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Gene Log2 (Fold 

Change) 

P value Neuronal Function References 

Stmn1-rs1 -10,551 4,336E-42 Cytoskeleton Interaction/Neurite Growth/Synaptic Plasticity 1–3 

Slc6a4 -4,044 3,440E-17 Serotonin Transport 4 

Pcdhgc4 -1,623 2,703E-04 Cytoskeleton Interaction/Neurite Growth/Synaptogenesis 5–7 

Flywch1 -1,616 1,347E-04 Unknown - 

Gna12 -1,586 2,024E-04 Neurite Growth/Synaptogenesis/Synaptic Plasticity 8,9 

Telo2 -1,399 1,450E-03 Unknown - 

Pcdha12 -1,390 3,452E-03 Cytoskeleton Interaction/Axon Development 10,11 

Clstn1 -1,365 6,130E-04 Cytoskeleton Interaction/Axon Branching/Synaptic Plasticity 12,13 

Pla2g6 -1,360 4,187E-03 Neurite Growth/Axon, Synapse Remodeling 14,15 

Qsox1 -1,360 4,093E-03 Extracellular Matrix Remodeling 16 
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Plcg1 -1,346 3,502E-03 Cytoskeleton Interaction/Neurite Growth 17 

Gm1821 -1,316 2,691E-03 Unknown - 

Ppp1r37 -1,310 4,659E-03 Cytoskeleton Interaction/Neurite, Axon Growth/Synaptic 

Plasticity 

18–21 

Pcdha3 -1,302 7,749E-03 Cytoskeleton Interaction/Axon Development 10,11 

Aldh3a1 -1,235 5,233E-03 Metabolism of Biogenic Amines/Axon, Synapse Maturation 22,23 

Stk32c -1,227 7,180E-03 Cytoskeleton Interaction/Neurite, Axon Growth 24 

Pex10 -1,185 1,616E-02 Neurite, Axon Development 25–27 

Pnpla3 -1,173 1,376E-02 Unknown - 

Lss -1,141 7,224E-03 UNknown - 

Jun -1,130 1,363E-02 Neurite, Axon Growth 28–30 

Xkr4 -1,117 1,022E-02 Cytoskeleton Interaction/Axon Growth 31 



Tmem150c -1,092 1,069E-02 Unknown - 

Fads2 -1,087 8,003E-03 Differentiation 32 

Slc20a2 -1,085 1,547E-02 Dendritic Cytoskeleton Interaction 33 

Limk1 -1,054 1,281E-02 Cytoskeleton Interaction/Neurite, Axon Growth/Synapse 

Development and Plasticity 

34–37 

Ggt7 -1,049 8,041E-03 Glutamate Metabolism 38,39 

Cdh18 -1,045 1,679E-02 Cytoskeleton Interaction/Neurite, Axon Growth/Synapse 

Development and Plasticity 

40–44 

Sh3bp5l -1,038 1,157E-02 Cytoskeleton Interaction/ Axon Growth/Synapse Development 45–47 

Clstn3 -1,024 9,889E-03 Synapse Development 48,49 

Unk -1,010 2,288E-02 Morphogenesis and Differentiation 50,51 
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Gene Log2 (Fold 

Change) 

P value Neuronal Function References 

Tuba1c 1,413 2,538E-03 Cytoskeleton/Neurite, Axon Growth/Synapse Maturation 1–3 

Uty 1,319 1,744E-03 Chromatin Remodeling 4,5 

Ddx3y 1,259 8,007E-04 Differentiation 6,7 

Kdm5d 1,214 7,313E-03 Chromatin Remodeling 6,8 

Sncaip 1,170 2,312E-02 Synaptic Function 9–11 

Nedd9 1,134 2,232E-02 Neurite Growth 12–14 

2610507I01Rik 1,092 3,403E-02 Unknown - 

Ubqln2 1,092 1,064E-02 Protein Metabolism/Dendritic, Synaptic Function  15–18 

Map3k6 1,087 3,734E-02 Axon, Synapse Growth  19–21 

Antxr1 1,084 3,724E-02 Cytoskeleton Interaction 22 

msoizareilly
Zone de texte 
SUPP. TABLE 3



G530011O06Rik 1,070 4,320E-02 Unknown - 

Plp1 1,058 2,849E-02 Neurite, Synapse Growth 23,24 

3110047P20Rik 1,052 3,864E-02 Inflammasome/Axon Loss  25 
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Supplementary Figure 1. 5-HT reuptake by PFC-SERT+ neurons. After in vivo 

blockade of 5-HT degradation with the monoamine oxidase A inhibitor, clorgyline (b), 

accumulation of 5-HT is visible in the cell bodies of cortical pyramidal neurons (arrows) 

in clorgyline c) but not in saline treated mice (a). (d-e) In vivo clorgyline treatment in 

SERT-TdTomato mice revealed the selective accumulation of 5-HT in PFC SERT-

Tdtomato neurons (arrows in e). This is only evident when 5-HT degradation is blocked 

by clorgyline (e) but not in the saline-treated mice (d) or after clorgyline + fluoxetine 

(FLX) treatment (f). Arrowheads indicate typical 5-HT raphe axons in the PFC, that are 

unaffected by the treatments.  

