l l f unc t i on from the BiocManager package ’ ’
BiocManager : : i n s t a l l ( "ALDEx2" )
l ibrary ( zComposit ions )
l ibrary (ALDEx2)
l ibrary ( propr )

In preparing this workflow, we have made several contributions to the compositional data
analysis software universe. First, we present the new propr::aldex2propr function that integrates
the ALDEx2 and propr packages by calculating an average proportionality coefficient over ALDEx2-
generated Monte Carlo instances. Second, we present the new propr::updateCutoffs function that
permutes a false discovery rate across varying proportionality coefficient cutoffs. Third, we present
the propr::propd function that implements the differential proportionality method described by
Erb et al. [16], including an implementation of a zero handling procedure based on the Box-
Cox transform. These new contributions make a complete compositional data analysis workflow
possible.

Benchmark validation
Although one can devise a “normalizing” reference by invoking a set of assumptions, we prefer an
alternative framework that does not require any normalization. We use this framework because
it provides a more general solution to the analysis of -omics data. As such, our proposed work-
flow could be used to analyze bulk RNA-Seq, single-cell RNA-Seq, metagenomics, metabolomics,
lipidomics, and other data.

Although the software tools presented here do not normalize the data, they can be benchmarked
against conventional methods by invoking the assumption that the explicit reference performs a
kind of “log-ratio normalization”. Under these conditions, ALDEx2 can identify differential abun-
dance with high precision in RNA-Seq data [18, 56], and control false positive rates in highly
sparse 16S metagenomics count data [69]. Meanwhile, proportionality analysis has been shown to
outperform all 15 competing measures of association in single cell clustering and network inference
tasks across 213 data sets [66]. Although differential proportionality analysis has not yet been
benchmarked, it is formally related to an analysis of variance (ANOVA), a foundational test in
most biological research. As a statistical test for significance, it is valid wherever an ANOVA is
valid. We also include an appendix that benchmarks how several zero handling procedures impact
proportionality and differential proportionality analysis.
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Part 1: Zero handling
General strategies for zero handling
CoDA methods depend on logarithms which do not compute for zeros. Therefore, we must address
zeros prior to, or during, the pipeline. Before handling zeros, the analyst must first consider the
nature of the zeros. There exists three types of zeros: (1) rounding, also called sampling, where
the feature exists in the sample below the detection limit, (2) count, where the feature exists in
the sample, but counting is not exhaustive enough to see it at least once, and (3) essential, where
the feature does not exist in the sample at all [45]. The approach to zero handling depends on
the nature of the zeros [45]. For NGS data, a nucleotide fragment is either sequenced or not, and
would not contain rounding zeros. Since there is no general methodology for dealing with essential
zeros within a strict CoDA framework [45], we assume that any feature present in at least one
sample could appear in another sample if sequenced with infinite depth, and thus treat all NGS
zeros as “count zeros”. Others have also suggested that the essential zeros of NGS count data are
sufficiently modeled as sampling zeros [63].

There are two general approaches to zero handling. In feature removal, components with zeros
get excluded, yielding a sub-composition that can be analyzed by any CoDA method. Feature
removal is usually appropriate when a feature contains many zeros, and can always be justified for
essential zeros. In feature modification, zeros get replaced with a non-zero value, with or without
modification to non-zeros. Analysts may choose one or both zero handling procedures, but should
always demonstrate that the removal or modification of zero-laden features does not change the
overall interpretation of the results.

Feature modification with zCompositions
For “count zeros”, Martin-Fernandez et al. recommend replacing zeros by a Bayesian-multiplicative
replacement strategy that preserves the ratios between the non-zero components [45], implemented
in the zCompositions package as the cmultRepl function [49]. Alternatively, one could use a multi-
plicative simple replacement strategy, whereby zeros get replaced with a fixed value less than 1 in
a compositionally robust manner. Here, we use zCompositions to replace zeros.

# Standard f u n c t i o n s expec t rows as samples
# so we w i l l t ranspose the matrix
rnaseq <− t ( rnaseq )
masshl <− t ( masshl )

# Now we can rep l a c e ze ros wi th a sma l l va lue
# the ‘ ‘ p−counts ’ ’ op t ion has the func t i on re turn
# pseudo−counts i n s t ead o f p ropor t i ons
l ibrary ( zComposit ions )
rnaseq . no0 <− cmultRepl ( rnaseq , output = "p−counts " )
masshl . no0 <− cmultRepl ( masshl , output = "p−counts " )

Many compositional software tools have their own built-in zero handling procedures. Although
zCompositions is not necessarily better than these built-in procedures, we recognize that removing
zeros right away has a practical advantage: by using zCompositions in combination with a log-ratio
transformation, analysts can apply most conventional analyses to their compositional data right
away. Since zCompositions empowers readers to use methods beyond the ones presented here, we
decided to include it as the first part of our field guide. However, we recommend that readers look
at our appendix which benchmarks how several zero handling procedures impact proportionality
and differential proportionality analysis.

