
Supplementary Information to:
A field guide for the compositional analysis of

any-omics data
Thomas P. Quinn, Ionas Erb, Greg Gloor, Cedric Notredame,

Mark F. Richardson, and Tamsyn M. Crowley

Correction terms for translation and degradation rates ob-
tained from compositional data

For the argument we want to present here, it is unnecessary to distinguish pro-
tein made before the stimulus and newly-made protein (the M and H channels,
see [1]). We denote the sum of the two channels, i.e. the overall protein abun-
dance of an individual gene i, by Pi(t). It is modeled to follow the differential
equation

dPi(t)

dt
= Ri(t)Ti(t) − Pi(t)Di(t). (1)

Here, t denotes time, R stands for mRNA abundance, and T and D are the
translation and degradation rates, respectively. In the original article, both P
and R are relative abundances (expressed in microshares and TPM, respectively,
with both units constrained to sum to one million). To avoid compositional
bias, (1) should be solved for the absolute, not the relative abundances. For
this, we have to multiply relative mRNA and protein abundances by suitable
normalization factors that will generally be different for samples obtained at
different time points. Similarly to the abundances themselves, we can thus
think of them as functions of t. Let us denote the normalization factor for P by
σ(t) and the one for R by s(t). Expressing (1) in absolute terms, we arrive at

d (Pi(t)σ(t))

dt
= Ri(t)s(t)T

u
i (t) − Pi(t)σ(t)Du

i (t), (2)

where the unbiased rates were denoted by the superscript u. Applying the
product rule,

dPi(t)

dt
σ(t) + P (t)

dσ(t)

dt
= Ri(t)s(t)T

u
i (t) − Pi(t)σ(t)Du

i (t), (3)

terms can be rearranged to obtain an expression that describes the change in
relative abundance based on the unbiased rates:

dPi(t)

dt
=

1

σ(t)

(
Ri(t)s(t)T

u
i (t) − Pi(t)

(
σ(t)Du

i (t) − dσ(t)

dt

))
= Ri(t)

s(t)

σ(t)
T u
i (t) − Pi(t)

(
Du

i (t) − σ′(t)

σ(t)

)
. (4)
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Here, we used the shorthand σ′ for the time derivative of σ. Comparing with
(1), we arrive at the conclusion that

T u
i (t) = Ti(t)

σ(t)

s(t)
, (5)

Du
i (t) = Di(t) +

σ′(t)

σ(t)
. (6)

These predicted linear relationships can be easily verified by evaluating the slope
(5) and intercept (6) between rate parameters observed on compositional and
normalized data.

Numerical estimates of compositional bias in rate parame-
ters

To obtain normalization factors, we use the geometric mean over the (nonzero)
abundances of a sample as reference. This reference is a common choice in the
CoDA literature and has been shown to act similarly to trimmed-mean and
median-based normalizations [2]. The underlying assumption of such normal-
izations is that the majority of genes remains unchanged across samples. We
define

gP (t) =

(∏
i∈G∗

Pi(t)

) 1
N∗

, (7)

where G∗ denotes the set of genes which do not vanish in any of the mRNA and
protein samples, and N∗ denotes its size. Thus the same support set (comprising
76% of the 3147 genes considered in our case) can be used for P and R. With
the equivalent definition for gR(t), our normalization factors are

σ(t) =
gP (0)

gP (t)
, (8)

s(t) =
gR(0)

gR(t)
. (9)

The geometric mean components at t = 0 in the numerators make sure that the
samples at t = 0 remain unchanged. The steady-state samples common to both
conditions thus serve as reference samples and allow direct comparison between
the corrected and uncorrected rate constants.

The effect of the normalization along time can best be appreciated when
looking at the (replicate 1) mRNA abundances in the LPS condition (Supp.
Figure 1). The increased expression of a few highly abundant genes will make
the majority of genes appear to go down (as reflected by the decreasing median
in the left panel). However, this is an effect of the constant sum of expression
values enforced by the sequencing. A more likely scenario is that the majority of
genes remain unchanged like they appear to be after applying our normalization
(right panel).
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Figure 1: Effect of normalization on mRNA abundance in the LPS condition.

Using the corrections derived in the previous section, we can already estimate
the bias we expect for the gene-wise parameters from the normalization factors
(first and third columns in Supplementary Table 1). We approximated σ′ at
t = 12 h by (σ(12) − σ(9))/(12 − 9). While we predict no substantial effect on
degradation rates due to compositional bias, predictions do suggest a systematic
overestimation of the translation rates. The percentage of bias can be evaluated
from the inverse of the predicted slope σ/s at a given time point. For t = 12 h,
we find a percentage of bias of around 13% in the control condition. This error
goes up to 35% in the LPS condition. Can these biases be confirmed directly
on the data?

For this, we compare the rate parameters obtained from compositional and
from normalized data using the empirical Bayes parameter fitting of the solu-
tions. These solutions [1] take the form

Pi(t) = e−D̃i(t)

(
P0i +

∫ t

0

Ri(x)Ti(x)eD̃i(x)dx

)
+Bi, (10)

with Bi denoting a background term and

D̃(t) =

∫ t

0

D(x)dx. (11)

Jovanovic et al. provide R scripts that fit 8 parameters per gene to these solu-
tions (for M and H channels separately). The parameters are P0, B, D0, DC ,
DL, T0, TC , TL, where a linear time dependence of the form

D(t) = D0 +
D0(DC − 1)

12
t, (12)

T (t) = D0 +
T0(TC − 1)

12
t (13)
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is assumed for the rates. (Here stated for the control condition, replace DC ,
TC by DL, TL for the LPS condition.) The error due to compositional bias
comparing parameter fits on compositional and normalized data are shown in
columns two and four of Supp. Table 1. The line fits for normalized versus
compositional translation rates are shown in Supp. Figure 2. Overall these
results provide an excellent confirmation of the theoretical considerations in the
previous section.

corrections to Ti corrections to Di

predicted observed predicted observed

control
slope 0.89 0.83 1 0.97

intercept 0 2.8 · 10−4 3.9 · 10−3 1.9 · 10−3

LPS
slope 0.74 0.74 1 1.07

intercept 0 4.9 · 10−4 −1.8 · 10−3 1.2 · 10−3

Table 1: Estimated compositional bias of rate parameters at t = 12 h (assuming
that the geometric-mean normalization recovers true abundances). Columns one
and three show corrections predicted from (5) and (6), columns two and four
show corrections observed by comparing parameter fits to the solutions (10) on
compositional and normalized abundances.

Figure 2: Translation rates at t = 12 h obtained on normalized versus com-
positional data in control and LPS conditions. Shown are the predicted linear
relationships (green) and the regression lines (gray). The slope of the fits corre-
sponds to the correction factor needed to make the analysis of the compositional
data congruent with the analysis of the normalized data.
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Summary

From our theoretical and empirical considerations, we see how analyzing relative
data without any normalization can bias the estimation of protein translation
rates considerably. Instead of analyzing the relative data directly, it is better
to use a reference to find a correction factor that corrects for the “closure bias”
imposed by the constant sum constraint of the data. When this reference is
used to normalize the data, the correction factor allows us to calculate fully
unbiased (i.e., absolute) rates. However, even if we cannot make the assumptions
necessary for normalization, a reference can be used to calculate meaningful
rates that are interpretable with regard to the chosen reference. On the other
hand, when not using a reference, the estimated rates will always depend on the
unknown and immeasurable closure bias. Since the magnitude of this closure
bias can be large for samples that range widely in terms of absolute abundances,
a reference should always be used when modeling individual components of
compositional data under a univariate framework.
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