 

Supplementary Figure 2. Validation of monoamine-related genes and DARPP-32 in 

SERT-GFP mice. Immunohistochemistry of the vesicular monoamine transporter type 2 

(Vmat2, upper panels) and the enzyme monoamine oxidase B (MAO-B, upper panels), 

and DARPP-32 (middle panel) in PFC-SERTCre/+ neurons expressing GFP 

(SERTCre/+::RCE-EGFP). Fluorescent in situ hybridization of SERT and SERT-DsRed 

(lower panel) in the SERTCre/+::TdTomato mouse. Arrows indicate instances of double 

labeling. Antibodies used: rabbit antiserum anti-Vmat2 (1/1000, H-V004, Phoenix 

Pharmaceuticals Inc., Burlingame, USA), rabbit antiserum anti-MAO-B (1/1000, from 

Vitalis et al., 2003 [doi.org/10.1002/cne.10804]), and a rabbit monoclonal antibody anti-

DARPP-32 (1/1000, #2306S, Cell Signaling Technologies, France).  

 

Supplementary Figure 3. SERT invalidation alters developmental gene networks in 

PFC-SERT+ neurons. (a) EGFP-expressing neurons in the PFC were isolated from 

Sert +/- and Sert -/- mice (SERTCre/+::RCE-EGFP and SERTCre/Cre::RCE-EGFP, 



respectively). The RNAs obtained from these cells were used for transcriptome profiling 

after deep sequencing. (b) Heatmaps of control gene expression levels and fold 

changes in differential gene expression when SERT is invalidated. The upper map 

shows the normalized read counts (from low to high) in control PFC neurons 

(SERTCre/+::RCE-EGFP) of genes significantly changed in the subsequent differential 

expression analysis. The heatmap below shows fold-changes of differentially-expressed 

genes (down-regulated or upregulated) in PFC neurons in SERT -/- mice 

(SERTCre/Cre::RCE-EGFP). (c) Top altered gene networks obtained with gene ontology 

analysis of differentially-expressed genes in SERT -/- mice. Enrichment threshold was set 

at 1.5 with p<0.05 (indicated by dashed line).   

 

Supplementary Figure 4. Neuroanatomical targets of PFC-SERT+ neurons. Main 

brain regions targeted by PFC-SERT+ neuron axons as revealed by conditional 

anterograde viral tracing. After injection of AAV2/1-CAG-LSL-EGFP-bGH in the PFC of 

SERTCre/+ mice at P4-P5 (n = 15), a heat map was made using a subjective quantitative 

color-coded score for axon density within different brain regions. Analyzed regions were 

selected based on previous tract-tracing studies describing the main neuroanatomical 

targets of PFC projection-neurons. 

 

Supplementary Figure 5. Maturation of cortical axon projections to their 

subcortical targets. (a) Postnatal ontogeny of cortical descending axon-projections in 

the DRN using the EMX1bCre/+::Tdtomato mouse. We quantified mean values of red 

fluorescence at the targets (delineated by blue lines) at different ages (4 mice/age). F4,15 

= 70.79, p<10-8; P4 vs. P7, and P7 vs. P14, *p<0.001; P2 vs. P4, p=0.99, and P14 vs. 



P21, p=0.07. Tukey’s test after one-way ANOVA. (b) Ontogenetic analysis of VGLUT1 

expression levels in the DRN during postnatal development assessed by western blot. 

Upper panel: representative western blots of VGLUT1 and GAPDH expression in the 

DRN. Lower panel: quantitative analysis of VGLUT1 expression levels normalized by 

GAPDH expression (Welch’s statistic = 9.85, *p<0.01; P7 vs. P14, *p<0.05; P14 vs. P21, 

p=0.73, and P21 vs. P28, p=0.82. Games-Howell post-hoc test. Error bars represent 

S.E.M.  

 

Supplementary Figure 6. Array tomography quantitative analysis of glutamate and 

GABAergic synaptic afferents to the DRN, and their associations to 5-HT neurons. 