Part 2a: Transformation-dependent analyses
The log-ratio transformation
All components in a composition are mutually dependent features that cannot be understood in
isolation. Therefore, any analysis of individual components is done with respect to a reference.
This reference transforms each sample into an unbounded space where any statistical method
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can be used. The centered log-ratio (clr) transformation uses the geometric mean of the sample
vector as the reference [1]. The additive log-ratio (alr) transformation uses a single component
as the reference [1]. Other transformations use specialized references based on the geometric
mean of a subset of components (collectively called multi-additive log-ratio (malr) transformations
[56]). One malr transformation is the inter-quartile log-ratio (iqlr) transformation which uses
components in the inter-quartile range of variance [79]. Another, the robust centered log-ratio
(rclr) transformation, only uses the non-zero components [42].

Importantly, transformations are not normalizations: while normalizations claim to recast the
data in absolute terms, transformations do not. The results of a transformation-based analysis
must be interpreted with respect to the chosen reference. Of these, the clr transformation is most
common:

clr(xj) =
[
ln x1,j

g(xj)
, ..., ln xD,j

g(xj)

]
(1)

where xj is the j-th sample and g(xj) is its geometric mean. The other transformations replace
g(xj) with a different reference.

The isometric log-ratio (ilr) transformation uses an orthonormal basis as the reference [13], and
is preferred when a non-singular covariance matrix is needed [46]. When the basis is a branch of a
dendrogram, the ilr offers an intuitive way to contrast one set of components against another set
of components. These contrasts, called balances, have been used to analyze metagenomics data
based on evolutionary trees [64, 77], but could be applied to any data if a similarly meaningful tree
were available.

Each transformation implies its own reference(s). In most practical settings, the choice of
transformation will depend on the preferred interpretation. An analysis of clr data will tell you
how genes (or OTUs) behave relative to the per-sample average. An analysis of alr and malr
data will tell you how genes (or OTUs) behave relative to one or more explicitly-chosen internal
references. An analysis of iqlr data will tell you how genes (or OTUs) behave relative to the
per-sample inter-quartile (“robust”) average. In a compositional framework, none of these are
normalizations: each new variable is a log-ratio of the original variable divided by the reference,
and therefore should get interpreted as a kind of within-sample log-fold difference. Although the
difference between transformation and normalization may seem subtle, it can have a profound
impact on the conclusions drawn from the analysis. Although the temptation will exist, one must
never confuse the transformed data with absolute abundances.

Differential abundance analysis with ALDEx2
Differential abundance (DA) analysis seeks to identify which features differ in abundance between
experimental groups. The ALDEx2 package tests for DA in compositional data by performing
univariate statistical analyses on log-ratio transformed data [17, 18]. It does so with a layer of
complexity that controls for technical variation by finding the expectation of B simulated instances
of the data, each sampled from the Dirichlet distribution. This procedure implicitly models the
uncertainty of low counts while also handling zeros.

Importantly, ALDEx2 identifies DA with respect to the chosen reference. By default, this refer-
ence is the geometric mean of the composition. It is possible, if not likely, that the mean centers
are not the ideal references; if so, differences in the transformed abundances would not reflect
differences in the absolute abundances. On the other hand, if one could assume that the chosen
reference did have fixed absolute abundance across all samples, then the log-ratio transformation
can be benchmarked as a “log-ratio normalization” [58]. Under these conditions, ALDEx2 can
identify DA with high precision in RNA-Seq data [18, 56], and control false positive rates in highly
sparse 16S metagenomics count data [69]. However, the “log-ratio normalization” interpretation
implies a similar assumption implied by other DA tools: that the majority of transcript species
remain unchanged [33]. Alternatively, one could select an arbitrary reference based on a biologi-
cal hypothesis to identify relative DA, even if the reference does not have fixed abundance across
samples. Figure 2 shows how the chosen reference changes the interpretation of DA.

To run ALDEx2, the user must provide count data with integer values, a vector of group labels,
and a reference. The reference could be “all” (for clr), “iqlr” (for iqlr), or one or more user-
specified features (for alr or malr). Here, we use the geometric mean of two NFκB sub-units
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as a hypothesis-based reference, chosen because LPS activates NFκB to control the transcription
of other immune genes [54]. With this reference, up-regulation signifies that a gene’s expression
increases beyond that of NFκB, allowing for a clear biological interpretation. Table 1 lists 47 genes
up-regulated relative to NFκB.

# Let ’ s use Nfkb sub−u n i t s as a l r r e f e r ence
r e f <− grep ( " Nfkb " , colnames ( rnaseq ) )

# ALDEx2 expec t s :
# ‘ reads ’ : i n t e g e r counts wi th columns as samples
# ‘ cond i t i ons ’ : the exper imenta l outcome
# ‘denom ’ : the log −r a t i o transform re f e r ence
l ibrary (ALDEx2)
co n d i t i o n s <− factor ( rnaseq . annot$Treatment , levels = c ( "MOCK" , "LPS" ) )
t t <− aldex ( reads = t ( cei l ing ( rnaseq ) ) ,

c o n d i t i o n s = cond i t i ons ,
denom = r e f )

