## **Supporting Information**

# Metal and Organic Templates Together Control the Size of Covalent Macrocycles and Cages

#### Roy Lavendomme, Tanya K. Ronson, Jonathan R. Nitschke

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

# Table of Contents

| 1. | Experimental Section                                                                                                                                                   | S2   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|    | 1.1 Synthesis and characterization of square macrocycle Pd <sub>4</sub> [4+4] <b>3·(MeCN)</b> <sub>4</sub>                                                             | S3   |
|    | 1.2 Synthesis and characterization of 1,3,5-tris(3-pyridyl)benzene T1                                                                                                  | S8   |
|    | 1.3 Synthesis and characterization of templated macrocycle Pd <sub>3</sub> [3+3] <b>5·T1</b>                                                                           | S9   |
|    | 1.4 Synthesis and characterization of templated macrocycle Pd <sub>4</sub> [4+4] 6·T2                                                                                  | S17  |
|    | 1.5 Synthesis and characterization of reduced macrocycle Pd <sub>3</sub> [3+3] 7·T1                                                                                    | S25  |
|    | 1.6 Synthesis and characterization of reduced macrocycle Pd <sub>4</sub> [4+4] 8·T2                                                                                    | S30  |
|    | 1.7 Synthesis and characterization of demetallated macrocycle [3+3] 9                                                                                                  | S35  |
|    | 1.8 Synthesis and characterization of demetallated macrocycle [4+4] 10                                                                                                 | S39  |
|    | 1.9 Synthesis and characterization of bridged macrocycles $5_{2}\textbf{\cdot}\mathbf{T3}_{3}$                                                                         | S43  |
|    | 1.10 Synthesis and characterization of cages $Pd_{6}[4+6]$ <b>12</b> ·(MeCN) <sub>6</sub> and $Pd_{9}[6+9]$ <b>13</b> ·(MeCN) <sub>9</sub>                             | S51  |
|    | 1.11 Enrichment of cages Pd <sub>6</sub> [4+6] <b>12·Cl<sub>6</sub></b> and Pd <sub>9</sub> [6+9] <b>13·Cl<sub>9</sub></b>                                             | S57  |
|    | 1.12 Synthesis and characterization of templated cage 13·T3 <sub>3</sub> ·Cl <sub>3</sub>                                                                              | S59  |
|    | 1.13 Reduction and demetallation of cages Pd <sub>6</sub> [4+6] <b>12·Cl<sub>6</sub></b> and Pd <sub>9</sub> [6+9] <b>13·Cl<sub>9</sub></b>                            | S62  |
| 2. | Anion binding by macrocycles 5 and 6                                                                                                                                   | S65  |
| 3. | Anion binding by cages 12 and 13                                                                                                                                       | S67  |
| 4. | Cage assembly attempts with tris-anilines other than <b>11</b>                                                                                                         | S68  |
| 5. | Aniline exchange                                                                                                                                                       | S69  |
| 6. | Potential cage formation from tetrakis-aniline building blocks                                                                                                         | S75  |
| 7. | X-ray Crystallography                                                                                                                                                  | S77  |
|    | 7.1 [ <b>3</b> ]·8AsF <sub>6</sub> ·8MeCN·2H <sub>2</sub> O                                                                                                            | S77  |
|    | 7.2 [ <b>5</b> <sub>2</sub> · <b>T3</b> <sub>3</sub> ]·11SbF <sub>6</sub> ·BF <sub>4</sub> ·7.75(C <sub>6</sub> H <sub>6</sub> )·5.25MeCN·H <sub>2</sub> O [+ solvent] | S78  |
|    | 7.3 [ <b>12·Cl</b> <sub>6</sub> ]·6(AsF <sub>6</sub> )·4C <sub>6</sub> H <sub>6</sub> [+ solvent]                                                                      | S79  |
|    | 7.4 Calculation of angle $\alpha$                                                                                                                                      | S80  |
| 8. | Modelling                                                                                                                                                              | S81  |
| 9. | References                                                                                                                                                             | 5100 |

