MATERIAL & METHODS

Mouse strains and treatments

Mice were housed by the "Service center of Preclinical Research" of Perugia and manipulations were performed according to the protocol approved by the Italian Health Ministry. To generate compound *Npm1/Flt3*-ITD mutant animals, we crossed conditional *NPM1*¹ (*Npm1*^{+/TCTG}) with constitutive *Flt3*-ITD (*Flt3*^{+/ITD}) mutant mice and used the Mx1Cre transgenic line to induce human *NPM1* mutation A expression in hematopoietic stem cells (HSC). Mice were treated through intraperitoneal injections with a maximum tolerated dose of 5- azacytidine (5 mg/kg, every 3 days 5 doses) a demethylating agent.

Primary AML samples

Samples were collected from AML patients diagnosed at the Perugia University Hospital after informed consent. The protocol was approved by ethical committee of the University of Perugia (AIRC protocol 2016-04, ERC protocol 2017-09).

Peripheral blood counts

Mice were anesthetized with isoflurane followed by retro-orbital bleeding. Blood was taken into glass capillary tubes. Complete blood count was performed using an XE-2100 hematology automated analyzer (Dasit).

Flow Cytometry and Cell Sorting

Bone marrow cells were stained with the following antibodies from eBioscience: FITC-anti-Gr1, PE-anti-Mac1, APC-anti-cKit, FITC-anti-B220, PE-anti-CD3, FITC-anti-Ter119, PE-anti-CD41; biotin-conjugated antibodies against CD3, CD4, CD8, B220, Ter119, Mac-1, Gr-1, Sca-1, IL7R, CD5, phycoerythrin (PE)-Cy5–conjugated streptavidin, allophycocyanineFluor-780–conjugated

FITC-conjugated anti-CD41, allophycocyanin-conjugated anti-FCgR, PE/CY7anti-c-Kit, conjugated anti-CD105 (BioLegend), and PE-conjugated anti-CD150 (BD Biosciences). Multiparameter flow cytometry was used to define and analyze the HSC compartment, including long-term hematopoietic stem cells (LT-HSC; lin-Sca-1+c-kit+ CD34-Flt3-), short-term HSC (ST-HSC: lin-Sca-1+c-kit+CD34+Flt3-) and multipotent progenitors (MPP; lin-Sca-1+ckit+CD34+Flt3+). In addition, the myeloid progenitors' population was included and analyzed as common myeloid progenitors (CMPs Lin-Sca-1-cKit+CD34+FcyRII/IIIlo), granulocyte/monocyte progenitors (GMP Lin-Sca-1-cKit+CD34+FcyRII/IIIhi) and common megakaryocyte-erythroid progenitor (MEP Lin-Sca-1-cKit+CD34-FcyRII/IIIlo) populations. Cell acquisition and analysis were performed on a NAVIOS Beckman Coulter flow cytometer. Sorting experiments were performed using the FACSAriaIII cell sorter. Gates were drawn to exclude nonviable cells and debris. Part of the flow cytometry data was analyzed with FlowJo software (Tree Star, Ashland, OR).

In vitro hematopoietic colony-forming assay

For in vitro replating assays, a total of 105 BM cells were plated in duplicate in MethoCult M3434 (StemCell Technologies) containing rm SCF, rm IL-3, rh IL-6, rh EPO and grown at 37°C with 5% CO2. All colonies were quantified after 10-12 days of growth for detection of BFU-E, CFU-GM, CFU-GEMM in BM.

Cloning, Infection and Transplant

GATA1 mouse cDNA was cloned into the *pSico* vector¹, a gift from Tyler Jacks (Addgene plasmid #11578), containing loxP sites and GFP reporter protein allowing conditional *GATA1* expression. HEK293T cell line was transfected with pSico/GATA1 vector with Lipofectamine and viral supernatant was used to infect Lin- BM cells. Infected cells were cultured in StemSpan serum-free medium add with 100 ng/ml mouse KIT ligand, 20 ng/ml human thrombopoietin, 100 ng/ml human FLT ligand. Lethally irradiated mice were transplanted with infected cells in a range of $4x10^5$ cells/mouse and sacrificed two months after transplantation for GATA1 re-expression and flow cytometry analysis.

