Supplemental Material

Incompatibility of *Vibrio fischeri* strains during symbiosis establishment depends on two functionally redundant *hcp* genes

Kirsten R. Guckes^a, Andrew G. Cecere^a, Nathan P. Wasilko^a, Amanda L. Williams^a, Katherine M. Bultman^b, Mark J. Mandel^b, and Tim Miyashiro^a

^aDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA

^bDepartment of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA

VFMJ11_1495 VFFQA001_Hcp VFFQA001_Hcp1 VFMJ11_A0831	MPTPAYMSIKGETQGDITKDAYSADSVGNVWQEAHVDEFLVQELDHVLTVPRDPQSGQPT MPTPAYMSIKGETQGDITKDAYSADSVGNVWQEAHVDEFLVQELDHVLTVPRDPQSGQPT MPTPAYMSIKGETQGDITKDAYSADSVGNVWQEAHVDEFLVQELDHVLTVPRDPQSGQPT MPTPAYMSIKGETQGDITKDAYSADSVGNVWQEAHVDEFLVQELDHVLTVPRDPQSGQPT ************************************	60 60 60
VFMJ11_1495 VFFQA001_Hcp VFFQA001_Hcp1 VFMJ11_A0831	GQRVHRPVVVTKQQDRCSPLLFNALVSGEKLPECSINFYRTSTSGKQEHYYTIKLIDALL GQRVHRPVVVTKQQDRCSPLLFNALVSGEKLPECSINFYRTSTSGKQEHYYTIKLIDALL GQRVHRPVVVTKQQDRCSPLLFNALVSGEKLPECSINFYRTSTSGKQEHYYTIKLIDALL GQRVHRPVVVTKQQDRCSPLLFNSLVSGEKLPECNIKFYRTSTSGKQEHYYTIKLIDALL ***********************************	120 120 120 120
VFMJ11_1495 VFFQA001_Hcp VFFQA001_Hcp1 VFMJ11_A0831	VDMQTRMAHCQDAAMADRVTEEVLKFTYRAIEVTHETCGTAGNDDWRTPREA172VDMQTRMAHCQDAAMADRVTEEVLKFTYRAIEVTHETCGTAGNDDWRTPREA172VDMQTRMAHCQDAAMADRVTEEVLKFTYRAIEVTHETCGTAGNDDWRTPREA172VDMQTRMAHCQDAAMSDRVTEEVLKFTYRAIEVTHETCGTAGNDDWRTPREA172	

Figure S1. V. fischeri Hcp amino acid sequence alignment.

Amino acid sequence alignment of Hcp homologs in FQ-A001 and MJ11. Alignments were generated using Clustal Omega. "*" indicates conserved residue; ":" indicates residues have strongly similar functional groups; "." indicates residues have weakly similar functional groups.

Figure S2. Change in cellular abundance over time for spots described in Fig. 4B.

A. Total CFU. Two-way ANOVA revealed significant differences among means of log-transformed data over time ($F_{1,30} = 336.0$, p < 0.0001), due to genotype ($F_{4,30} = 5.032$, p = 0.0032), but not due to their interaction ($F_{4,30} = 2.022$, p = 0.1166). A Sidak's *post-hoc* test was performed to statistically compare the log-transformed means between each time point for each group, with *p*-values adjusted for multiple comparisons (**** = p < 0.0001).

B. Cam^R CFU. Two-way ANOVA revealed significant differences among means of log-transformed data due to genotype ($F_{4,30} = 38.11$, p < 0.0001), not over time ($F_{1,30} = 0.08613$, p = 0.7712), but due to their interaction ($F_{4,30} = 36.36$, p < 0.0001). A Sidak's *post-hoc* test was performed to statistically compare the log-transformed means between each time point for each group, with *p*-values adjusted for multiple comparisons (**** = p < 0.0001, *** = p < 0.001, ** = p < 0.001.

Figure S3. Deletion of *hcp1* does not impact FQ-A001 symbiosis establishment.

A. Luminescence of squid 48 h.p.i. 14 animals were used in both groups. Dotted line indicates the threshold for luminescent-positive animals, calculated by performing a one-tailed t test on the luminescence associated with squid that were not exposed to bacteria (apo-symbiotic). No significant differences were observed between groups of squid that were exposed to bacteria (Kruskal-Wallis test $p \approx 0.0641$).

B. Number of crypts colonized per squid. No significant differences were observed between groups (Kruskal-Wallis test $p \approx 0.82$). 14 animals were used in both groups.

C) Number of crypts that were positive for CFP and YFP fluorescence. FQ-A001 $\Delta hcp1 = NPW57$.

Between 17-18 animals were used in each group. Kruskal-Wallis test and Dunn's multiple comparison *post-hoc* test was used to determine differences between groups, with * = p < 0.05.

Figure S4. Impact of *hcp* and *hcp1* on symbiosis establishment by FQ-A001.

A. Luminescence of animals at 48 h after initial exposure to inoculum containing either FQ-A001 (WT) or NPW58 ($\Delta hcp \Delta hcp1$) harboring the YFP-expression plasmid pSCV38. Dotted line indicates the 95% tail of luminescence associated with animals within an apo-symbiotic group, above which animals are scored as luminescent. Between 17-18 animals were used in each group. A Mann-Whitney test determined the medians for luminescent animals within each group are not significantly different between groups ($\alpha = 0.05$). n.s. = not significant (p > 0.05).

B. Number of crypts spaces per animal in A exhibiting YFP fluorescence. A Mann-Whitney test determined the medians for animals within each group are not significantly different between groups ($\alpha = 0.05$). n.s. = not significant (p > 0.05).