Supplementary material for:

Identification and characterization of genes required for 5-hydroxyuridine synthesis in *Bacillus subtilis* and *Escherichia coli* tRNA

Author:

Charles T. Lauhon^{1,*}

Affiliation:

¹ Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin,

Madison, WI, 53705, USA

* To whom correspondence should be addressed. Tel: 608-262-3083; Email:

clauhon@wisc.edu

YegQpBAD33.N	GCCGGTACCATGTTTAAACCGGAACTCCTT
YegQpBAD33.C	GCCAAGCTTTCACTTACCGTGGGGATTACG
HisYegQ.N	CATCATCACCACCATCACTTTAAACCGGAACTCCTTTCC
HisYegQ.C	GTGGCGGCCGCTCTATTACTTACCGTGGGGATTACGCGT
YhbUpBAD33.N	GCCGGTACCATGGAGCTGCTCTGCCCTGCC
YhbUpBAD33.C	GCCAAGCTTTCACTGCCATTTACGGTGATA
HisYhbU.N	CATCATCACCACCATCACGAGCTGCTCTGCCCTGCCGGA
HisYhbU.C	GTGGCGGCCGCTCTATTACTGCCATTTACGGTGATATGC
HisYhbV.N	CATCATCACCACCATCACAAATATTCCTTAGGGCCAGTG
HisYhbV.C	GTGGCGGCCGCTCTATTAGGCTTGCAGCTCCAGTCCTGC
HisRlhA.N	CATCATCACCACCATCACACCGTATCTTCTCATCGACTT
HisRlhA.C	GTGGCGGCCGCTCTATTACCCTTTTCGCTTCGGCAATGT
pKD3 <i>cat</i> .N	GTGTAGGCTGGAGCTGCTTC

Table S1. List of primers used in this study. All sequences are written from 5' to 3' end.

pKD3 <i>cat</i> .C	ATGGGAATTAGCCATGGTCC
pKD3 <i>cat</i> primer2.C	CATATGAATATCCTCCTTAG
Delta <i>yegQcat</i> 40.N	AGGTGAAGCGGATCTGACCTGTCATCAGAACGAGAGAATTGTGT
	AGGCTGGAGCTGCTTC
Delta <i>yegQcat</i> 40.C	TTCTAAGAATTTTCCATCCGGGAAAAATAATCGAAATTAAATGGGAATT
	AGCCATGGTCC
DeltayhbUcat.N	ACATTTTTGCGTTTTGATAGCGCAACCTTCAGGAAAAATTGTGTAGGCTG
	GAGCTGCTTC
DeltayhbUcat.C	TACCACAGCACTGGCCCTAAGGAATATTTCATTGCTTTTCATGGGAATTA
	GCCATGGTCC
Delta <i>yhbVcat</i> .N	CTCTTGGCGCATATCACCGTAAATGGCAGTGAGAAAAGCAGTGTAGG
	CTGGAGCTGCTTC
DeltayhbVcat.C	TAAAGAGTAGTTAAAGTTGTTAACAAAGTGAGCTATTTAC ATGGGAATTAGCCATGGTCC
DeltarlhAkan.N	GGCTAAAATAGCCGCCATTTTTCAGCTACTGGATAAGAATGTGTAGGCT
	GGAGCTGCTTC
DeltarlhAkan.C	GCAGATTCAATAAGTTGTGAGTAACCAGAAAACTGGCGTTATGGGAA
	TTAGCCATGGTCC
<i>yeg</i> Qup100	ATTGCCTCCGTTAAAGCCAATGG
<i>yeg</i> Qdown100	AAATCCTTTTATTTCATTGTATTACG
yhbUup77	TTGTCGCAGCAAGGTTAACT
<i>yhbU</i> down89	GCTGGTGGCGGCCTGCTGAT
yhbVup100	TTGTACCGCAAAGCGCGTGG
<i>yhbV</i> down100	GCAATGGTTTTATCAGTCAT
<i>rlhA</i> up100	TTCCCTCATCCATTACCCGC
<i>rlhA</i> down100	CAACGTTGAGTCATTTGATG
C1	TTATACGCAAGGCGACAAGG
C2	GATCTTCCGTCACAGGTAGG
C4	CGCCACATCTTGCGAATATATG
К1	CAGTCATAGCCGAATAGCCT
K2	CGGTGCCCTGAATGAACTGC

