Supplement to: Expansion of the spore surface polysaccharide layer in *Bacillus subtilis* by deletion of genes encoding glycosyltransferases and glucose modification enzymes

Running title: Properties of B. subtilis spore surface polysaccharides

Bentley Shuster^{1*}, Mark Khemmani^{2*}, Yusei Nakaya^{3*}, Gudrun Holland⁴, Keito Iwamoto³, Kimihiro Abe⁵, Daisuke Imamura³, Nina Maryn¹, Adam Driks^{2†}, Tsutomu Sato^{3,5} and Patrick Eichenberger^{1#}

¹Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY10003, USA

² Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA

³ Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan

⁴Advanced Light and Electron Microscopy (ZBS 4), Robert Koch Institute, D-13353, Berlin, Germany

⁵ Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan

*equal contribution

[†]Deceased, June 7th, 2019

[#]Corresponding author: <u>pe19@nyu.edu</u>

Figure S1 – Putative enzymatic pathways involved in spore PS production. Left: The experimentally characterized pathway from glucose-1-phosphate to dTDP-rhamnose catalyzed by enzymes encoded by *spsIJKL*. **Center:** Putative pathway with enzymes encoded by *spsCDEF*. **Right:** Putative enzymatic pathways encoded by gene clusters *yfnH-D* and *ytdA-ytcABC*. All enzymes are color-coded based on their inferred or experimentally validated functions according to key on the right. All acronyms are explained in key on the left.

P=Phosphate

PEP=Phosphoenolpyruvate

Cytidylyltransferase

Figure S2. Contributions of the *spsA-L* operon to spore surface properties. **A.** BATH assay of spores with the following gene deletions: $\Delta spsA$ (PE3341), $\Delta spsB$ (PE3342), $\Delta spsC$ (PE3343), $\Delta spsD$ (PE3344), $\Delta spsE$ (PE3345), $\Delta spsF$ (PE3346), $\Delta spsG$ (PE3347). Experiments were performed in triplicate; error bars represent standard deviation. Each individual deletion causes an increase in relative hydrophobicity profile as compared to wild type spores. **B.** India Ink staining reveals the presence of a PS layer (halo) by negative staining in wild type spores (168). The *spsA-L* mutant spores exhibit no halo, suggesting disruption of the PS layer: $\Delta spsA$ (BKE37910), $\Delta spsB$ (BKE37900), $\Delta spsC$ (BKE37890), $\Delta spsD$ (BKE37880), $\Delta spsE$ (BKE37870), $\Delta spsF$ (BKE37860), $\Delta spsG$ (BKE37850). Scale bars are 2.5 µm. Similar results are obtained with deletions downstream of *spsI* (Figure 2) or by deletion of the entire *sps* operon: $\Delta spsA-L$ (NY212). **C.** Analysis of the localization during sporulation of the crust proteins CotX-GFP, CotZ-GFP and CgeA-GFP in wild type (PE3151, PE3158, HS176, PE3260), $\Delta spsI$ (PE3245, PE3242, PE3248, PE3323) and $\Delta yfnH$ (PE3244, PE3243, PE3247, PE3322) strains. Localization is identical in the mutant and wild type strains, suggesting that a deletion of *spsI* or *yfnH* does not interfere with crust protein assembly but alters PS deposition.

Figure S2

Β.

A.

Figure S2 (continued)