# **1. Experimental Section**

The reactions were not performed under inert atmosphere or anhydrous conditions unless otherwise stated. Commercial HPLC grade MeOH and MeCN and reagent grade dioxane were used as solvents.  $CH_2Cl_2$  was distilled prior to use. Silica gel 60 (0.040–0.063 mm) was used for flash chromatography. Preparative layer chromatography (PLC) were performed with Silica gel 60  $F_{254}$ , 1 mm thick plates from Merck. The starting compounds **1**, **2**, **4**, **11**, **14a-g**, **T2**, [Pd(MeCN)<sub>4</sub>](BF<sub>4</sub>)<sub>2</sub>, BH<sub>3</sub>·THF and ethylenediamine were commercial. **S1**<sup>1</sup> and **T3**<sup>2</sup> were prepared according to reported procedures. Complexes **15a-f** were not isolated but directly used from crude solution. [Pd(MeCN)<sub>4</sub>](BF<sub>4</sub>)<sub>2</sub> was stored under inert atmosphere. *Caution*: benzidine **2** is a known carcinogen and should be handled with extra care.

Useful information regarding syntheses:

- Concentration and order of addition of subcomponents was observed to have a significant effect on the outcome of the self-assemblies (*e.g.* attempts to synthesize cages **12** and **13** with [Pd<sup>2+</sup>] = 60 mM led to polymeric precipitate; mixing polyanilines with Pd(II) without aldehyde can lead to precipitate). Therefore, most self-assemblies were performed at [Pd<sup>2+</sup>] = 2–4 mM and adding either Pd(II) or the polyaniline last.
- The reducing agent BH<sub>3</sub>·THF is volatile and small scale reactions may require higher amounts to account for the volatility of the reagent: typically, on the scale of 0.4 mmol of imine, BH<sub>3</sub>·THF was added stepwise in 100 μL steps (1 M, 0.1 mmol, 0.25 equiv. expected) but, on NMR scale (0.006 mmol of imine), BH<sub>3</sub>·THF was added stepwise in 6 μL steps (1 M, 0.006 mmol, 1 equiv. expected) leading to similar results.

NMR spectra were recorded at either 9.4 Tesla (Bruker Avance III HD 400 equipped with a Smart Probe) or 11.7 Tesla (Bruker Avance III HD 500 equipped with a Smart Probe or Bruker Avance 500 equipped with a TCI CryoProbe or Bruker Avance 500 equipped with a DCH CryoProbe). Solvent signals were used for chemical shift referencing: <sup>1</sup>H signal at 1.94 ppm for CHD<sub>2</sub>CN, 7.26 ppm for CHCl<sub>3</sub>, 2.50 ppm for DMSO-*d*<sub>5</sub>; <sup>13</sup>C signal at 1.32 ppm for CD<sub>3</sub>CN, 77.16 ppm for CDCl<sub>3</sub>. Abbreviations: s: singlet, d: doublet, dd: doublet of doublet of doublet of doublet, dt: doublet of triplet, t: triplet, br: broad signal, m: multiplet. Edited HSQC refers to multiplicity-edited sequence showing CH<sub>2</sub> correlation spots in negative phase (blue) and CH/CH<sub>3</sub> correlation spots in positive phase (red).

DOSY NMR experiments were performed on a Bruker Avance 500 NMR spectrometer equipped with a TCI CryoProbe or a Smart Probe. Maximum gradient strength was 5.35 G/mm at 10 A. DOSY measurements were performed using the standard Bruker pulse program, ledbpgp2s, employing a stimulated echo and longitudinal eddy-current delay (LED) using a gradient ramp from 5% to 95%. Relaxation delay was set to 10 s. Diffusion delay  $\Delta$  (d20) and diffusion gradient length  $\delta$  (2 × p30) were optimized for individual experiments. Individual rows of the quasi-2D diffusion databases were phased and baseline corrected. Raw DOSY data were processed using the Bayesian DOSY transform program in MestReNova 9.0.1-13254 or the peak height fit in MestReNova 11.0.5-18998.