Immunoblotting analysis

Gata1 protein was detected by WB analysis with an anti-rat primary antibody against GATA-1 (N6) clone sc-265 (Santa Cruz). Mouse a-tubulin antibody was used as control (Sigma).

qRT-PCR analysis

RNA was extracted with Trizol reagent and reverse-transcribed with PrimeScript RT Master Mix (Diatechlabline). Quantitative reverse transcriptase-PCR (qRT-PCR) was performed using SYBR Green Premix Ex Taq II (Diatechlabline) and a 7900 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). PCR amplifications were performed by incubation at 95°C for 10 minutes, followed by 40 cycles of incubations at 95°C for 15 seconds and 60°C for 1 minute. Data were analyzed according to the comparative Ct method and normalized to glyceraldehyde-3phosphate dehydrogenase expression levels within each sample. The 2-DDCt method was used to calculate relative expression levels of target genes. Data analysis was performed using the SDS Enterprise Database (Applied Biosystems). The following primers were used to quantify GATA1 mouse expression: GATA1-F 5'-CGTCATACCACTAAGGTGGCTGAAT-3'; GATA1-R 5'-GTGGAATCTGATGGTGAGGACA-3' in comparison with endogenous GAPDH: GAPDH-F 5'-TGTGTCCGTCGTGGATCTGA-3'; GAPDH-R 5'-CCTGCTTCACCACCTTCTTGA-3'. The following primers were used to quantify GATA1 human expression: hGATA1F 5'-CTGTCCCCAATAGTGCTTATGG-3'; hGATA1R 5'-GAATAGGCTGCTGAATTGAGGG-3' in comparison with endogenous GAPDH: hGAPDH-F 5'-ATGGGGAAGGTGAAGGTCG-3'; hGAPDH-R 5'-GGGGTCATTGATGGCAACAATA-3'.

Methylation analysis by Bisulfite Treatment and qRT-PCR

We used the CpG Island searcher software to identify CpG islands within the mouse GATA1 gene promoter region (http://urogene.org/cgi-bin/methprimer/methprimer.cgi/). Methylation analysis was performed using two different approaches following a common sodium bisulfite treatment of genomic DNA. In the first approach, sodium bisulfite-treated gDNA was PCR amplified, PCR products were cloned into the pCR2.1 TOPO vector (Invitrogen), and individual clones were sequenced. Primer sets amplified a 235-bp product located at the same genomic region of the mouse Gatal promoter (forward primers from -768 to -744 and reverse primers from -534 to -560). To explored the methylation status of the human GATA1 promoter we generated primer sets that amplified a 216 bp product within the described promoter region². Gene-specific DNA methylation was determined with a OneStepqMethyl-Lite kit (Zymo Research, Irvine, CA, USA) and specific methyl primers and probes (PrimeTime qPCR Assay Integrated DNA technologies). Primers spanned a DNA region that is 350 bp and contains two MSRE sites. In the second approach, 20 ng of global DNA was incubated in the presence (test reaction) or absence (reference reaction) of methyl sensitive restriction enzymes (5 U each) at 37°C for 2 h, followed by real-time reverse transcription PCR (RTPCR) as described in the manufacturer's instructions. Percentage methylation was calculated using the formula $100x2-\Delta Ct$, where ΔCt is the average Ct value from the test reaction minus the average Ct value from the reference reaction. Percentage methylation is relative to each experiment.

Gene expression profiling

Mouse gene expression profiles (GEPs) were generated using an Affimetrix probe MoGene-2_0-stv1. Expression levels were processed using standard methods of normalization and significance analysis with R/Bioconductor^{3,4}. The gene ontology analysis was performed in R/Bioconductor and represented with tree-map plots, including enrichment in "biological process", "cellular component", "molecular function" obtained with genes with p-value < 0.05 and |fold change| < 1.5 as standard. Finally, the pathway analysis was done with R/Bioconductor querying KEGG 1, to select only the enriched pathways (p-value < 0.05 and |fold change| < 1.5) and Reactome 2 selecting the most targeted pathways, considering only differential expressed genes.

Accession Numbers

mRNA expression profiles data (GEO accession GSE16015) can be accessed in the Gene Expression Omnibus.

Statistical analysis

For survival studies, we used the method of Kaplan and Meier with a follow-up of 20 mice per genotype. For studies in which animals are sacrificed for analysis at different ages, we studied 4 mice per group per time point, and analyzed the data using analysis of variance. For *in vitro* assays, utilized a standard Students t-test. Statistical analysis was carried out on at least three independent experiments.