Figure S3. Putative glucose-1-phosphate nucleotidyl-transferases expressed during late sporulation play different roles in spore PS synthesis. A. Measurements of the halo areas (numbers of spores correspond to the number of spores considered for the measurements) in wild type spores (168) and $\Delta vtdA$ spores (BKE30850). The halo size is not significantly different between the two strains. **B.** Field of wild type (PY79) spores by TEM with Ruthenium red staining. All spore coat layers, including the crust, are visible. Scale bar is 500 nm. C. Field of $\Delta ytdA$ spores (PE2764) by TEM with Ruthenium red staining. All spore coat layers, including the crust, are visible. Scale bar is 500 nm. **D.** Field of $\Delta y fnH$ spores (PE2919) by TEM with Ruthenium red staining shows expansion and webbing of spore crust. Scale bars are 500 nm. E. Field of wild type spores (PY79) by SEM. Scale bar is 1 μ m. F. Field of $\Delta spsI$ spores (PE2763) by SEM. Scale bar is 1 μ m. G. Field of $\Delta v fnH$ spores (PE2919) by SEM. Scale bar is 1 μ m. A web-like structure covers the surface of most spores, especially at the spore poles. H. BATH analysis of spores with the following gene deletions: $\Delta ytdA$ (PE2764), $\Delta ytcA$ (PE2767), $\Delta ytcB$ (PE2945), $\Delta ytcC$ (PE2946). Experiments were performed in triplicate; error bars represent standard deviation. All mutant spores are as hydrophilic as wild type (PY79) spores. I. India ink staining of gene deletions: $\Delta ytcA$ (BKE30860), $\Delta ytcB$ (BKE30870), $\Delta ytdcC$ (BKE30880). Halos are indistinguishable from wild type spores (168).

Figure S3

Β.

WT (PY79)

Figure S3 (continued)

WT (PY79)

F.

Η.

١.

Figure S4. Gene deletions in the *yfnH-D* cluster result in expansion of the PS layer. A. Measurements of the halo areas (numbers of spores correspond to the number of spores considered for the measurements) for wild type (168), $\Delta yfnH-D$ (NY35), $\Delta yfnD$ (BKE07310), $\Delta yfnE$ (BKE07300), $\Delta yfnF$ (BKE07290), $\Delta yfnG$ (BKE07280) and $\Delta yfnH$ (BKE07270) spores. **B.** BATH analysis of spores with following gene deletions: $\Delta yfnD$ (PE3060), $\Delta yfnE$ (PE3063), $\Delta yfnF$ (PE3062), $\Delta yfnG$ (PE2961) and $\Delta yfnH$ (PE2919), which are as hydrophilic as wild type spores (PY79). Experiments were performed in triplicate; error bars represent standard deviation. Fields of spores imaged by TEM with Ruthenium red staining: **C.** $\Delta yfnE$ (PE3063), scale bar is 400 nm; **D.** $\Delta yfnF$ (PE3062), scale bar is 500 nm; **E.** $\Delta yfnG$ (PE2961), scale bar is 500 nm. All mutant spores exhibit expanded and web-like crust morphology. **F**. Field of $\Delta yfnF$ spores (PE3062) by SEM. Scale bar is 1 µm. A web-like structure covers the surface of most spore poles. Figure S4

Β.

Figure S4 (continued)

C.

D.

Ε.

ΔyfnE

∆yfnF

∆yfnG

Figure S5. Partial complementation of $\Delta spsI$ spores by deletions in the *yfnH-D* cluster.