Electrospray ionization low resolution mass spectrometry (ESI-LRMS) was undertaken on a Micromass Quattro LC mass spectrometer (capillary voltage 2.0-3.8 kV; cone voltage 5-30 eV; source block temp. 313-333 K; desolvation temp. 313-333 K) infused from a Harvard syringe pump at a rate of  $10 \,\mu$ L min<sup>-1</sup>. Electrospray ionization high resolution mass spectrometry (ESI-HRMS) was performed on a Thermofisher LTQ Orbitrap XL hybrid ion trap mass spectrometer (for compounds containing imines which are more sensitive, the following parameters were used: spray voltage 4.5 kV; capillary voltage 40-50 V; tube lens 100-160 V; capillary temp. 333 K).

Reactions under microwave irradiation were performed on a CEM Discover SP microwave synthesizer.

### 1.1 Synthesis and characterization of square macrocycle Pd<sub>4</sub>[4+4] 3·(MeCN)<sub>4</sub>



To a stirred solution of 2,6-diformylpyridine **1** (27.4 mg, 0.203 mmol) and benzidine **2** (40.7 mg, 0.221 mmol) in 50 mL MeCN was added a solution of  $[Pd(MeCN)_4](BF_4)_2$  (92.7 mg, 0.208 mmol) in 1 mL MeCN. The orange solution was stirred at 60°C for 20 h. The solution was cooled down to *r.t.*, concentrated to a volume of *ca*. 10 mL with a rotary evaporator, filtered and slowly poured into 30 mL of Et<sub>2</sub>O. The precipitate was collected by centrifugation, washed with 5 mL Et<sub>2</sub>O and dried under vacuum affording **3**·(**MeCN**)<sub>4</sub>(**BF**<sub>4</sub>)<sub>8</sub> as an orange/brown solid (114 mg, 0.0471 mmol, FW = 2417.66 g/mol). Yield: 93%.

<sup>1</sup>**H NMR** (500 MHz, CD<sub>3</sub>CN, 298 K) δ (ppm) = 8.58 (t, *J* = 8.0 Hz, 4H, H<sup>a</sup>), 8.40 (s, 8H, H<sup>c</sup>), 8.25 (d, *J* = 8.1 Hz, 8H, H<sup>b</sup>), 7.93 (d, *J* = 8.6 Hz, 16H, H<sup>e</sup>), 7.67 (d, *J* = 8.7 Hz, 16H, H<sup>d</sup>).

<sup>13</sup>**C NMR** (126 MHz, CD<sub>3</sub>CN, 298 K) δ (ppm) = 174.01, 156.93, 146.90, 146.78, 142.83, 131.85, 129.67, 124.59.

**ESI-LRMS** for **3·S1**<sub>4</sub> [( $C_{136}H_{136}N_{16}Pd_4Si_8$ )<sup>8+</sup> + n BF<sub>4</sub><sup>-</sup>] m/z (charge, calculated, found) = [**3·S1**<sub>4</sub> + 2 BF<sub>4</sub>]<sup>6+</sup>, calcd: 469.77, found: 469.62; [**3·S1**<sub>4</sub> + 3 BF<sub>4</sub>]<sup>5+</sup>, calcd: 581.08, found: 581.02; [**3·S1**<sub>4</sub> + 4 BF<sub>4</sub>]<sup>4+</sup>, calcd: 748.05, found: 748.12; [**3·S1**<sub>4</sub> + 5 BF<sub>4</sub>]<sup>3+</sup>, calcd: 1026.34, found: 1026.11.



8.75 8.70 8.65 8.60 8.55 8.50 8.45 8.40 8.35 8.30 8.25 8.20 8.15 8.10 8.05 8.00 7.95 7.90 7.85 7.80 7.75 7.70 7.65 7.60 7.55 7.50 7.45 7. (ppm)





Figure S2. <sup>13</sup>C NMR spectrum of 3·(CD<sub>3</sub>CN)<sub>4</sub> (126 MHz, CD<sub>3</sub>CN, 298 K).