# ALDEx2 outpu t s a data . frame :
# ‘we .eBH ’ : the FDR−ad ju s t ed p−va lue
# ‘ e f f e c t ’ : the e f f e c t s i z e
# Below , we ge t the names o f genes
# with r e l a t i v e l y more abundance
# in the LPS group
t t . bh05 <− t t [ t t $we . eBH < . 0 5 , ]
up <− rownames( t t . bh05 [ t t . bh05$ e f f e c t > 0 , ] )
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Figure 2: This figure illustrates how the interpretation of differential abundance depends on the
reference chosen. On the left margin, we show the log-abundance of three genes (RPL19, FSCN1,
and IL1B) for the LPS-treated cells (orange) and control (blue). For compositional data, these
abundances carry no meaning in isolation because the constrained total imposes a “closure bias”.
On the top margin, we show the log-abundance of two references: the geometric mean of the
samples (a la the clr) and a hypothesis-based reference NFκB (a la the alr). In the middle,
we show the abundance of the log-ratio of the left margin feature divided by the top margin
reference (equivalent to left margin minus top margin in log space). RPL19 alone appears more
abundant in the control, but actually has equivalent expression when compared with the geometric
mean; however, it has significantly higher expression in the control relative to NFκB. On the other
hand, FSCN1 alone appears more highly expressed in the LPS-treated cells, which remains true
when compared with the geometric mean; however, it has equivalent expression relative to NFκB
(interpreted as NFκB and FSCN1 expression changing similarly in response to LPS stimulation).
IL1B alone appears more highly expressed in the LPS-treated cells, which remains true when
compared with the geometric mean and with NFκB (interpreted as IL1B expression becomes
even higher than NFκB expression in response to LPS stimulation). Choosing a reference makes
normalization unnecessary, but requires a shift in interpretation.

Proportionality analysis with propr
Proportionality analysis is designed to identify feature coordination in compositional data [37, 15],
without assuming sparsity in the association network [21, 34]. The propr package tests for the
presence of feature coordination across all samples, irrespective of group label, by calculating one
of three proportionality measures. Two of these have been shown to outperform all 15 competing
measures of association in single cell clustering and network inference tasks across 213 data sets
[66]. The default measure, ρp, resembles correlation in that it ranges from [−1, 1]. Like DA,
proportionality analysis requires a reference.

# propr expec t s :
# ‘ counts ’ : the data matrix wi th rows as samples
# ‘ metric ’ : the p r o p o r t i o n a l i t y metr ic to c a l c u l a t e
# ‘ ivar ’ : the log −r a t i o transform re f e r ence
l ibrary ( propr )
pr <− propr ( counts = rnaseq . no0 ,

metr ic = " rho " ,
i v a r = " c l r " )

The propr package offers two alternatives to zero handling. The propr::aldex2propr function will
calculate the expected proportionality from the simulated instances generated by ALDEx2, again
addressing the uncertainty of low counts [7]. The alpha argument will use a zero handling procedure
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Effect Size Difference (between) Difference (within) Expected BH p-value
Il1b 4.7372 3.9576 0.6912 0.0000
Irg1 4.3462 3.8904 0.7888 0.0000
Il1a 3.5950 3.8242 0.9037 0.0000
Cd40 2.2887 5.3325 2.0422 0.0000
Ifih1 2.2056 2.8529 1.1157 0.0000
Isg15 1.9678 4.4490 1.8330 0.0000
Oasl1 1.9304 5.6562 2.1200 0.0000
Ifit1 1.8317 5.6101 2.0773 0.0000
Ptgs2 1.6923 4.0869 2.0606 0.0002
Gbp5;Gbp1 1.6523 2.4494 1.2349 0.0000
Rsad2 1.4933 6.2747 2.4692 0.0001
Marcksl1 1.4886 1.0748 0.5740 0.0001
BC006779 1.4686 2.2184 1.2465 0.0001
Mndal 1.4163 2.1047 1.5182 0.0000
Parp14 1.3139 1.7655 0.9357 0.0002
Ifi205 1.2916 5.3159 3.4587 0.0026
Slc7a2 1.2883 1.3797 0.9920 0.0002
Ifit2 1.2292 5.4975 2.6744 0.0002
Clic4 1.2037 0.8486 0.5765 0.0003
Sp140 1.1612 1.0030 0.7385 0.0005
Cmpk2 1.1149 5.7323 2.1088 0.0003
Stat5a 1.0806 0.8666 0.6461 0.0017
Ifi47 1.0443 2.0495 1.5704 0.0030
Pyhin1 1.0152 1.9150 1.4752 0.0024
Ifit3 0.9978 4.7313 3.2116 0.0012
Ccl5 0.9962 2.0765 1.6671 0.0015
Acsl1 0.9937 1.0837 1.0073 0.0009
Il1rn 0.9811 0.6795 0.6366 0.0017
Irgm1 0.9755 1.7076 1.0634 0.0094
IIGP;Iigp1 0.9588 3.5610 3.1760 0.0023
Rnf213;AK217856 0.9541 1.2867 1.0478 0.0041
Daxx 0.9118 1.1938 0.9013 0.0119
Flnb 0.8639 1.6654 1.8185 0.0122
Cd274 0.8299 0.6050 0.6354 0.0051
Trex1 0.8171 0.5647 0.6350 0.0090
Car13 0.7586 1.1455 1.2839 0.0140
Xaf1 0.7550 1.5118 1.4338 0.0214
Gbp3 0.7478 1.5118 1.4837 0.0128
Ehd1 0.7460 0.3648 0.4812 0.0078
Gm4902 0.7413 1.9614 1.7899 0.0151
Rasa4 0.7254 0.8805 0.9109 0.0478
Oas3 0.7089 1.5673 1.7756 0.0213
Serpinb2 0.7048 1.7770 2.1734 0.0272
Dhx58;D11lgp2 0.6947 1.4875 1.6956 0.0425
Gbp2 0.6597 1.5376 1.7339 0.0212
Saa3 0.6291 1.0259 1.5384 0.0187
Sbds 0.5522 0.3107 0.5363 0.0443