A. BATH analysis of spores with following gene deletions: $\Delta yfnD$ (PE3060), $\Delta yfnE$ (PE3063), $\Delta yfnD$ $\Delta spsI$ (PE3357) and $\Delta yfnE \Delta spsI$ (PE3117). Unlike the partial rescue of $\Delta spsI$ by $\Delta yfnH$ or $\Delta yfnF$ (Figure 5), doubly mutant spores of $\Delta yfnD$ or $\Delta yfnE$ with $\Delta spsI$ exhibit the same levels of hydrophobicity as the single $\Delta spsI$ mutant spores. Experiments were performed in triplicate; error bars represent standard deviation. **B.** TEM with Ruthenium red of $\Delta yfnF$ (PE3062), $\Delta spsI$ (PE2763), and $\Delta yfnF \Delta spsI$ (PE3118) spores. Scale bars are 200 nm. A webbed PS layer (red arrow) is characteristic of $\Delta yfnF$ spores, whereas $\Delta spsI$ spores have a greatly diminished crust. A return of a thin crust (red arrow) is observed in the double mutant. **C.** TEM with Ruthenium red of $\Delta spsI$ (PE2763), $\Delta yfnE$ (PE3063), $\Delta yfnH$ (PE2919), $\Delta yfnE \Delta spsI$ (PE3117) and $\Delta yfnH \Delta spsI$ (PE3119) spores. Scale bars are 200 nm. Both $\Delta yfnH$ and $\Delta yfnE$ spores present a webbed and expanded PS layer (red arrow) compared to a diminished crust layer in $\Delta spsI$. The double mutants show a partially restored thin outermost layer (red arrow). **D.** SEM images for $\Delta yfnH$ (PE2919) and $\Delta yfnH \Delta spsI$ (PE3119) spores. Scale bars are 500 nm. **E.** Field of $\Delta yfnF \Delta spsI$ (PE3118) by SEM. Scale bar is 1 µm.

Figure S5

Β.

Figure S5 (continued)

∆yfnE ∆spsl

∆yfnH ∆spsI

∆yfnH ∆spsl

Figure S5 (continued)

∆yfnF ∆spsl

Figure S6. Analysis of spore surface properties in mutants with deletions in the *cgeCDE* operon. A. Measurements of the halo areas (numbers of spores correspond to the number of spores considered for the measurements) in wild type (168) and $\Delta cgeD$ spores (BKE19750). A large expansion of the halo area is observed for $\Delta cgeD$ spores. **B.** India ink staining images of the spores used for quantification (as displayed in **A**). **C.** Analyses of spore surface extracts by gel electrophoresis (5% polyacrylamide, TBE, stained with Stains-All). $\Delta cgeD$ mutants show an increase in size presumably caused by an expansion in PS content. **D.** BATH assay of $\Delta cgeD$ spores (RL1405) compared to wild type spores (PY79), $\Delta spsI$ spores (PE2763), and doubly mutant $\Delta cgeD \Delta spsI$ spores (PE3078). Experiments were performed in triplicate; error bars represent standard deviation. Though $\Delta cgeD$ spores have an expanded PS layer by India ink staining and analyses of spores. **E.** BATH assay of $\Delta cgeD$ spores (BKE19760) compared to wild type spores (168), $\Delta ypqP$ ($\Delta spsA$ -3') spores (BKX21670) and doubly mutant spores $\Delta cgeD \Delta ypqP$ (PE3369). Experiments were performed in triplicate; error bars represent standard deviation. Deletion of *cgeD* does not rescue the hydrophobic phenotype of $\Delta ypqP$ ($\Delta spsM$ -3') spores.

Figure S6

spores spores

Β.

168 (NY200)

72 spores

∆cgeD (BKE19750)

16 spores

14 spores

Figure S7. Construction of strains NY35, NY212, NY226, NY227and NY228. A. Construction of

strain NY35 with a deletion of the entire *yfnH-D* cluster. **B.** Construction of strain NY212 with a deletion of the entire *spsA-L* operon. **C.** Construction of strains NY226 (deletion of *cgeC*) and NY227 (deletion of *cgeD*). D. Construction of strain NY228 (deletion of *cgeE*).

Figure S7

Α.

NY35

Figure S7 (continued)

NY212

B. subtilis 168 chromosome

Β.

NY226, NY227

C.

