Supplemental Material

The sRNA PinT Contributes to PhoP-mediated regulation of the SPI1 T3SS in *Salmonella enterica* serovar Typhimurium

Kyungsub Kim¹, Alexander D. Palmer¹, Carin K. Vanderpool¹ and James M. Slauch^{1#} ^{1.} Department of Microbiology University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana IL, 61801

#Corresponding Author. E-mail: slauch@illinois.edu

Figure S1. PinT does not affect *hilD* expression through the 3' UTR.

A. Schematic representation of the *hilD*'-*lacZ*⁺ 3'UTR fusion. The *lacZ* gene is integrated just upstream of the hilD mRNA terminator. This is associated with a deletion that removes through *hilA*. B. β -galactosidase activity in *Salmonella* strains containing the *hilD'-'lacZ*⁺ transcriptional fusion in either *rtsA*⁺ (grey) or Δ *rtsA* (white) and either the empty vector or plasmids overexpressing PinT grown in SPI1 inducing conditions. β -galactosidase activity units are defined as (µmol of ONP formed min⁻¹) × 10⁶/(OD₆₀₀ × ml of cell suspension) and are reported as mean ± standard deviation where n = 3. P values (unpaired *t* test) are indicated as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. Strains used: JS2351 and JS2352, each with plasmid pBRplac or pPinT.

Figure S2. PinT represses *hilA* translation independent of HilC.

β-galactosidase activity in *Salmonella* strains containing the *hilA'-'lacZ* translational fusion in either *hilC*⁺ (grey) or Δ*hilC* (white) and either the empty vector or plasmids overexpressing PinT grown in SPI1 inducing conditions. β-galactosidase activities are reported as mean ± standard deviation where n = 3. *P* values (unpaired *t* test) are indicated as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. Strains used: JS2333 and JS2353, each with plasmid pBRplac or pPinT.

Figure S3. The PhoPQ two-component system activates the expression of PinT. β-galactosidase activity in *Salmonella* strains containing the *pinT²-lacZ*⁺ transcriptional fusion in either wild type or the indicated mutant background. The strains were grown in either PhoPQ-noninducing (10 mM Mg²⁺) or -inducing conditions (10 µM Mg²⁺) in N-minimal medium. β-galactosidase activities are reported as mean ± standard deviation where n = 3. *P* values (unpaired *t* test) are indicated as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. Strains used: JS2355, JS2357 and JS2356.

Figure S4. PinT directly regulates the expression of SPI2 T3SS through repressing *ssrB* translation.

β-galactosidase activity in *E. coli* strains containing (A) P_{BAD} -*ssrA'-'lacZ* or (B) P_{BAD} *ssrB'-'lacZ* translational fusion and plasmids overexpressing PinT grown in the presence of 100 µM IPTG and 0.001% arabinose to induce the sRNA expression and the fusion *lacZ* protein expression, respectively. β-galactosidase activities are reported as mean ± standard deviation where n = 3. *P* values (unpaired *t* test) are indicated as follows: *, P < 0.05; **, P < 0.01; ***, P < 0.001. Strains used: JMS6508 and JMS6509, each with plasmid pBRplac or pPinT.

Serovar/ Strain	% identity ^a to indicated S. Typhimurium 14028 gene						
	PhoN STM14_5 193	RtsA STM14_5 188	RtsB STM14_5 187	RtsC STM14 _5186	RtsD STM14 _5185	PinT	STM14 _5184
Typhimurium LT2	100%	100%	100%	100%	100%	100%	100%
Enteritidis BAA-708	98%	99%	99%	Pseudogene	Pseudogene	100%	100%
Gallinarum 9184	98%	99%	97%	Pseudogene	Pseudogene		99%
Typhi TY2	95%	100%	100%	Pseudogene	In frame insertion (61%)	100%	99%
Bongori SA19983605		77%	94%				

Table S1. Conservation of genes in the tRNA-PheR island in representative Salmonella.

^aIdentity is denoted at the amino acid level for ORFS and at the nucleotide level for PinT.

<i>Salmonella^a</i> or <i>E. coli</i> strain	Genotype	Deletion endpoint ^b	Source or reference
Salmonella			
14028	Wild type		ATCC ^c
PM1205	MG1655 mal:: $lacI^{q}$, $\Delta araBAD$ $araC^{+}$, $lacI'::P_{BAD}$ -cat- sacB: $lacZ$, mini λ tet ^R		(1)
JS2333	φ(hilA'-ʻlacZ)hyb116	3040173 - 3038966	
JS892	φ(hilD'-'lacZ)hyb139		(2)
JS2334	$\phi(rtsA'-`lacZ)hyb6$	4573742 - 4574496	
JS248	$\Delta rtsA5$	4561755-4560884	(3)
JS2117	rne131::Cm		(4)
JS2335	φ(hilA'-'lacZ)hyb116 rne131::Cm		
JS2336	φ(rtsA'-'lacZ)hyb6 rne131::Cm		
JS2337	$\phi(hilA'-`lacZ)hyb116 \Delta rtsA5$		
JS2338	φ(hilA'-ʻlacZ)hyb116 ΔrtsA5 rne131::Cm		
JS325	$\phi(rtsB'-lacZ^+)6$		(3)
JS2339	$\phi(rtsB'-lacZ^+)$ 6 rne131::Cm		
JS542	phoQ24		(5)
JS2192	phoQ24 ycfD612::Cm		(6)
JS2340	∆pinT::tet	4572735 - 4572805	
JS2341	¢(hilA'-'lacZ)hyb116 ΔpinT::tet		
JS2342	<pre>\$</pre>		
JS2343	¢(hilA'-'lacZ)hyb116 ΔpinT::tet phoQ24 ycfD612::Cm		

