Supporting Information

Structural basis of the atypical activation mechanism for KRAS V14I

Asim K Bera¹, Jia Lu¹, Thomas E. Wales², Sudershan Gondi¹, Deepak Gurbani¹, Andrew Nelson¹, John R. Engen², and Kenneth D. Westover¹*

¹Departments of Biochemistry and Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, United States.

²Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States.

Running title: Structural basis of KRAS V14I activation

*Correspondence should be addressed to K.D.W. (Kenneth.Westover@UTSouthwestern.edu).

Data Set	wild-type KRAS	V14I KRAS	A146T KRAS
HDX reaction details ^a	Final D ₂ O concentration=94.6%, pH _{read} =7.6, 21 °C.		
HDX time course	0.083, 0.167, 1, 5, 10, 60, and 240 minutes		
HDX controls	6 undeuterated controls, three for each state		
Back-exchange	30-35%		
Number of peptides ^b	64 followed	67 followed 6 coincident peptides followed	58 followed
Sequence coverage	92.3%	92.9% 77.5% coincident coverage	92.3%
Average peptide length; Redundancy	11.4;4.6		
Replicates	4 technical	2 technical	2 technical
Repeatability	+/- 0.30 relative Da		
Significant differences	> 0.8 Da		

^a 18-fold dilution with labeling buffer [10mM Hepes, 150mM NaCl, 5mM MgCl₂ and 5 M GDP, 99.9% D₂O (pD 8.0)]. 1-fold dilution with quench buffer [300 mM Sodium phosphate pH 2.47, H₂O].

^b Parameters to filter peptides for identification from the 6 undeuterated controls were: 2 consecutive products, 0.25 products per amino acid.

Figure S1: Side chain residues involved in interaction with GDP in (A) KRAS^{WT} and (B) KARS^{V14I}. Figures are generated from crystal structures by using Maestro.

0-

0.0

10

Exposure Time (minutes)

100 300

0.0

10

Exposure Time (minutes)

100 300

0.06

100 300

0-

0.0

10

Exposure Time (minutes)

10

Exposure Time (minutes)

100 300

Mutation containing peptides

6-

0.06

10

Exposure Time (minutes)

100 300

0.06

100 300

10

Exposure Time (minutes)

Figure S3: Illustrating the relative differences in hydrogen-deuterium exchange mass spectrometry of KRAS^{V14I} and KRAS^{A146T}.

Illustrating the relative differences in hydrogen-deuterium exchange mass spectrometry of KRAS4B^{V14I} and KRAS^{A146T}. **(A)** Relative differences in deuterium incorporation shown in all peptides coincident between KRAS4B^{A146T} vs KRAS^{WT} (top panel) and KRAS4B^{V14I} vs KRAS^{WT} (bottom panel). The relative difference (y-axis) for each peptide is shown for each time point (time points are colored according to scale at the right). The peptides in the regions of mutation are not shown as a subtraction cannot be made against the wildtype (see uptake graphs in Figure S4 for comparison of deuterium levels in the peptides). **(B)** The differences in deuterium incorporation between the mutant and wild-type KRAS constructs at 5 time points are identified on the cartoon structures of KRAS^{A146T} (top panel) and KRAS4B^{V14I} (bottom panel). Relative differences are calculated as mutant minus wt KRAS and are colored according to the color scale at the bottom.