SUPPLEMENTARY REFERENCES

Ventura A, Meissner A, Dillon CP, McManus M, Sharp PA, Van Parijs L, Jaenisch R, Jacks T. Cre-lox-regulated conditional RNA interference from transgenes. Proc Natl Acad Sci U S A. 2004; 101(28):10380-5.

2. Nicolis S, Bertini C, Ronchi A, Crotta S, Lanfranco L, Moroni E, *et al.* An erythroid specific enhancer upstream to the gene encoding the cell-type specific transcription factor GATA-1. *Nucleic Acids Res* 1991 Oct 11; 19(19): 5285-5291.

3. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28(1):27-30.

4. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, *et al.* The Reactome pathway Knowledgebase. Nucleic Acids Res 2016;44(D1): D481-7

SUPPLEMENTARY FIGURE LEGEND

Figure S1. Phenotype of Npm1/Flt3-ITD leukemic mice.

(A) (i) Bone marrow cytospin (60 x magnification) from a representative healthy wild-type (WT) and a leukemic mouse displaying blasts infiltration. (ii) Immunohistochemistry staining of NPM1 in blasts showing aberrant expression of NPM1 in the cytoplasm (60 x magnification). (B) (i) Representative flow-cytometric analysis showing the gating of Gr1/Mac1, c-Kit+ and Gr1+/c-Kit+ cells in the BM of leukemic mice. (ii) Different percentage of immature and mature myeloid cells in the four different genotypes of the diseased mice. The more immature blasts (c-Kit+) were two-fold Npm1^{TCTG/TCTG}:Flt3^{+/ITD} *Npm1*^{+/TCTG};*Flt3*^{ITD/ITD} (n=14), higher in (n=4) and $Npml^{TCTG/TCTG}$; $Flt3^{ITD/ITD}$ (n=6) mice compared to $Npml^{+/TCTG}$; $Flt3^{+/ITD}$ (n=4) (20.2±12.8%, 21.28±2.7% and 17.08±5.6% vs 10.7±7.5%, respectively). In Npm1+/TCTG;Flt3+/ITD leukemic BM samples the percentage of Gr1+/c-Kit+ cells was lower than in other diseased genotypes (3.4±2.7% vs 8.6 \pm 4.4%, 7 \pm 2.2% and 7 \pm 2.6). More differentiated Gr1+/Mac1+ cells were reduced in double mutated BM samples that were Flt3-ITD homozygous compared to heterozygous, regardless the *NPM1* mutation allelic burden (29.9±3.5% and 30.8±7.2% vs 41.3±28.5% and 40.2±20%, respectively). (iii) c-Kit+/Gr1+Mac1+ cells ratio in the spleen of leukemic mice (n = 4 to 15 per genotype).

* p<0.05, ** p<0.01; unpaired t-test with Welch's correction.

Figure S2. Bone marrow B cell and B cell progenitors.

(A-C) Representative FACS plot (left panels) and relative frequency and number (right panels) of total B cell (A), PreproB and ProB (B), PreB, Immature and Recirculating (C) BM cells (n = 4 per group) in wild type and *Npm1*^{TCTG/+;}*Flt3*^{+/ITD} mice.

** p<0.01, *** p<0.001; unpaired t-test with Welch's correction

Figure S3. Hematopoietic changes in pre-leukemic *Npm1*^{+/TCTG};*Flt3*^{+/ITD} mice.

(A) Significant differences in platelets number (PLT) in $Npm1^{+/TCTG}$; $Flt3^{+/TTD}$ preleukemic mice compared to $Npm1^{+/TCTG}$; $Flt3^{+/+}$, $Npm1^{+/+}$; $Flt3^{+/TTD}$ and $Npm1^{+/+}$; $Flt3^{+/+}$ littermate groups (n = 12 to 20 per genotype). (B) Significant higher spleen-to-body weight ratios in $Npm1^{+/TCTG}$; $Flt3^{+/TTD}$ mice compared with $Npm1^{+/TCTG}$, $Flt3^{+/TTD}$ and wild type littermate groups (0.017±0.012 vs 0.008±0.002, 0.005±0.0008, 0.005±0.001 respectively) (n = 4 to 15 per genotype). (C) (i-ii) Flow-cytometric analysis of immature erythroid and megakaryocytic compartments, including megakaryocyte progenitor (MkP), pre-CFU-E, CFU-E, proEry, pre-megakaryocyte-erythrocyte progenitors (PreMegE) and Ter119 population (n = 4 to 9 per genotype). (iii) The graph represents the mean number of the myeloid clonogenic progenitor cells obtained using clonogenic assays of three independent experiments.