Table 1: This table shows the 47 genes selected as significantly up-regulated by ALDEx2 when using
the NFκB sub-units as a reference. One can interpret this “up-regulation” to mean that the gene
increases its expression in response to LPS stimulation more than NFκB. All p-values correspond to
the expectation of the Benjamini-Hochberg adjusted p-values computed from a Welch’s t-test over
128 simulated instances of the data. By choosing a reference that is relevant to the biological system
under study, we can gain meaningful insights from the data without any need for normalization. In
this table, between-group differences are the differences between the two conditions (defined for each
Dirichlet instance), within-group differences are the maximum difference across Dirichlet instances
(defined for each condition), and effect sizes are the ratio of the between-group differences to the
maximum of within-group differences (defined for each Dirichlet instance). The columns “Effect
size”, “Difference (between)”, and “Difference (within)” report the median effect size, median
between-group difference, and median within-group difference, respectively.
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based on the Box-Cox transform, a pragmatic approach that allows for essential zeros, but does
not fall under the strict CoDA framework [24]. A Box-Cox transform with α = 0.5 appears to
work well in simulations (see Appendix). For proportionality, we do not calculate parametric p-
values. Instead, we permute the FDR for a given cutoff. From this, we choose the cutoff ρp > 0.45
to control FDR below 5%. The package vignette describes several built-in tools for visualizing
proportionality. Figure 3 shows the output of the getNetwork function.

# We can s e l e c t a good c u t o f f f o r ‘ rho ’
# by permuting the FDR at var ious c u t o f f s
# Below , we use [ 0 , .05 , . . . , . 95 , 1 ]
pr <− updateCutof f s ( pr , c u t o f f = seq (0 , 1 , . 0 5 ) )
pr@fdr

# Let ’ s v i s u a l i z e us ing a s t r i c t c u t o f f
getNetwork ( pr , c u t o f f = 0 . 9 , c o l 1 = up)
ge tResu l t s ( pr , c u t o f f = 0 . 9 )

Proportionality depends on a log-ratio transformation and must get interpreted with respect to
the chosen reference. Although proportionality appears more robust to spurious associations than
correlation [37, 59], wrongly assuming that the reference has fixed absolute abundance across all
samples could lead to incorrect conclusions [15]. We interpret clr-based proportionality to signify
a coordination that follows the general trend of the data. In other words, these proportional genes
move together as individuals relative to how most genes move on average.
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Figure 3: This figure shows a network where edges indicate a high level of coordination between gene
expression relative to the per-sample geometric mean. Node color indicates differential expression
relative to NFκB. The connections between red nodes indicate genes whose expression increase
more than NFκB in a coordinated manner. The connections between white nodes indicate genes
whose expression increase the same amount as NFκB in a coordinated manner. The connections
between blue nodes indicate genes whose expression either (a) up-regulate less than NFκB, (b)
do not change absolutely, or (c) down-regulate, all in a coordinated manner. The high level of
connectivity between all nodes suggests a strong coordinated response to LPS. Like correlated
pairs, proportional pairs can have any slope in non-log space. Note that this network only shows
highly coordinated events (where ρp > .9).

Part 2b: Transformation-independent analyses
The methods above depend on a log-ratio transformation to standardize the comparison of one
gene’s expression (or one pair’s coordination) with another. However, by comparing the variance
of the log-ratios (VLR) within groups to the total VLR, we do not need a reference to estimate
between-group differences in coordination [16, 76]:

VLRk(xg, xh) = var
[
ln xg,1

xh,1
, ..., ln

xg,Nk

xh,Nk

]
. (2)

for group k with Nk samples, where xg and xh are component vectors. From this equation, we
see that any normalization or transformation factor would cancel. The VLR ranges from [0, ∞),
where zero indicates perfect coordination. Otherwise, VLR lacks a meaningful scale [1]. As such, we
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cannot compare the VLR of one pair to the VLR of another pair (hence why we used proportionality
instead) [37, 59]. However, in differential proportionality, we compare the VLR for the same pair
across groups [16].