Figure S7 (continued)

NY226, NY227

* selection for chloramphenicol and erythromycin resistance

Table	S1:	Bacterial	strains	used	in	this	study	

Strain	Genotype	Back	Source
number		grou	
		nd	
168	Bacillus subtilis	Wild	Laboratory stock
		type	
PY79	Bacillus subtilis	Wild	(1)
		type	
BKE07270	$\Delta y fn H$::erm	168	(2)
BKE07280	$\Delta y fnG$::erm	168	(2)
BKE07290	$\Delta y fnF::erm$	168	(2)
BKE07300	$\Delta y fn E::erm$	168	(2)
BKE07310	$\Delta y fnD::erm$	168	(2)
BKE19750	$\Delta cgeE::erm$	168	(2)
BKE19760	$\Delta cgeD::erm$	168	(2)
BKE19770	$\Delta cgeC::erm$	168	(2)
BKE19810	$\Delta yodU$::erm	168	(2)
BKE21670	$\Delta ypqP::erm$	168	(2)
BKE30850	$\Delta ytdA::erm$	168	(2)
BKE30860	$\Delta ytcA::erm$	168	(2)
BKE30870	$\Delta ytcB::erm$	168	(2)
BKE30880	$\Delta ytcC::erm$	168	(2)
BKE37810	$\Delta spsL::erm$	168	(2)
BKE37820	$\Delta spsK::erm$	168	(2)
BKE37830	$\Delta spsJ::erm$	168	(2)
BKE37840	$\Delta spsI::erm$	168	(2)

BKE37850	$\Delta spsG::erm$	168	(2)
BKE37860	$\Delta spsF::erm$	168	(2)
BKE37870	$\Delta spsE::erm$	168	(2)
BKE37880	$\Delta spsD::erm$	168	(2)
BKE37890	$\Delta spsC::erm$	168	(2)
BKE37900	$\Delta spsB::erm$	168	(2)
BKE37910	$\Delta spsA::erm$	168	(2)
HS176	<i>cotZ</i> ΩpHS2 (<i>cotZ-gfp spc</i>)	PY79	(3)
NY6	amyE::cotX-gfp cat	168	(4)
NY10	amyE::cotY-gfp cat	168	(4)
NY17	amyE::cgeA-gfp cat	168	(4)
NY35	ΔyfnH-D::erm	168	This study
NY211	$\Delta cgeA-E::erm$	168	This study
NY212	$\Delta spsA-L::erm$	168	This study
NY226	ΔcgeA-E::erm amvE``cgeAB-cgeDE cat	168	This study
NY227	ΔcgeA-E::erm amvE::cgeAB-cgeCE cat	168	This study
NY228	ΔcgeA-E::erm amvE::cgeAB-cgeCD cat	168	This study
PE2763	$\Delta spsI::erm$	PY79	Derived from BKE37840
PE2764	$\Delta ytdA::erm$	PY79	Derived from BKE30850
PE2767	$\Delta ytcA::erm$	PY79	Derived from BKE30860
PE2777	$\Delta spsI::erm::spc$	PY79	Derived from PE2763, resistance switched by insertion of pEr::Sp (5)
PE2914	$\Delta cgeD::erm$	168	Derived from BKE19760
PE2917	$\Delta cgeC::erm$	PY79	Derived from BKE19770
PE2918	$\Delta cgeD::erm$	PY79	Derived from BKE19760
PE2919	$\Delta y fn H$: erm	PY79	Derived from BKE07270