(a-b) Lack of SERT increases the density of cortical synaptic boutons (VGLUT1+) 

associated with 5-HT cells (a) (4 mice/genotype; F1,6 = 6.63, *p<0.05), without changing 

the number of VGLUT2+ or GAD2+ axon boutons associated with 5-HT cells (b) (F1,6 = 

1.13, p=0.33 and F1,6 = 0.91, p=0.38, respectively). (c-e) Pharmacological SERT 

blockade by fluoxetine increases the density of cortical synaptic boutons (VGLUT1+) 

associated with 5-HT cells (c) (5 mice/genotype; F1,8 = 13.25, *p<0.01), without 

changing the number of VGLUT2+ or GAD2+ axon boutons (d) (F1,8 = 0.67, p=0.44 and 

F1,8 = 1.04, p=0.34, respectively) or their associations with 5-HT cells (e) (F1,8 = 0.08, 

p=0.79 and F1,8 = 2.38, p=0.16, respectively). (f-h) Conditional deletion of cortical SERT 

(SERT-KOCTX) increases the density of cortical synaptic boutons (VGLUT1+) associated 

with 5-HT cells (f) (5 mice/genotype; F1,8 = 8.69, *p<0.02), without changing either the 

number of VGLUT2+ or GAD2+ axon boutons (g) (F1,8 = 0.44, p=0.53 and F1,8 = 0.06, 

p=0.81, respectively) or their associations with 5-HT cells (h) (F1,8 = 0.39, p=0.55 and 

F1,8 = 0.22, p=0.65, respectively). (i-k) Conditional deletion of SERT from raphe neurons 



(SERT-KORaphe) does not modify the density of cortical synaptic boutons (VGLUT1+) 

associated with 5-HT cells (i) (3-4 mice/genotype; F1,5 = 0.06, p=0.81), or the number of 

VGLUT2+ and GAD2+ axon boutons (j) (F1,5 = 0.07, p=0.80 and F1,5 = 0.29, p=0.61, 

respectively) nor their association with 5-HT cells (k) (F1,5 = 0.02, p=0.91 and F1,5 = 

1.27, p=0.31, respectively). (l) Lack of SERT does not change the density of VGLUT1+ 

synaptic boutons in the basolateral nucleus of the amygdala (BLA) (3-4 mice/genotype; 

T5 = 0.1042, p=0.92). Data analyzed by one-way ANOVA (a-k) and t-test (l). Error bars 

represent S.E.M. 

 

Supplementary Figure 7. Post-hoc identification of the two types of neurons 

recorded from the dorsal raphe in the ex-vivo electrophysiological experiments. 

After electroporation with Alexa 488 using the patch pipette, 5-HT (a-a”) and non-5-HT 

(b-b”) neurons were identified by immunolabeling against TPH. Arrows indicate 5-HT 

positive neurons, while arrowheads points at recorded cells containing Alexa 488.  

 

Supplementary Figure 8. Pharmacogenetic manipulation of PFC glutamate-

projection neuron’s activity. AAV5-CaMKIIa-hM4D(Gi)-mCherry or AAV8-CaMKIIa-

hM3D(Gq)-mCherry was efficiently transduced in pyramidal neurons of the prelimbic, 

infralimbic and orbital regions (a-b and d-e). In hM4D mice, PFC activation elicited by 

acute swim stress was robustly decreased by about 80% by the acute pre-treatment with 

CNO (1mg/kg)  administered 30 min before the swim (b,c) (5-4 mice/treatment; T7 = 

12.03, p<10-5). Conversely, in hM3D mice, CNO treatment elicits a large increase in the 

activation of PFC glutamate neurons, evidenced by an increase in c-Fos expression 

levels (e-f) (3 mice/treatment; T4 = 8.892, p<0.001). Immunohistochemistry for c-Fos in 



mCherry-expressing neurons was used as readout of neuronal activity. The chicken 

antibody anti-mCherry (1:1000, AB205402, Abcam, France) and rabbit anti-c-Fos 

antiserum (1:1000, AB190289, Abcam, France) were used. Data were analyzed by t-

test. Error bars represent S.E.M. 

 

Supplementary Figure 9. Fetal and adult SERT expression in humans. 

Transcriptional data obtained from Brainspan Atlas of the Developing Human Brain 

(http://www.brainspan.org). (a) In the fetal human brain SERT expression is present in 

both fronto-cortical regions and brainstem structures. (b) In the adult brain, SERT is 

mostly expressed in brainstem regions.  

 

Supplementary Table 1. Genes differentially expressed after SERT invalidation in 

PFC-SERT+ neurons at P7. All genes with p<0.05. 

 

Supplementary Table 2. Top genes down-regulated by SERT invalidation in PFC-

SERT+ neurons at P7. A threshold of 100 reads for normalized expression levels was 

set with a p<0.05. Differential expression is shown as Log2(fold change). The reported 

roles of differentially-expressed genes in different aspects of neuronal development are 

indicated together with their supporting references.  

  

Supplementary Table 3. Top genes up-regulated by SERT invalidation in PFC-

SERT+ neurons at P7. A threshold of 100 reads for normalized expression levels was 

set with a p<0.05. Differential expression is shown as Log2(fold change). The reported 

http://www.brainspan.org/


roles of differentially-expressed genes in different aspects of neuronal development are 

indicated together with their supporting references. 

 

Supplementary Table 4. Gene ontology of differentially-expressed genes after 

SERT invalidation in PFC-SERT+ neurons at P7 using DAVID Bioinformatics 

Resources, NIAID/NIH.  
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