* p<0.05, ** p<0.01, *** p<0.001; unpaired t-test with Welch's correction.

Figure S4. Transcriptional network analysis in total BM cells.

Red nodes represent products of upregulated genes and blue nodes represent products of downregulated genes in *Npm1*TCTG/TCTG;*Flt3*+/ITD leukemic mice compared to wild-type controls.

Figure S5 Transcriptional network analysis in lineage depleted bone marrow cells.

Red nodes represent products of upregulated genes and blue nodes represent products of downregulated genes in Npm1TCTG/TCTG;Flt3+/ITD lineage depleted BM cells from leukemic mice compared to wild-type controls.

Figure S6. The extent of GATA1 deregulation correlated with the degree of the myeloid phenotypic changes in mutant BM cells

(A) (i) $Npm1^{+/TCTG}$; $Flt3^{+/TTD}$ samples were binarized into low and high GATA-1 mRNA expression (n = 4) (ii) GATA1 protein expression in $Npm1^{+/TCTG}$; $Flt3^{+/TTD}$ samples relative to high and low mRNA expression (n = 4). (B) (i-iv) Significant differences in WBC counts, MPP and GMP compartments in the BM of $Npm1^{+/TCTG}$; $Flt3^{+/TTD}$ mice according to GATA1 mRNA expression levels. Percentage of GR1+Mac1+ cells in the spleen of $Npm1^{+/TCTG}$; $Flt3^{+/TTD}$ mice displaying either low or high GATA1 mRNA levels (n = 12 to 16 per genotype).

* p<0.05, ** p<0.01, ***p<0,001; unpaired t-test with Welch's correction

Figure S7. Cellular effects of enforced expression of GATA1 in pre-leukemic Npm1^{+/TCTG};Flt3^{+/ITD} cells

(A) An inducible GATA1 lentiviral system lead to GATA1 mRNA expression in the BM of mice transplanted with $Npm1^{+/TCTG}$; $Flt3^{+/TTD}$ LSK (n = 4 to 12). (B) (i) Representative FACS plot of hematopoietic stem cells (LT-HSC, ST-HSC and MPP) and progenitor populations (CMP, GMP, and MEP) in MOCK and GATA1 infected mice (n = 10 to 16). (ii) Frequency of MEP populations in MOCK and GATA1 infected mice. Values are derived from MOCK (n=10) and GATA1 (n=16) infected mice. Data represent the mean \pm SD. (C) (i) Representative spleen size and average

spleen/body weights ratio (lower histogram) of MOCK (n=10) and GATA1 (n=16) infected mice. The data are presented as mean \pm SD. (ii) Representative FACS plot of mature (Gr1-Mac1) and immature (Gr1-c-Kit) myeloid cells infiltrating the spleen of MOCK and GATA1 infected mice; (iii-iv) histograms showing average frequency of Gr1-Mac1 and Gr1-c-Kit cells according to the gating strategy on the facs plot.

* p<0.05, ** p<0.01; unpaired t-test with Welch's correction

Figure S8. Cellular and molecular changes in Npm1^{+/TCTG}; Flt3^{+/ITD} mice treated with AZA

(A) Western blot analysis of GATA1 expression in $Npm1^{+/TCTG}$; $Flt3^{+/ITD}$ BM cells cultured in presence or absence of the proteasome inhibitor MG132. (B) GATA1 mRNA expression in the BM of AZA treated mice (n = 5). (C) (i-ii) Representative FACS plot of MEP and Ter119 cells in the BM of AZA treated mice (n = 5 to 12 per treatment group).

* p<0.05, ** p<0.01; unpaired t-test with Welch's correction

Figure S9. GATA1 mRNA expression analysis of an independent AML database

(A) Analysis of GATA1 levels in AML samples including both normal and complex karyotype (n = 20 to 179 samples for each genetic group indicated in the figure). (B) Analysis of GATA1 levels in AML samples with normal karyotype (NK) only.

* p<0.05 comparing all the groups; one-way ANOVA analysis

Npm1^{+/TCTG} Flt3^{+/ITD}

Npm1^{TCTG/TCTG} Flt3^{+/ITD}

B i

Figure S2: Sportoletti et al.