PE2945	$\Delta ytcB::erm$	PY79	Derived from BKE30870
PE2946	$\Delta ytcC::erm$	PY79	Derived from BKE30880
PE2958	$\Delta spsJ::erm$	PY79	Derived from BKE37830
PE2959	$\Delta spsK::erm$	PY79	Derived from BKE37820
PE2960	$\Delta spsL::erm$	PY79	Derived from BKE37810
PE2961	$\Delta y fnG$::erm	PY79	Derived from BKE07280
PE3060	$\Delta y fnD$::erm	PY79	Derived from BKE07310
PE3062	$\Delta y fnF::erm$	PY79	Derived from BKE07290
PE3063	$\Delta y fn E::erm$	PY79	Derived from BKE07300
PE3065	$\Delta cgeE::erm$	PY79	Derived from BKE19750
PE3078	$\Delta cgeD::kan \Delta spsI::erm$	PY79	PE2763→RL1405
PE3111	ΔspsI::kan	PY79	Derived from BKK37840
PE3115	ΔyfnH::kan	PY79	Derived from BKK07270
PE3117	ΔyfnE::erm ΔspsI::kan	PY79	PE3063→PE3111
PE3118	$\Delta y fnF::erm \Delta spsI::kan$	PY79	PE3062→PE3111
PE3119	$\Delta y fn H$::erm $\Delta spsI$::kan	PY79	PE2919→PE3111
PE3151	amyE::cotX-gfp cat	PY79	(4)
PE3158	amyE::cotY-gfp cat	PY79	(4)
PE3216	$\Delta yodU::erm$	168	Derived from BKE19810
PE3218	$\Delta ypqP::erm$	168	Derived from BKE21670
PE3220	ΔyfnH::kan ΔspsA::erm	168	PE3115→PE3203
PE3221	$\Delta y fn H$::kan $\Delta sps B$::erm	168	PE3115→PE3204
PE3222	$\Delta y fn H$::kan $\Delta sps C$::erm	168	PE3115→PE3205
PE3223	ΔyfnH::kan ΔspsD::erm	168	PE3115→PE3206
PE3224	$\Delta y fn H$::kan $\Delta sps E$::erm	168	PE3115→PE3207
PE3225	$\Delta y fn H$::kan $\Delta sps F$::erm	168	PE3115→PE3208
PE3226	ΔyfnH::kan ΔspsJ::erm	168	PE3115→PE2958
PE3227	ΔyfnH::kan ΔspsK::erm	168	PE3115→PE2959
PE3228	$\Delta y fn H$::kan $\Delta sps L$::erm	168	PE3115→PE2960
PE3229	$\Delta y fn H$::kan $\Delta y pq P$::erm	168	PE3115→PE3218
PE3232	$\Delta y fnG$::kan $\Delta spsI$::erm	PY79	PE3111→PE3060
PE3233	ΔyfnH::kan ΔcgeD::erm	PY79	PE3115→PE2918
PE3235	$\Delta spsI::spc \Delta yfnH::kan \Delta cgeD::erm$	PY79	PE2777→PE33233
PE3242	ΔspsI::erm amyE::cotY-gfp cat	PY79	NY10→PE2763
PE3243	ΔyfnH::erm amyE::cotY-gfp cat	PY79	NY10→PE2919
PE3244	ΔyfnH::erm amyE::cotX-gfp cat	PY79	NY6→PE2919
PE3245	ΔspsI::erm amyE::cotX-gfp cat	PY79	NY6→PE2763
PE3247	$\Delta y fnH::erm \ cotZ\Omega pHS2 \ (cotZ-gfp \ spc)$	PY79	HS176→PE2919
PE3248	$\Delta spsI::erm \ cotZ\Omega pHS2 \ (cotZ-gfp \ spc)$	PY79	HS176→PE2763