<i>yhbU</i> internal.N	TGCCGGAAATCTCCCGGCGC
<i>yhbU</i> internal.C	CGGTGATATGCGCCAAGAGT
<i>yhbV</i> internal.N	GGGCCAGTGCTGTGGTACTG
<i>yhbV</i> internal.C	AGCTCCAGTCCTGCCAGCCG
yfhLpBAD33.N	GCCGGTACCATGGCGTTGTTAATCACTAAAAAATGC
yfhLpBAD33.C	GCCAAGCTTTTAAATTTTATCCGCGTGGTGCAT
HisYfhL.N	CATCATCACCACCATCACGCGTTGTTAATCACTAAAAAATGC
HisYfhL.C	GTGGCGGCCGCTCTATTAAATTTTATCCGCGTGGTGCAT
HisYrrM.N	CATCATCACCACCATCACACTGACCGGTATGAACAAATA
HisYrrM.C	GTGGCGGCCGCTCTATTACCTCTTTTTTACTAATCGC
HisYrrN.N	CATCATCACCACCATCACAAAAAACCAGAGCTCTTAGTGACG
HisYrrN.C	GTGGCGGCCGCTCTATTAATAAACCGTTTCCTTGAAGAAGAA
HisYrrO.N	CATCATCACCACCATCACACTGCCGTAAATGATAAAATATCC
HisYrrO.C	GTGGCGGCCGCTCTATTACTTCCCCTTTCTCATCATGTTGCT
<i>yrrM</i> upstream	AAAATATATCGGGTTGTTTACCGA
<i>yrrM</i> downstream	TGTTCCCCAACTAAAAACGCAGTT
<i>yrrN</i> upstream	ATGAATATAATCATTGGCTGATGA
<i>yrrN</i> downstream	CAGGTGCGAGAAGCTCCGGCT
<i>yrrO</i> upstream	CTGGATCGAACGCATTGAAAG
<i>yrrO</i> downstream	GTCCTTTAAACTGTTCATAAATGG
erm internal	GTTGATCACGATAATTTCCAAGTT
YegQpLIKE.N	GCCTCTAGATGTTTAAACCGGAACTCCTTTCC
YegQpLIKE.C	GCCAAGCTTTCACTTACCGTGGGGATTACG
YrrNpLIKE.N	GCCTCTAGATGAAAAAACCAGAGCTCTTAGTG
YrrNpLIKE.C	GCCCTGCAGTTAATAAACCGTTTCCTTGAA
YrrOpLIKE.N	GCCTCTAGATGACTGCCGTAAATGATAAAATATCC
YrrOpLIKE.C	GCCAAGCTTTTACTTCCCCTTTCTCATCAT
pLIKErepseq.fwd	GATTCGTTTTGCATATCTTCC
pLIKErepseq.rev	GGAAAGCGGGCAGTGAGCGCA
BSPROBIOTIN	5'-TCCCAAACCATGTGCTCTACCAAGCT-BIOTIN

BSALABIOTIN	5'-GTGCAAA GCAGG C GCTC TCCCAGCT-BIOTIN
BSTHRBIOTIN	5'-TTACAAG TCAGT T GCTC TACCAATT-BIOTIN
BSVALBIOTIN	5'-TTGTAAG GCAGA T GCTC TCCCAGCT-BIOTIN
BSARGBIOTIN	5'-TTAGAAG GCCGTTGCTC TATCCAGCT-BIOTIN
BSSERBIOTIN	5'-TTTCAAG ACCGA T CCCT TCAGCCAGACT-BIOTIN

Supplementary Figure Legends

FIGURE S1. PCR confirmation of *E. coli yegQ*<frt>, *yhbUV*::*cat*, *rlhA*::*kan* quadruple mutant construction. **A**: PCR analysis showing gene deletion or replacements (expected DNA size shown below lane). Lane M, MW markers; lane 1, mutant *yegQ* region with primers *yegQ*up100 + *yegQ*down100; lane 2, wt *yegQ* region with *yegQ*up100 + *yegQ*down100; lane 3, mutant *yhbUV* region with primers *yhbU*up77 + *yhbV*down100; lane 4 wt *yhbUV* region with *yhbU*up77 + *yhbV*down100; lane 5, mutant *rlhA* region with primers *rlhA*up100 + *rlhA*down100; lane 6, wt *rlhA* region with primers *rlhA*up100 + *rlhA*down100. **B**: PCR analysis of mutant showing accurate replacement of *yhbUV* with *cat* gene. Lane M, MW markers; lane 1, primer *yhbU*up77 + *internal cat* primer C1; lane 2, primers *yhbV*down100 + *internal cat* primer C2; lane 3, primers *yhbU*up77 + *yhbV*down100; lane 4, wt strain with primers *yhbU*up77 + *yhbV*down100. **C**: PCR analysis of mutants with internal primers showing absence of peptidase U32 genes in genomic DNA. Lane M, MW markers; lane 1, mutant strain with HisYhbU primers; lane 2, wt with HIsYhbU primers; lane 3, mutant with HisYhbV primers; lane 4, wt with HIsYhbV primers; lane 5, mutant with HisYhbV primers; lane 6, wt with HisRlhA primers; lane 7 mutant with HisYegQ primers not shown).

FIGURE S2. Denaturing PAGE analysis of individual tRNAs purified from *B. subtilis yrrO* deletion strain BKK27340 (BGSC). Purified unmodified transcripts prepared using T7 RNA polymerase are shown for reference. Lane 1, AX-500 purified total tRNA; lane 2, purified

tRNA^{Ala}(5GC); lane 3, tRNA^{Ala}(5GC) T7 transcript; lane 4, tRNA^{Val}(5AC); lane 5, tRNA^{Val}(5AC) T7 transcript; lane 6, purified tRNA^{Thr}(5GU); lane 7, tRNA^{Thr}(5GU) T7 transcript; lane 8, purified tRNA^{Pro}(5GG). (5 = mo⁵U)

Figure S1

Figure S2