5

0

Ter119

0 -

CFU-GM

CFU-G

0.1

0.0

MKP

CFU-E ProEry

Pre CFU-E PreMegE

Figure S3: Sportoletti et al.

Factors involved in megakaryocyte development and platelet production

Figure S4: Sportoletti et al.

Factors involved in Megacayocyte and platelet production

В

WIDS 40 High GATA-1 40 High GATA-1 High GATA-1 Low GATA-1 High Low GATA-1 Low GATA-1 Low GATA-1 Low GATA-1

Figure S7: Sportoletti et al.

Α В **GATA1 mRNA expression** 30 - 0. 10 - 0. Npm1^{+/+} Flt3^{+/+} Npm1^{+/TCTG} Flt3^{+/ITD} MG132 _ -+ GATA-1 β -Tubulin CTRL С i °= °_ GMP GMP *⊒ FCyR CMP CMP MEP 102 103 104 MEP 10² 10³ 10⁴ 10⁵ CD34 ii

1023

D

10² 10³

D

10³

Ter119

1023

SS INT LIN

AŻA

Figure S8: Sportoletti et al.

Figure S9: Sportoletti et al.

Np	om1 ^{TCTG,}	^{/TCTG} ; Flt3 +/ITD		Npm1 ^{TCTG/TCTG} Flt3 ^{+//TD}							
UP	values	DOWN	values	UP	values	DOWN	values	UP	values	DOWN	values
Plxdc2	918.514	Cd19	-993.097	Apol11a	267.269	Ighv1-12	-328.212	Ifi205	431.731	Trim12a	-544.978
Ср	743.385	Spib	-967.337	Apol11b	237.619	Oas1g	-301.488	Cd209a	283.865	Npy	-299.044
Tmem178	711.948	Rhag	-958.368	Ddx3y	180.541	Igh-VJ558	-286.625	Fosb	158.444	Gm1966	-137.805
Nov	566.504	Ly6d	-932.738	Cyp2b10	114.246	Xist	-202.997	Socs2	125.124	Hspa1a	-129.036
BC064078	542.465	Ighv1-12	-904.936	Stfa3	101.652	Igkv8-30	-131.275			Mir144	-126.438
Adgrg5	438.509	Ighg3	-864.241	Uty	81.545					Erdr1	-107.856
Hoxa9	415.979	Kel	-856.067							Egr1	-105.041
Ifi205	375.145	ll7r	-834.324								
Vcan	373.117	Igll1	-828.473								
Olfm1	361.571	Nxpe2	-827.136								
Fabp5	361.004	Redrum	-804.044								
Gpnmb	354.033	Car2	-799.962								
Kcnq3	343.887	Ctse	-781.429								
Il6st	341.701	Pou2af1	-777.752								
Shtn1	341.311	Ikzf3	-772.414								
Eif2s3y	341.153	Dntt	-760.881								
Rasgrf2	333.348	Pklr	-745.948								
Itga1	328.264	Blnk	-741.339								
Clec4b1	327.084	Abcb4	-738.785								
S100a4	322.329	A730089K16Rik	-729.431								
Rnase2a	321.661	Klf1	-726.388								
Sulf2	321.172	Trim12a	-690.943								
I730030J21Rik	320.019	Ank1	-690.755								
Bex6	316.366	Cldn13	-683.573								
Igfbp7	311.822	Slc38a5	-680.962								
Cd209a	308.543	Akap12	-672.877								
Wfdc17	302.309	Vpreb3	-641.807								
Nrg1	299.002	Mt2	-636.524								
Cfh	294.193	Mboat2	-631.716								
Klrb1f	293.093	Spta1	-618.918								
Qpct	293.091	Igkv6-23	-617.533								
Ccr2	292.922	Cd72	-615.588								
Pid1	288.687	Aqp1	-611.981								