Differential proportionality analysis is designed to identify changes in proportionality between
groups [16], interpretable as a change in gene stoichiometry. The propd function tests for events
where the proportionality factor (i.e., the magnitude of x

y ) differs between the experimental groups.
This is measured by θd which ranges from 0 to 1, where zero indicates a maximal difference
between the groups. As above, users can permute the FDR and build a network, but can also
calculate an exact p-value from θd using the updateF function [16], with the optional application of
limma::voom precision weights [35] and F -statistic moderation [67]. Precision weights eliminate the
mean-variance relationship that affects the results for low counts, while the moderated statistic
helps avoid false positive results in the case of few replicates. When testing the significance of
multiple log-ratio pairs, it is absolutely necessary to correct the p-value for multiple testing. In
addition, this function implements a zero handling procedure based on the Box-Cox transform,
where α = 0.5 appears to work well in simulations (see Appendix). Figure 4 shows significant
differentially proportional pairs containing NFκB in the log-ratio. Most of these companion genes
were also called (relatively) differentially abundant by ALDEx2.

# propd expec t s :
# ‘ counts ’ : the data matrix wi th rows as samples
# ‘ group ’ : the c l a s s l a b e l s
l ibrary ( propr )
pd <− propd ( counts = rnaseq . no0 ,

group = rnaseq . annot$Treatment )

# Ca l cu l a t e an exac t p−va lue
pd <− updateF (pd)
ge tResu l t s (pd)
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Figure 4: This figure shows a parallel coordinate plot of the log-ratio abundance (y-axis) of sig-
nificant differentially proportional pairs that contain NFκB in the log-ratio (x-axis). Each line
represents a single sample, colored by group. Gene pairs toward the left of the x-axis have greater
differences in the log-ratio means between groups (i.e., smaller θd values). This plot only shows
pairs for which the LPS-stimulated samples have different log-ratio means from the control (with
the order of the numerator and denominator chosen such that the LPS average is always greater
than the control average). It is not surprising that many of these significant pairs contain the same
genes found by differential abundance analysis. Indeed, one can think of differential proportionality
analysis as the differential abundance analysis of all pairwise log-ratios. Although pairs toward the
right of the x-axis still have large differences in log-ratio abundance on average, some time points
deviate from the trend. Indeed, this figure incidentally reveals a time-dependent process that we
could test for specifically with models presented in “Complex study design”.

Advanced applications
Complex study design
Above, we used our pipeline to analyze the data as if samples belonged to one of two groups. This
pipeline can also accommodate complex study designs with multiple covariates. For ALDEx2, we
can supply a model.matrix R object to find the expectation of a linear model (instead of a t-test).
On the other hand, proportionality is calculated for all samples regardless of class label, and so
does not require a new procedure. Differential proportionality measures the difference in the log-
ratio abundance between two groups. By design, it is an efficient implementation of the two-group
ANOVA expressed by the formula [log(xg) − log(xh)] ∼ group, for all combinations of features
g and h. Thus, we can extend differential proportionality by modeling each pairwise log-ratio
outcome as a function of any model.matrix. This may become computationally burdensome for
high-dimensional data. When testing the significance of multiple log-ratio pairs, it is absolutely
necessary to correct the p-value for multiple testing, for example by using the p.adjust function in
R.

Vertical data integration
We envision two general strategies for the vertical integration of compositional data. First, the
row join strategy treats other -omics data as additional samples and models the -omics source as
a covariate. This requires that all -omics sources map to the same features. For the RNA-Seq
and MS data used here, both quantify the relative abundance of gene products. This allows us
to use ALDEx2 to find features where mRNA abundance changes more than protein abundance,
relative to a common reference (and vice versa). Likewise, we can use proportionality analysis to
find feature pairs where genes and proteins both have coordinated expression in response to LPS.
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Finally, we can use differential proportionality analysis to find feature pairs with stoichiometric
differences between a gene pair and its respective protein pair. Figure 5 shows some examples of
differentially proportional pairs.
# Get LPS−t r e a t e d c e l l s on ly
rna <− rnaseq . no0 [ rnaseq . annot$Treatment == "LPS" , ]
pro <− masshl . no0 [ masshl . annot$Treatment == "LPS" , ]

# Join as s i n g l e matrix
merge <− rbind ( rna , pro )
group <− c ( rep ( "RNA" , 14) , rep ( " Prote in " , 14) )

# Run propd a n a l y s i s
pd . ms <− propd (merge , group )

Second, the column join strategy, treats other -omics data as additional features. This strat-
egy is more complicated, as it requires that each -omics source has its own reference. In practice,
we should perform differential abundance analysis on each -omics source independently. For pro-
portionality and differential proportionality analysis, we would need to log-ratio transform each
-omics source independently, then column join them with cbind. Here, any proportionality occur-
ring between features from different sources would be with respect to two references, and must get
interpreted accordingly.