Figure S3. dqfCOSY spectrum of 3-(CD<sub>3</sub>CN)<sub>4</sub> (500 MHz, CD<sub>3</sub>CN, 298 K).



**Figure S4.** Edited <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of **3**·(**CD**<sub>3</sub>**CN**)<sub>4</sub> (11.7 Tesla, CD<sub>3</sub>CN, 298 K). The unusual shape of the correlation spot for the N=CH is most likely caused by a <sup>1</sup>J coupling constant value out of the usual range covered by standard HSQC parameters.



**Figure S5.** <sup>1</sup>H-<sup>13</sup>C HMBC spectrum of **3·(CD<sub>3</sub>CN)**<sub>4</sub> (11.7 Tesla, CD<sub>3</sub>CN, 298 K). The <sup>1</sup>J coupling artifacts are caused by <sup>1</sup>J coupling constant values out of the range filtered by standard HMBC parameters.



**Figure S6A.** Gradual formation of **3**•**S1**<sub>4</sub> upon addition of **S1** in a solution of **3**•**(CD<sub>3</sub>CN)**<sub>4</sub> in CD<sub>3</sub>CN monitored by <sup>1</sup>H NMR spectroscopy (500 MHz, CD<sub>3</sub>CN, 298 K). The minor species in the bottom spectrum correspond to partial degradation of **3**. Further additions of **4** did not increase the amount of **3**•**S1**<sub>4</sub> as shown by the bottom spectrum. **3**•**S1**<sub>4</sub> remained stable over days in solution at *r.t.* Note that addition of pyridine,  $nBu_4N^+Cl^-$  or  $nBu_4N^+Br^-$  in place of **S1** led to complete degradation of **3**.



**Figure S6B.** <sup>1</sup>H DOSY spectrum of **3·S1**<sub>4</sub> (500 MHz, CD<sub>3</sub>CN, 298 K, diffusion delay  $\Delta$  = 100 ms, diffusion gradient length  $\delta$  = 2200 µs). The DOSY was processed by peak height fit on selected peaks (**3·S1**<sub>4</sub>, **S1**, H<sub>2</sub>O and CHD<sub>2</sub>CN).



**Figure S7.** ESI-LRMS of  $3\cdot$ S1<sub>4</sub>. The loss of SiMe<sub>3</sub> is suspected to originate from ESI-MS conditions. Weaker peaks corresponding to adducts with additional **S1** are also observed.

1.2 Synthesis and characterization of 1,3,5-tris(3-pyridyl)benzene **T1** Procedure adapted from the literature.<sup>3</sup>



A solution of  $K_2CO_3$  (2.8 g, 20 mmol) in 10 mL H<sub>2</sub>O and 20 mL dioxane was degassed by bubbling nitrogen for 20 minutes under stirring. To this solution were added Pd(PPh<sub>3</sub>)<sub>4</sub> (175 mg, 0.151 mmol), 1,3,5-tribromobenzene (315 mg, 1.00 mmol) and pyridine-3-boronic acid (492 mg, 4.00 mmol). The biphasic mixture was strongly stirred at 80°C under N<sub>2</sub> for 18 h. The mixture was cooled down to *r.t.* and slowly poured into 100 mL H<sub>2</sub>O. The precipitate was collected by filtration, washed with 5 mL H<sub>2</sub>O and dried under vacuum. The solid was triturated in 15 mL CH<sub>2</sub>Cl<sub>2</sub> and the suspension was subjected to column chromatography (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/MeOH, from 1:0 to 85:15, v/v) affording **T1** as an off-white solid (179 mg, 0.578 mmol, FW = 309.37 g/mol). Yield: 58%.