Enah	284.979	Rhd	-608.965				
Dusp22	283.811	Cmah	-607.644				
Tmem176a	282.973	Igk-V8	-603.192				
Kdm5d	103.697	Gypa	-587.857				
Abcb1b	34.169	Fcer2a	-583.047				
Cd34	30.799	Oas1g	-580.198				
Cd209c	28.731	Zfpm1	-579.963				
Uty	16.437	Cd22	-573.019				
		Tspan33	-569.515				
		Paqr9	-564.136				
		Gfi1b	-563.572				
		Hemgn	-555.876				
		S1pr1	-545.576				
		Blk	-540.033				
		Sptb	-535.097				
		Slamf6	-533.604				
		Btnl10	-529.937				
		Cr2	-518.154				
		Igkv15-103	-514.258				
		Igkv14-126	-507.943				
		Tmem56	-505.151				
		Add2	-496.229				
		Blvrb	-492.371				
		Cd79b	-491.904				
		Cyp2r1	-487.641				
		Igkv1-133	-485.448				
		Fcrla	-484.977				
		Igkv6-14	-471.498				
		Ighv1-61	-467.061				
		Срох	-465.465				
		Igh-V11	-462.097				
		Ahsp	-457.493				
		Asprv1	-457.493				
		Ighv1-62	-454.098				
		Igk-V28	-449.261				
		Atp1b2	-445.944				
		Atp1b1	-444.398				

TT 11 0	120.252				
11102	-430.362				
Bach2	-429.619				
Chst3	-427.617				
Ighv1-54	-425.035				
Gdpd1	-424.958			 	
Mfsd2b	-423.806				
Cdc42bpa	-416.666				
Tspo2	-416.645				
 Epb42	-415.387				
Epor	-415.143				
 Aldh1a7	-411.238				
Slc22a23	-405.529				
Spire1	-402.132				
5430401H09Rik	-400.369				
Myo1d	-397.792				
Slc43a1	-394.622				
D13Ertd608e	-394.302				
Igkv1-135	-391.675				
Ighv1-19	-389.262				
Fam129c	-386.723				
Tmem120b	-386.333				
Slc4a1	-383.228				
Gata1	-378.518				
Lef1	-376.188				
Igkv9-120	-373.911				
Ralgps2	-373.095				
Slc40a1	-372.447				
Ighm	-371.914				
Nfia	-371.534				
Myh10	-370.861				
Cd2	-366.438				
Igh-VJ558	-365.404				
Gzma	-362.403				
Chchd10	-362.285		 	 	
Cd55	-361.105				
Alad	-360.122				
Trim30d	-359.984				

Bank1	-359.755				
Trim10	-359.188				
Chil5	-357.862				
Igkv1-117	-353.472				
Igkv8-30	-353.127				
Gdf3	-352.374				
II1f9	-351.122				
Slc6a20a	-350.745				
Igkv4-70	-350.324				
Tcrb-J	-348.952				
 Ighv10-3	-345.699				
Il1rl1	-345.313				
 Gimap6	-344.146				
 Tom111	-341.951				
 Dennd5b	-341.618				
Tfr2	-337.752				
Gstm5	-337.505				
 Ighv1-53	-337.236				
Iglv1	-336.275				
Sec1412	-335.892				
Crip2	-333.482				
Igkv9-129	-333.179				
Rag2	-333.168				
Gpr174	-332.829				
Igkv4-72	-332.716				
Sox6	-332.069				
Iglv2	-326.119				
Hmbs	-325.256				
Agtr1a	-319.422				
Npy	-319.108				
Rasgrp3	-313.834				
Ammecr1	-312.093				
Ntn4	-311.162				
Ighv9-4	-309.807				
Chil1	-308.504				
Serinc5	-308.482				
Plpp1	-303.489				

	202.001				
Gbp8	-303.091				
Igk-V4	-301.601				
Gpc4	-301.236				
Igkv4-55	-298.149				
Cd3001d	-298.083				
 Ly6g	-297.405				
Gbp4	-296.996				
Stard10	-296.342				
 Sdc4	-295.951				
 Tspan13	-295.166				
Gfra2	-294.434				
 Igkv8-19	-294.068				
 Igh-VX24	-291.912				
Fhdc1	-290.883				
 Cyth3	-290.774				
Igh-V7183	-290.682				
Cd59a	-289.759				
 St6gal1	-288.029				
Ighv6-6	-286.839				
Xrcc5	-285.957				
 Bex4	-283.822				
Egr1	-264.866				
St3gal6	-243.159				
Cd79a	-242.786				
Klk1	-239.883				
Ms4a1	-225.907				
Siglech	-222.076				
LOC102642252	-218.101				
Ifi214	-215.567				
Igk	-214.573				
Pla2g4c	-212.637				
Mir144	-211.178				
Ebf1	-202.502				
Cecr2	-186.327				
Pax5	-151.839				
Slc25a21	-149.487				
Fcmr	-141.977				