Table S2. Bacterial strains and plasmids used in this study.

JS2344	¢(rtsA'-'lacZ)hyb6 ∆pinT∷tet		
JS2345	<pre> \$\$\\$</pre>		
JS2346	¢(rtsA'-'lacZ)hyb6 ΔpinT::tet phoQ24 ycfD612::Cm		
TH4054	LT2 <i>flhC5456</i> ::MudJ		(7)
JS2347	14028 <i>flhC5456</i> ::MudJ		
JS2348	<i>Δcrp101::Cm</i>	3629505 - 3630136	
JS2349	14028 flhC5456::MudJ ∆crp::Cm		
JS696	$\phi(fliZ'-lacZ^+)8042$	1759979 - 1759907	(8)
JS746	fliZ8041::tet	2044136 - 2044684	(8)
JS2350	φ(hilA'-'lacZ)hyb116 fliZ8041::tet		
JS2351	φ(hilD3'UTR-'lacZ ⁺)116	3039273 - 3041759	
JS2352	$\phi(hilD-'lacZ^+)$ 3'UTR $\Delta rtsA5$		
JS252	∆hilC113::Cm	3012135 - 3012976	(3)
JS2353	¢(hilA'-'lacZ)hyb116 ∆hilC113∷Cm		
JS2354	∆pinT2::Cm	4572745 - 4572805	
JS2355	$\phi(pinT2'-lacZ^+)$		
JS1068	∆phoPQ::cm	1317242 - 1319310	(9)
JS2356	φ(pinT'-lacZ ⁺) phoQ24 ycfD612::Cm		
JS2357	$\phi(pinT'-lacZ^+) \Delta phoPQ::cm$		
JS749	attλ::pDX1::hilA'-lacZ ⁺		(8)
JS2358	attλ::pDX1::hilA'-lacZ ⁺ ΔpinT::Cm		
JS2359	$att\lambda::pDX1::hilA'-lacZ^+ \Delta spi1-2916::FRT$		

JS2360	attλ::pDX1::hilA'-lacZ ⁺ Δspi1-2916::FRT ΔpinT::Cm	
E. coli		
JMS6503	PM1205 lacI'::P _{BAD} -hilC'-'lacZ	(4)
JMS6504	PM1205 lacl'::P _{BAD} -rtsA'-'lacZ	(4)
JMS6505	PM1205 lacI'::P _{BAD} -hilA'-'lacZ	(4)
JMS6506	PM1205 lacI'::P _{BAD} -hilAmt1'-'lacZ	
JMS6507	PM1205 lacI'::P _{BAD} -rtsAmt2'-'lacZ	
JMS6508	PM1205 lacI'::P _{BAD} -ssrA'-'lacZ	
JMS6509	PM1205 lacI'::P _{BAD} -ssrB'-'lacZ	
Plasmid	Relevant Features	Reference
pBRplac	Amp ^R , p <i>lac</i> promoter based expression vector	(10)
pPinT	AatII-EcoRI pinT(<i>Salmonella</i>) containing fragment cloned into pBRplac	
pPinT-mt1	G7C, G8C, A9T, T10A, T11A, A12T site directed mutation in pPinT	
pPinT-mt2	G19T, G20T, T21A, G22C, T23A site directed mutation in pPinT	

a All *Salmonella* strains are isogenic derivatives of *S. enterica* serovar Typhimurium strain 14028.

b Numbers indicate the base pairs that are deleted (inclusive) as defined in the *S. enterica* serovar Typhimurium 14028 genome sequence (National Center for Biotechnology Information). c ATCC, American Type Culture Collection.

Table S3. Primers used in this study.