Spectral data are in accordance with the literature.<sup>3</sup> R<sub>f</sub> (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 85:15, v/v) = 0.50. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, 298 K)  $\delta$  (ppm) = 8.96 (d, J = 2.3 Hz, 3H, H<sup>e</sup>), 8.68 (dd, J = 4.8, 1.6 Hz, 3H, H<sup>d</sup>), 7.99 (ddd, J = 7.9, 2.3, 1.7 Hz, 3H, H<sup>b</sup>), 7.80 (s, 3H, H<sup>a</sup>), 7.44 (dd, J = 7.9, 4.8 Hz, 3H, H<sup>c</sup>).





#### 1.3 Synthesis and characterization of templated macrocycle Pd<sub>3</sub>[3+3] 5·T1



To a stirred suspension of 2,6-diformylpyridine **1** (27.1 mg, 0.201 mmol) and 4,4'-oxydianiline **4** (40.1 mg, 0.200 mmol) in 50 mL MeCN was added a solution of  $[Pd(MeCN)_4](BF_4)_2$  (89.3 mg, 0.201 mmol) in 1 mL MeCN. The orange mixture was stirred at 60°C for 20 h. 1,3,5-tris(3-pyridyl)benzene **T1** (20.4 mg, 0.0659 mmol) was added and the mixture was stirred at 60°C for 2 h. The solution was cooled down to *r.t.*, concentrated to a volume of *ca*. 5 mL with a rotary evaporator, filtered and slowly poured into 30 mL of Et<sub>2</sub>O. The mixture was shaken and left to rest 10 minutes for complete precipitation then the precipitate was collected by centrifugation, washed with 5 mL Et<sub>2</sub>O and dried under vacuum affording **5-T1(BF<sub>4</sub>)**<sub>6</sub> as an orange solid (136 mg, 0.0664 mmol, FW = 2047.45 g/mol). Yield: 99%.

<sup>1</sup>**H NMR** (500 MHz, CD<sub>3</sub>CN, 298 K, major conformer)  $\delta$  (ppm) = 8.79 (dd, *J* = 5.8, 1.4 Hz, 2H), 8.78 (d, *J* = 2.0 Hz, 1H), 8.68 (d, *J* = 5.4 Hz, 1H), 8.61 (d, *J* = 1.9 Hz, 2H), 8.59 – 8.52 (m, 3H), 8.44 (s, 2H), 8.33 (s, 2H), 8.30 (s, 2H), 8.29 – 8.23 (m, 6H), 8.21 (dt, *J* = 7.9, 1.6 Hz, 1H), 8.05 (dt, *J* = 7.9, 1.7 Hz, 2H), 7.49 (dd, *J* = 7.9, 5.7 Hz, 1H), 7.45 (d, *J* = 8.8 Hz, 4H), 7.41 (dd, *J* = 7.9, 5.8 Hz, 2H), 7.37 (d, *J* = 8.8 Hz, 4H), 7.20 (d, *J* = 9.0 Hz, 4H), 7.06 – 7.01 (m, 11H), 6.94 (d, *J* = 8.9 Hz, 4H).

<sup>13</sup>C NMR (126 MHz, CD<sub>3</sub>CN, 298 K) δ (ppm) = 175.75, 175.29, 173.50, 158.99, 158.24, 157.82, 155.99, 155.79, 155.65, 152.00, 151.52, 150.49, 150.03, 146.29, 146.23, 143.65, 143.48, 142.51, 141.74, 141.25, 141.08, 140.52, 138.66, 138.30, 131.63, 131.59, 129.95, 128.10, 128.01, 127.60, 125.99, 124.92, 124.86, 120.58, 120.54, 120.02.