1 1	1	1 1	1		1	1	1	
	Ermap	-139.845						
	Car1	-139.336						
	Ces2g	-121.883						
	Pkhd111	-120.679						
	Rac1	-113,331						
	Sed1	-110.097						
	Gm15915	-109 289						
	Viet	-109.029						
	Jaky4 52	104.602						
	G=22810	-104.092						
	Gm32819	-94.442						
	Aldhlal	-75.918						
	Tspan8	-70.562						
	Cpm	-64.355						
	Reep6	-54.164						
	Cacnale	-52.544						
	Cd38	-51.526						
	Cd51	-39.083						
	BE692007	-36.643						
	Zdhhc14	36.523						
	Asb17os	-33.787						
	Mns1	-32.348						
	Atp7b	-29.788						
	Igkv3-4	-29.137						
	Traf4	-28,918						
	Abcg4	-26.861						
	Aff?	-34 532						
	Nakan1	28.041						
	LINCKADI	-/0.901						

 Table S1. List of differentially expressed genes and relative values in the bone marrow of Npm1^{TCTG/TCTG}; Flt3^{+/ITD}; Npm1^{TCTG/TCTG}; Flt3^{+/+} and Flt3^{+/ITD}, compared to Npm1^{+/+}; Flt3^{+/+} Wild type control.

	Npm1 ^{TCTG/TCTG} ;	Flt3+/ITD	
DOWN	values	UP	values
Gdf3	-886,604	Nov	353,3368
Blk	-873,292	Adgrg5	21,38727
Slc4a1	-285,161	Plxdc2	12,90118
Aldh1a1	-282,301	Ср	12,19327
Tspan8	-275,819	lgfbp7	10,89965
lgkv9-129	-230,698	Tmem178	8,850796
Btnl10	-217,773	Cd209c	7,352113
Paqr9	-212,663	Kcnq3	6,871774
Cd19	-206,606	Enah	6,716575
Trim10	-201,191	BC064078	5,372653
Epor	-163,395	Cd209a	4,694917
Rhd	-158,456	Rasgrf2	4,509685
Sptb	-150,067	lfi205	3,803583
Add2	-145,859	Clec4b1	3,668178
Trib2	-143,066	S100a4	3,162371
Tspo2	-136,672	Sulf2	2,724305
A730089K16Rik	-132,47	Wfdc17	2,663991
lgkv15-103	-120,003	Qpct	2,494077
Ermap	-119,087	Pid1	2,489407
Ank1	-116,077	Dusp22	2,431463
lgkv4-55	-111,959	Klrb1f	2,427726
бура	-103,248	Egr1	2,422851
Spta1	-101,581	ltga1	2,407483
Gpc4	-99,7659	Olfm1	2,160244
Pkhd1l1	-95,0268	Klk1	2,102996
Rhag	-91,162	Abcb1b	2,099031
Redrum	-90,2244	Fabp5	2,087197
Cldn13	-88,929	Hoxa9	2,075765
Asb17os	-87,9272	Shtn1	1,914062
lgkv1-133	-86,3035	Ccr2	1,704657
Pax5	-78,4597	ll6st	1,659123
Car1	-78,4097	Nrg1	1,599928
Slc38a5	-76,9679	Bach2	1,595562
lgkv9-120	-70,4622	Rac1	1,428006
lgkv3-4	-67,8365	Bex6	1,416588
Ms4a1	-67,5753	Cfh	1,341099
Slc25a21	-66,0792	Tmem176a	1,2806
Agtr1a	-64,1694	Uty	1,21077
Pklr	-62,0641	Eif2s3y	1,146226
Gata1	-61,9127		
Kel	-58,0389		
Tmem56	-56,4067		
Klf1	-55,0319		