Figure 5: This figure compares mRNA abundance with newly synthesized protein abundance
following LPS stimulation, illustrating the vertical integration of multi-omics data under a com-
positional framework. On the left margin, we show the log-abundance of three genes (MNDAL,
SERPINB2, and PTGS2) as measured by RNA-Seq (orange) and mass spectrometry (blue). For
compositional data, these abundances carry no meaning in isolation because the constrained total
imposes a “closure bias”. On the top margin, we show the log-abundance of two references: RPL30
(chosen because its abundance is proportional to the geometric mean of the samples) and NFκB
(chosen based on the hypothesis). In the middle, we show the abundance of the log-ratio of the left
margin feature divided by the top margin reference (equivalent to left margin minus top margin in
log space). MNDAL alone appears to exist more as mRNA than protein, which remains true when
compared with both references. This suggests that MNDAL is translated with lower efficiency than
RPL30 and NKκB. On the other hand, SERPINB2 alone appears to exist as mRNA and protein
similarly on average; however, it actually exists more as protein than mRNA when compared with
both references. This suggests that MNDAL is translated with greater efficiency than RPL30
and NKκB. PTGS2 alone appears to exist more as mRNA than protein, but this difference is less
apparent when compared with both references. This suggests that PTGS2 is translated with a sim-
ilar efficiency to RPL30 and NKκB. By choosing a reference shared between two multi-omics data
sets, we can perform an analysis of vertically integrated data without any need for normalization.
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Horizontal data integration
The term “mega-analysis” describes a single analysis of samples collected across multiple studies
[73]. Batch effects pose a major barrier to mega-analyses. Here, we consider two types of batch
effects. The first affects all genes within a sample proportionally (e.g., due to differences in sequenc-
ing depth). A log-ratio transformation will automatically remove this batch effect. The second
affects only some genes within a sample (e.g., due to differences in RNA depletion protocols). This
requires explicit modification of the corrupted features. If needed, one could apply standard batch
correction tools, normally applied to normalized data, to the transformed data instead (c.f., the
moderated log-link sva in [36]).

Clustering and classification
Most distance measures lack sub-compositional dominance, meaning that it is possible to reduce
the distance between samples by adding dimensions [3]. When clustering compositions, methods
that rely on distance, like hierarchical clustering, also lack sub-compositional dominance [44]. In-
stead, one should use the Euclidean distance of clr transformed compositions (called the Aitchison
distance) [44]. Other statistical methods used for clustering, like PCA and t-SNE, also compute
distance and should also get clr transformed prior to analysis. When clustering components, one
could use the proportionality metric ϕs as a dissimilarity measure [59]. The ϕs proportionality
metric, like the ρp proportionality metric, is defined for clr-transformed data. If the geometric
mean center changes drastically across samples, some proportional pairs may not be proportional
in an absolute sense. We refer the reader to the sub-section, “Proportionality analysis with propr”,
for further explanation.

How best to classify compositional data remains an open question, but ilr transforming the data
prior to model training would grant the data favorable properties, as done for linear discriminant
analysis [71]. Alternatively, one could train models on the log-ratios themselves, though this may
not scale to high-dimensional data. Recently, balances have been used for feature selection and
classification [61, 57], where they achieve both accuracy and interpretability [10].

Selected topics
Closure bias and the implicit reference
NGS count data measure relative abundances because of the arbitrary limit imposed by the cell,
the environment, and the sequencer. This is sometimes called the “constant sum constraint”
because the sum of the relative abundances must equal a constant. Anything that introduces a
constant sum constraint is a kind of “closure”; all closures irreversibly make a data set relative
(i.e., “closed”). One could think of a cell (in the case of RNA-Seq) or the environment (in the case
of metagenomics) as natural closures, and sequencers as technical closures.

Total library size normalizations, like TPM, are not normalizations at all: they are actually yet
another closure, imposing the constant sum constraint of transcripts per million. TPMs do not
convert closed sequencing data into an “open” unit such as concentration. Analyzing TPMs as if
they were concentrations is theoretically flawed, and can substantially affect the modeling of cellular
processes. Our own analysis indicates that in Jovanovic et al., mRNA translation rates could have
been systematically over-estimated due to compositional bias. In the Supplementary Information,
we show that at the latest time point, the error compared to normalized data is around 13% in
the control condition, reaching 35% in LPS-stimulated samples. This bias is due to the closure
operation: if the analyst does not select a reference, the estimates must get interpreted with regard
to the unknown and immeasurable “closure bias”. Since the magnitude of this closure bias can be
large for samples that range widely in terms of nucleotide synthesis capacity, a reference should
always be used when modeling the univariate features of compositional data. If a reference is not
chosen, then the closure bias acts as an “implicit reference” that makes interpretation impossible.

Count compositions and low-count imprecision
Closed count data differ from idealized compositional data because additive variation affects small
counts more than large counts [59]. As such, the difference between 1 and 2 counts is not the same
as the difference between 1000 and 2000 counts. Moreover, NGS experiments often have many
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more features than samples, leading to severe under-estimation of the technical variance; indeed,
the technical variance can be much larger than the biological variance at the low-count margin [17].
“Count zero” features are those that are observed as a non-zero value in at least one sample, and
thus are expected to be observed at or near the margin in other samples. While not intuitive, the
distribution of the relative “count zero” values is quite large and spans many orders of magnitude
[23]. In addition, the expected value of a “count zero” feature must be greater than zero because
a value greater than zero was observed in at least one sample.