PE3260	amyE::cgeA-gfp cat	PY79	(4)
PE3303	$\Delta spsA::erm$	168	Derived from BKE37910
PE3304	$\Delta spsB::erm$	168	Derived from BKE37900
PE3305	$\Delta spsC::erm$	168	Derived from BKE37890
PE3306	$\Delta spsD::erm$	168	Derived from BKE37880
PE3307	$\Delta spsE::erm$	168	Derived from BKE37870
PE3308	$\Delta spsF::erm$	168	Derived from BKE37860
PE3309	$\Delta spsG::erm$	168	Derived from BKE37850
PE3310	$\Delta spsJ::kan$	168	Derived from BKE37830
PE3311	$\Delta spsK::kan$	168	Derived from BKE37820
PE3312	$\Delta spsL::kan$	168	Derived from BKE37810
PE3313	ΔspsI::kan	168	Derived from BKK37840
PE3314	$\Delta ypqP::kan$	168	Derived from BKK21670
PE3322	ΔyfnH::erm amyE::cgeA-gfp cat	PY79	NY17→PE2919
PE3323	ΔspsI::erm amyE::cgeA-gfp cat	PY79	NY17→PE2763
PE3341	$\Delta spsA::erm$	PY79	Derived from BKE37910
PE3342	$\Delta spsB::erm$	PY79	Derived from BKE37900
PE3343	$\Delta spsC::erm$	PY79	Derived from BKE37890
PE3344	$\Delta spsD::erm$	PY79	Derived from BKE37880
PE3345	$\Delta spsE::erm$	PY79	Derived from BKE37870
PE3346	$\Delta spsF::erm$	PY79	Derived from BKE37860
PE3347	$\Delta spsG::erm$	PY79	Derived from BKE37850
PE3348	∆spsJ::kan	PY79	Derived from BKK37830
PE3349	$\Delta spsK::kan$	PY79	Derived from BKK37820
PE3350	$\Delta spsL::kan$	PY79	Derived from BKK37810
PE3352	$\Delta spsA$	PY79	PE3341 with erm resistance
			removed (using pDR244a)
PE3353	$\Delta spsB$	PY79	PE3342 with <i>erm</i> resistance
DE2254	ArmaC	DV70	removed (using pDR244a)
PE3534	Aspse	P1/9	removed (using nDR 244a)
PE3379	AspsD	PY79	PE3344 with <i>erm</i> resistance
		/ /	removed (using pDR244a)
PE3355	$\Delta spsE$	PY79	PE3345 with erm resistance
			removed (using pDR244a)
PE3356	$\Delta spsG$	PY79	PE3347 with <i>erm</i> resistance
DE2257	AufaDuana Aanalukan	DV70	removed (using pDR244a)
resss/	ΔyJnDerm Δsps1kan	PI/9	FE2919→FE3000 DE2764 with sum resistor as
re3338	ΔγιαΑ	r1/9	$r \equiv 2/04$ with <i>erm</i> resistance removed (using nDR 244 ₂)
PE3359	Δ <i>vtcA</i>	PY79	PE2767 with <i>erm</i> resistance
			removed (using pDR244a)

PE3360	$\Delta ytcB$	PY79	PE2945 with <i>erm</i> resistance removed (using pDR244a)
PE3361	ΔyfnE	PY79	PE3063 with <i>erm</i> resistance removed (using pDR244a)
PE3362	$\Delta y fnF$	PY79	PE3062 with <i>erm</i> resistance removed (using pDR244a)
PE3363	$\Delta y fnG$	PY79	PE2961 with <i>erm</i> resistance removed (using pDR244a)
PE3364	$\Delta y fnH$	PY79	PE2919 with <i>erm</i> resistance removed (using pDR244a)
PE3365	$\Delta cgeD$	PY79	PE2918 with <i>erm</i> resistance removed (using pDR244a)
PE3369	$\Delta cgeD::erm \Delta ypqP::kan$	168	BKE19760→PE2918
RL1405	$\Delta cgeD::kan$	PY79	(6)

REFERENCES

- 1. Youngman P, Perkins JB, Losick R. 1984. Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in *Bacillus subtilis* or expression of the transposon-borne *erm* gene. Plasmid 12:1-9.
- 2. Koo BM, Kritikos G, Farelli JD, Todor H, Tong K, Kimsey H, Wapinski I, Galardini M, Cabal A, Peters JM, Hachmann AB, Rudner DZ, Allen KN, Typas A, Gross CA. 2017. Construction and Analysis of Two Genome-Scale Deletion Libraries for *Bacillus subtilis*. Cell Syst 4:291-305 e7.
- 3. Kim H, Hahn M, Grabowski P, McPherson DC, Otte MM, Wang R, Ferguson CC, Eichenberger P, Driks A. 2006. The *Bacillus subtilis* spore coat protein interaction network. Mol Microbiol 59:487-502.
- 4. Shuster B, Khemmani M, Abe K, Huang X, Nakaya Y, Maryn N, Buttar S, Gonzalez AN, Driks A, Sato T, Eichenberger P. 2018. Contributions of crust proteins to spore surface properties in *Bacillus subtilis*. Mol Microbiol doi:10.1111/mmi.14194.
- 5. Steinmetz M, Richter R. 1994. Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in *Bacillus subtilis*, through in vivo recombination. Gene 142:79-83.
- 6. Roels S, Losick R. 1995. Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in *Bacillus subtilis*. J Bacteriol 177:6263-75.