Sec14l2	-52,1195	
Aldh1a7	-50,3731	
Cr2	-47,5868	
Ces2g	-44,0827	
Aqp1	-43,3569	
Abcg4	-41,9547	
Sox6	-41,0053	
lghv1-53	-37,8551	
Fcmr	-37,5665	
Igkv4-70	-37,5207	
Bex4	-35,0058	
Mfsd2b	-34,7841	
lghg3	-34,7053	
Ebf1	-33,3863	
Cd5l	-30,6045	
lgkv6-14	-28,8325	
Cd2	-28,554	
Hemgn	-27,4618	
Cecr2	-27,1872	
Gm15915	-26,9538	
lglv1	-25,9822	
lghv1-12	-25,8761	
Nxpe2	-23,7896	
lgkv4-72	-22,4887	
Cd79a	-21,6583	
Pou2af1	-21,6428	
Ntn4	-20,6278	
Aff2	-20,5824	
Vpreb3	-20,472	
lgkv8-30	-20,3078	
Slc6a20a	-20,2492	
Myo1d	-19,8785	
lghv1-62	-17,9152	
lghv1-61	-17,843	
Ikzf3	-17,6947	
Asprv1	-16,8825	
S1pr1	-16,7871	
Mt2	-16,5731	
Cyp2r1	-15,9097	
Cpm	-15,7081	
Car2	-14,8477	
lghv6-6	-14,5382	
lghm	-14,2451	
lgkv4-53	-13,3716	
Fhdc1	-13,2208	
Fcrla	-12,9398	

ll7r	-12,6937	
lgkv1-135	-12,319	
lgkv8-19	-11,8922	
Ctse	-11,8033	
Oas1g	-11,4272	
Gpr174	-11,3469	
Cmah	-10,944	
Chst3	-10,8013	
Lef1	-10,7708	
lghv1-54	-10,5236	
Ly6d	-10,4556	
lghv10-3	-10,4487	
lglv2	-9,7884	
lgkv6-23	-9,2602	
Myh10	-9,08603	
Dennd5b	-8,9803	
Sdc4	-8,51107	
Gdpd1	-8,44204	
lghv1-19	-8,33283	
Blnk	-8,22205	
Dntt	-8,10243	
St3gal6	-8,03111	
Atp7b	-7,88364	
St6gal1	-7,779	
Zfpm1	-7,70573	
Cd38	-7,05817	
lgkv1-117	-6,95727	
Slc40a1	-6,38227	
Gbp4	-6,35128	
lgkv14-126	-6,10648	
Akap12	-5,95145	
Cd55	-5,83077	
Rag2	-5,57938	
Abcb4	-5,47232	
Bank1	-5,35467	
Atp1b2	-5,30655	
Chil5	-4,93554	
Tom1l1	-4,89053	
II1f9	-4,85467	
Cacna1e	-4,68883	
Xrcc5	-4,66601	
Cd59a	-4,61453	
Blvrb	-4,53239	
Cd300ld	-4,49322	
lghv9-4	-4,39605	
Siglech	-4,315	

Tmem120b	-4,18559	
Gfi1b	-4,17193	
Tfr2	-4,07557	
BE692007	-4,05131	
Atp1b1	-3,67232	
Reep6	-3,5998	
Slc43a1	-3,52854	
Gstm5	-3,5126	
Chil1	-3,50414	
Ly6g	-3,40398	
Срох	-3,28971	
lgll1	-3,21557	
Gimap6	-3,14347	
Gbp8	-3,133	
Nckap1	-3,1036	
Slamf6	-2,9528	
Pla2g4c	-2,94508	
Ralgps2	-2,72054	
Cdc42bpa	-2,7131	
Cd72	-2,65915	
Alad	-2,62918	
Gzma	-2,58262	
Hmbs	-2,48448	
Gfra2	-2,41796	
Tspan33	-2,28007	
Vcan	-2,15794	
Stard10	-2,15592	
Rasgrp3	-1,99385	
Gpnmb	-1,97158	
Nfia	-1,96779	
Cd22	-1,92221	
Trim30d	-1,92031	
Chchd10	-1,88921	
Spib	-1,88421	
Traf4	-1,84977	
Ammecr1	-1,84632	
Cd79b	-1,82618	
Tspan13	-1,71759	
Zdhhc14	-1,69435	
Slc22a23	-1,68204	
Crip2	-1,68132	
Spire1	-1,67791	
Fcer2a	-1,62478	
Serinc5	-1,57831	
ll1rl1	-1,49619	
Mboat2	-1,49484	

D13Ertd608e	-1,49095	
Scd1	-1,40765	
Cd34	-1,39916	
Cyth3	-1,37303	
Mns1	-1,33454	
Rnase2a	-1,32368	
Fam129c	-1,24192	
Trim12a	-1,20898	
Xist	-1,05052	
Kdm5d	-1,03279	

Table S2. List of differentially expressed genes and relative values in the Lineage negative bone marrow cells of *Npm1*^{TCTG/TCTG};*Flt3*^{+/ITD}; compared to Wild type control.