Name	Primer Sequence
F-AatII-PinT	5'GATCGACGTC AGTAACGGATTACTTTGTGGTGTAG3'
R-EcoRI-PinT	5'GATCGAATTC TGTTAATTATTACAGAGAGAGTTAATTTAT3'
mt1-PinT-F	5'GACGTCAGTAACCCTAATCTTTGTGGTGTAGCGTAACGGTAATTGTCCTCC3'
mt1-PinT-R	5'GGAGGACAATTACCGTTACGCTACACCACAAAGATTAGGGTTACTGACGTC3'
mt2-PinT-F	5'GACGTCAGTAACGGATTACTTTGTTTACAAGCGTAACGGTAATTGTCCTC3'
mt2-PinT-R	5'GAGGACAATTACCGTTACGCTTGTAAACAAAGTAATCCGTTACTGACGTC3'
F-hilA'-'lacZ E. coli	5'ACGCTTTTTATCGCAACTCTCTACTGTTTCTCCATAAAACTAATCTCTATTGCAAT GAGG3'
R-hilAmt1'- 'lacZ E. coli	5'GTTTTCCCAGTCACGACGTTGTAAAACGACCGATACAGGAACACCTAATAAATG TGGCAT3'
F-rtsA'-'lacZ E. coli	5'TTTTATCGCAACTCTCTACTGTTTCTCCATAGAAATGCAATATAAAATAGCATTT TCCAT3'
R-rtsAmt2'- 'lacZ E. coli	5'CCCAGTCACGACGTTGTAAAACGACGACAGGTGAGGGATTAAATACTTTTAGCA TGATAATTTCCTTTTATTACCACAGC3'
KO-pinT-TC-F	5'CATTGTTGGGGATATTTATGTTTTACTTACCTCAGTAACGGAT CCCTCTTGGGTTATCA3'
KO-pinT-TC-R	5'TGTTAATTATTACAGAGAGAGTTAATTTATAAAAAAAAGC TAGGTGGGTACGTTGGAGCC3'
KO-crp-F	5'ATGGTGCTTGGCAAACCGCAAACAGACCCGACTCTTGAATGGTTC TGTAGGCTGGAGCTG3'
KO-crp-R	5'TTAACGGGTGCCGTAGACGACGATGGTCTTGCC CATATGAATATCCTC3'
KO-hilD3-F	5'TGCCTTATTCACAGCGTAAGAATTCGTCCAGATGACACTATCTCC TGTAGGCTGGAGCTG3'
KO-hilD3-R	5'CAACCAGATTACGATGATAAAAAAAAAAATAATGCATATCTCCTCTCTC CATATGAATATCCTC3'
KO-pinT-F	5'TTCATTGTTGGGGGATATTTATGTTTTACTTACCTCAGTAACGGAT TGTAGGCTGGAGCTG3'
KO-pinT-R	5'TTGTCTGTTAATTATTACAGAGAGAGAGTTAATTTATAAAAAAAA
R-ssrB'-'lacZ E. coli	5'TAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGAC TTTAAAATGAGGCCAGGGTA3'
F-ssrB'-'lacZ E. coli	5'ACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCAT GGTATGCTATGTCATAGACA3'
R-ssrA'-'lacZ E. coli	5'TAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGAC CCAAATAATTATTGTTGTTA3'
F-ssrA'-'lacZ E. coli	5'ACCTGACGCTTTTTATCGCAACTCTCTACTGTTTCTCCAT ACATCGCCATCTTATTAAAA3'

Reference

- Mandin P, Gottesman S. 2009. A genetic approach for finding small RNAs regulators of genes of interest identifies RybC as regulating the DpiA/DpiB two-component system. Mol Microbiol 72:551-65.
- 2. Chubiz JE, Golubeva YA, Lin D, Miller LD, Slauch JM. 2010. FliZ regulates expression of the *Salmonella* pathogenicity island 1 invasion locus by controlling HilD protein activity in *Salmonella enterica* serovar Typhimurium. J Bacteriol 192:6261-70.
- 3. Ellermeier CD, Slauch JM. 2003. RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in *Salmonella enterica* serovar Typhimurium. J Bacteriol 185:5096-108.
- 4. Kim K, Golubeva YA, Vanderpool CK, Slauch JM. 2019. Oxygen-dependent regulation of SPI1 type three secretion system by small RNAs in *Salmonella enterica* serovar Typhimurium. Molecular Microbiology 111:570-587.
- 5. Miller SI, Mekalanos JJ. 1990. Constitutive expression of the *phoP* regulon attenuates *Salmonella* virulence and survival within macrophages. J Bacteriol 172:2485-90.
- 6. Palmer AD, Kim K, Slauch JM. 2019. PhoP-mediated repression of the SPI1 T3SS in *Salmonella enterica* serovar Typhimurium. J Bacteriol 201:e00264-19. doi:10.1128/jb.00264-19
- 7. Clegg S, Hughes KT. 2002. FimZ is a molecular link between sticking and swimming in *Salmonella enterica* serovar Typhimurium. J Bacteriol 184:1209-13.
- 8. Lin D, Rao CV, Slauch JM. 2008. The *Salmonella* SPI1 type three secretion system responds to periplasmic disulfide bond status via the flagellar apparatus and the RcsCDB system. J Bacteriol 190:87-97.
- 9. Golubeva YA, Slauch JM. 2006. *Salmonella enterica* serovar Typhimurium periplasmic superoxide dismutase SodCI is a member of the PhoPQ regulon and is induced in macrophages. J Bacteriol 188:7853-61.
- 10. Guillier M, Gottesman S. 2006. Remodelling of the *Escherichia coli* outer membrane by two small regulatory RNAs. Mol Microbiol 59:231-47.