As mentioned above, the “count zero” values can be modified to give a point-estimate of their
expected value, but this leads to under-estimation of their true variance since we are estimating
the expected value of the feature. In the approach instantiated in the aldex.clr function used by
the ALDEx2::aldex.ttest, ALDEx2::aldex.effect, and propr::aldex2propr functions, a distribution of
“count zero” values is determined by sampling from the Dirichlet distribution (i.e., a multivariate
generalization of the β distribution). Another way to think about the Dirichlet distribution is
a multivariate Poisson sampling with a constant sum constraint. The distribution of relative
abundances near the low-count margin can be surprisingly wide, both as estimated by sampling
from the Dirichlet distribution, and as observed in real data [23]. By sampling from the Dirichlet
distribution, we get a set of multivariate probability vectors, each of which is as likely to have
been observed from the underlying data as the one actually observed from the sequenced sample.
From this, ALDEx2 and propr can account for low-count technical imprecision (which can be much
larger than the biological variation) by reporting the expected values of a test statistic instead of
the point estimate [17].

Spike-in “log-ratio normalization”
Transformations are not normalizations because they do not claim to recast the data in absolute
terms. However, if one were to choose a set of references with a priori known fixed abundance
across all samples, one could use this “ideal reference” to normalize the data (something we call
a “log-ratio normalization” [58]). The use of spike-in controls, consisting of multiple synthetic
nucleotide sequences with known absolute abundance, may offer one such option. For RNA-Seq,
the External RNA Controls Consortium (ERCC) spike-in set consists of 92 polyadenylated RNA
transcripts with varying length (250-2000 nt) and GC content (5-51%) with a 106-fold range in
abundance [30]. The spike-in set is added to a standardized amount of purified RNA in equimolar
concentrations, then both the spike-in and target transcripts are processed together to create a
cDNA library. Since 23 of the ERCC transcripts are designed to have the same absolute abundance,
one could use their geometric mean as a reference to recast the data in absolute terms. Similarly,
one could spike-in a known quantity of bacteria cells or synthetic plasmids to standardize the
abundance of PCR-amplified metagenomics samples [68, 70].

However, two important assumptions underly the use of spike-ins for normalization. First,
it is assumed that the spike-in and target sequences have the same capture efficiency of RNA
conversion, in that they are both equally affected by the technical biases of cDNA library creation.
Second, it is assumed that the spike-ins are calibrated to the number of RNA molecules per cell. In
other words, it is assumed that the amount of spike-in is added per molecule of RNA and that each
cell yielded the same number of RNA molecules. The latter is a particular issue for bulk RNA-Seq
due to the technical difficulty of adding an appropriate amount of spike-in at a cell population level
[60]. However, even when controlling for technical variation, cells may produce less total RNA in
one of the experimental groups [38] or over time [41]. In this case, standardizing the spike-in to
the total amount of input RNA will invalidate this assumption. Without standardizing the spike-
in to the total number of cells, it is impossible to reclaim absolute abundances (i.e., in units of
transcripts per cell) [11]. Even if it were possible to standardize spike-ins to the total number of
cells, the interpretation may be difficult if the cells within a single batch produce varying amounts
of total RNA.

Beyond ERCC spike-ins, several other spike-ins have been proposed. For RNA-Seq studies,
example spike-ins include sequins [26, 12], control plasmid spiked-in genomes [65], and isoform-
specific spike-in RNA variants [52]. For metagenomics studies, example spike-ins include exogenous
bacteria [68] and sequins [27]. It is beyond the scope of this field guide to compare and contrast
all of the different spike-ins. However, we must emphasize that if the spike-ins are calibrated to the
total weight of input RNA, they do not automatically normalize the data to absolute abundances.
The reason for this follows logically from how spike-ins work: when spike-ins are added at a
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fixed proportion to an arbitrary mass of RNA, sequencing will return counts at the same fixed
proportion. As such, spike-ins only tell us the amount of RNA sequenced. However, the term
“absolute abundances” refers to the amount of RNA present in the biological sample (e.g., in
units of transcripts/cell for RNA-Seq or bacteria/L for metagenomics). Therefore, spike-ins will
normalize to absolute abundances if and only if the amount of RNA sequenced is equal to the
amount of RNA present in the biological sample. Even if the difference between the absolute RNA
and the input RNA – which we call δ – is proportional, this δ must be the same for all samples.
Otherwise, the δ becomes yet another a closure bias that could introduce systematic errors. In this
case, spike-in “normalization” causes the same problem as TPM “normalization”: the analyst has
transformed their old compositions into new compositions under the mistaken belief that the new
compositions are absolute concentrations. Before using spike-in normalization, the analyst should
critically evaluate their protocol to assess whether they can safely assume that δ is fixed for all
samples. On the other hand, a transformation with respect to an internal reference is not affected
by global differences in δ.