Table S2: Primers used in this study

Primer name	Sequence $(5' \rightarrow 3')$	Location ¹
spsA F	ATTACCATCTTGCTGATCGT	spsA sense sequence -1950
spsA R	ccatgcgtttgggccTACATTCAGCGTCTC	<i>spsA</i> anti-sense sequence +145
spsL F	ccaaggagatggccgCGTGGGATGATGAGA	<i>spsF</i> sense sequence +407
spsL R	ACGACGATTGACGCCTGAAT	<i>spsF</i> anti-sense sequence +2386
yfnH -971 Front F	AAGCCGTTCTTTACAGAATCGATTCCAAAG	<i>yfnH</i> sense strand -971
yfnH_R	ccatgcgtttgggccTCATAATATGCCATA	<i>yfnH</i> anti-sense strand +101
yfnD_F	ccaaggagatggccgGACAATTAAGATGAT	yfnD sense strand +809
yfnD+1661 Front R	GCCGCTCGGGCAATTCGGCGCTGTTTGGTT	<i>yfnD</i> anti-sense strand +1661
ermC bstBF	ggcccaaacgcatggTAAACGTATATAGAT	pUCE191 <i>ermC</i> sense strand -370
ermC bstAR	cggccatctccttggTCGCGCGTTTCGGTG	pUCE191 <i>ermC</i> anti-sense strand +973
P1 (SLiCE pMF20 BamHI F)	GGATCCTGAGCGCCGGTCGCTACCATTACCAGTTG	pMF20 <i>gfp</i> sense strand +752
P2 (SLiCE pMF20 EcoRI R)	GAATTCTCATGTTTGACAGCTTATCATCGGCAATA	pMF20 <i>xylR</i> sense strand +1180
P3 (cgeE +765 BR)	CggcgctcaggatccTATTTCATGTAAGGAAATAA	<i>cgeE</i> anti-sense strand +765
P4 (cgeB+1027 ER)	caaacatgagaattcGAAAGACCGTTCTGACGGCT	cgeB anti-sense strand +1027
P5 (cgeA +408 F)	tgtgtgtaatgaaagTCTTGTATATCCAGTCGGGA	cgeA sense strand +408

P6 (cgeA -1 R)	CTTTCATTACACACACCTCCTATTCGATAGTGAAC	cgeA anti-sense strand -1
P7 (cgeC +370 F)	gggatgatatgggagAGAAAGTGTCTATTATTTTA	<i>cgeC</i> sense strand +370
P8 (cgeC -1 R)	ctcccatatcatcccTCTCCCTTATCCTTATCTCT	cgeC anti-sense strand -1
P9 (cgeD+1309 F)	CggtatagatgacagGACATTATTCAAAAACGGAA	cgeD sense strand +1309
P10 (cgeD -1 R)	ctgtcatctataccgCCTCCCGCCGTCAAACATAA	cgeD anti-sense strand -1
P11 (cgeB -1 R SLiCE)	atgagaattcCGGATGTTATGAAAAGAACGTAACG	cgeB anti-sense strand -1
P12 (cgeE -1 R SLiCE)	ctcaggatccGAACGTCTCCTTTTTATGACCTATA	cgeE anti-sense strand -1

¹Indicates the 3'end position of the primer relative to the first nucleotide of the coding sequence