Single-cell RNA sequencing
Single-cell RNA sequencing (scRNA-Seq) resembles bulk RNA-Seq, except that the RNA of in-
dividual cells are captured and barcoded separately prior to building the cDNA library [4]. This
RNA capture step involves a non-exhaustive sample of the total RNA which acts as another clo-
sure operation to make the data relative. The sequencer would then re-close the already closed
data. Interestingly, if the sequence libraries were then expressed in TPMs, the per-million divisor
would act as yet another closure of the data. For these reasons, scRNA-Seq resembles other NGS
count data in that each sample is a composition of relative parts. Like other NGS count data, it
is impossible to estimate absolute RNA abundance without a per-cell spike-in reference.

scRNA-Seq analysis is described as being more difficult than bulk RNA-Seq analysis for two
reasons. First, scRNA-Seq library sizes vary more between samples [40]. This is due to differences
in the capture efficiency of RNA extraction, sequencing depth, and so-called “doublet” events
where two cells get captured at once [40]. To address these differences in library size, the data
are normalized by effective library size normalization or by reference normalization (via a set of
house-keeping or spike-in transcripts). Effective library size normalization assumes that most genes
are unchanged; this assumption is especially problematic for scRNA-Seq data because single-cell
experiments study heterogeneous cell populations [39]. Reference normalization has limitations
too. House-keeping genes may not have consistent expression at the single-cell level due to tran-
scriptional bursting or tissue heterogeneity [39]. Meanwhile, scRNA-Seq spike-ins imply the same
assumptions as bulk RNA-Seq: that the spike-ins and target sequences have the same capture ef-
ficiency of RNA conversion and that the spike-ins are calibrated to the number of RNA molecules
per cell. The second assumption is problematic for scRNA-Seq because it implies that all cells were
similarly affected by the capture efficiency of RNA extraction [39]. Since spike-ins are added to
the lysis buffer, spike-in normalization can only reveal how much RNA was captured from the cell,
not how much RNA was present in the cell: as such, spike-ins cannot normalize away differences in
cell lysis efficiency (which are common, and an important cause of “dropout”) [32]. On the other
hand, a transformation with respect to an internal reference is not affected by global differences in
cell lysis efficiency. This is analogous to the discussion of δ from the preceding sub-section.

Second, scRNA-Seq contains many zeros. Although some zeros are described as “biological
zeros” (i.e., essential zeros) [74], most are described as “dropout zeros”. For “dropout zeros”, a
zero is a missing value that occurs because the “mRNA molecules are not captured...at the same
proportion” for all cells [4]. By this definition, “dropout zeros” are simply count zeros caused
by non-exhaustive sampling. Since differences in cell lysis efficiency are an important cause of
dropout, spike-ins cannot solve the dropout problem [32]. However, these “dropout” zeros are
really no different than the under-sampling zeros found in metagenomics data (which are already
handled by our pipeline [17]). However, if an analyst wishes to impute zeros, there exists imputation
methods designed specifically for compositional data [43, 9].

Discussion
Compositional data analysis (CoDA) provides a conceptual framework for studying relative data.
In this paper, we present a collection of software tools designed for NGS count data that together
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form a pipeline which unifies the analysis of all compositional data, including RNA-Seq, metage-
nomics, single-cell and spectrometric peak data. Unlike existing pipelines, ours does not seek to
normalize the data to reclaim absolute abundances. Instead, it transforms the data with regard to a
reference, allowing the analyst to study any relative data set without invoking the often untestable
assumptions underpinning NGS data normalization.

The CoDA framework has evolved independently from much of the alternative techniques cur-
rently applied to NGS data. Interestingly, although not explicitly tailored for compositional data,
the most rigorous of the NGS methods have converged on similar solutions for handling composi-
tional bias. They rely on effective library size normalizations (and offsets) that make use of the
(pseudo-counted) log-transformed data in a manner similar to log-ratio transformations. In CoDA,
such transformations are explicitly derived to address the constrained nature of the data. From
this perspective, explicit references and pairwise log-ratios apply to a broader range of experiments,
including less well-controlled studies where effective library size normalizations may not work. The
analysis of count compositions, especially the handling of low-count imprecision, has now reached
a state of maturity that allows for NGS analysis without any loss of formal rigor.

An important aspect of CoDA is that it better quantifies the coordination between features
than correlation, the latter of which is often spurious when the compositional constraint is ignored.
Meanwhile, applying differential abundance analysis with respect to a reference remains valid
even across the most widely varying conditions. For clustering and classification, the fully ratio-
based Aitchison distance provides a superior inter-sample distance that is still under-appreciated
in current applications. Last but not least, CoDA opens up new perspectives with respect to the
integration of big multi-omics data sets where explicit references may play an important role in
the future.

1 Declarations
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NGS: next-generation sequencing
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TPM: transcripts per-million
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alr: additive log-ratio
malr: multi-additive log-ratio
iqlr: inter-quartile log-ratio
rclr: robust centered log-ratio
ilr: isometric log-ratio
DA: differential abundance
VLR: log-ratio variance
ERCC: External RNA Controls Consortium
scRNA-Seq: single-cell RNA sequencing
CoDA: compositional data analysis
CoDa: compositional data
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1.4 Availability of source code and requirements
• Project name: CoDa-Protocol

• Project home page: http://doi.org/10.5281/zenodo.3270954

• Operating systems: Platform independent

• Programming language: R

• Other requirements: R packages zCompositions, ALDEx2, propr, patchwork, ggplot2, knitr,
and plyr

• License: GPLv3
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