**ESI-HRMS** for **5**-**T1** [( $C_{78}H_{54}N_{12}O_3Pd_3$ )<sup>6+</sup>] m/z = [**5**-**T1**]<sup>6+</sup>, calcd: 254.3593, found: 254.3595; [**5**-**T1** - H]<sup>5+</sup>, calcd: 305.0297, found: 305.0302; [**5**-**T1** + F]<sup>5+</sup>, calcd: 309.0310, found: 309.0313; [**5**-**T1** + BF<sub>4</sub>]<sup>5+</sup>, calcd: 322.6320, found: 322.6324; [**5**-**T1** + 2 F]<sup>4+</sup>, calcd: 391.0384, found: 391.0391; [**5**-**T1** + F + BF<sub>4</sub>]<sup>4+</sup>, calcd: 408.0398, found: 408.0404; [**5**-**T1** + F + 2 BF<sub>4</sub>]<sup>3+</sup>, calcd: 573.0544, found: 573.0557.



**Figure S9.** <sup>1</sup>H NMR spectrum of **5·T1** (500 MHz, CD<sub>3</sub>CN, 298 K). \* Signals inferred to correspond to the minor  $C_{3v}$ -symmetric cone conformer (see DOSY in Figure S14).



178 176 174 172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 (ppm)

Figure S10.  $^{13}\text{C}$  NMR spectrum of 5·T1 (126 MHz, CD<sub>3</sub>CN, 298 K).



Figure S11. dqfCOSY spectrum of 5·T1 (500 MHz, CD<sub>3</sub>CN, 298 K).



**Figure S12.** Edited <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of **5**·**T1** (11.7 Tesla, CD<sub>3</sub>CN, 298 K). The unusual shape of the correlation spot for the N=CH is most likely caused by a <sup>1</sup>J coupling constant value out of the usual range covered by standard HSQC parameters.



**Figure S14.** <sup>1</sup>H DOSY spectrum of **5·T1** (500 MHz, CD<sub>3</sub>CN, 298 K, diffusion delay  $\Delta$  = 110 ms, diffusion gradient length  $\delta$  = 1700 µs).







Figure S15B. Top: simulated isotopic pattern, bottom: ESI-HRMS of [5-T1 - H]<sup>5+</sup>.



**Figure S15C.** Top: simulated isotopic pattern, bottom: ESI-HRMS of  $[5 \cdot T1 + F]^{5+}$ . Fluoride is suspected to originate from BF<sub>4</sub> fragmentation in ESI-MS conditions. The three intense peaks correspond to  $[T1 + H]^+$ .



Figure S15D. Top: simulated isotopic pattern, bottom: ESI-HRMS of [5-T1 + BF<sub>4</sub>]<sup>5+</sup>.



**Figure S15E.** Top: simulated isotopic pattern, bottom: ESI-HRMS of  $[5 \cdot T1 + 2 F]^{4+}$ . Fluoride is suspected to originate from BF<sub>4</sub> fragmentation in ESI-MS conditions.



**Figure S15F.** Top: simulated isotopic pattern, bottom: ESI-HRMS of  $[5\cdot T1 + F + BF_4]^{4+}$ . Fluoride is suspected to originate from BF<sub>4</sub> fragmentation in ESI-MS conditions.



**Figure S15G.** Top: simulated isotopic pattern, bottom: ESI-HRMS of  $[5\cdot T1 + F + 2 BF_4]^{3+}$ . Fluoride is suspected to originate from BF<sub>4</sub> fragmentation in ESI-MS conditions.



#### 1.4 Synthesis and characterization of templated macrocycle Pd<sub>4</sub>[4+4] 6-T2

To a stirred suspension of 2,6-diformylpyridine **1** (13.6 mg, 0.101 mmol) and 4,4'-oxydianiline **4** (20.3 mg, 0.101 mmol) in 44 mL MeCN were added a solution of  $[Pd(MeCN)_4](BF_4)_2$  (45.6 mg, 0.103 mmol) in 1 mL MeCN and a solution of tetrakis(3-pyridyl)porphyrin **T2** (15.8 mg, 0.0255 mmol) in 5 mL CHCl<sub>3</sub>. The brown mixture was stirred at 60°C for 20 h. The solution was cooled down to *r.t.*, concentrated to a volume of *ca*. 3 mL with a rotary evaporator and slowly poured into 10 mL of *i*Pr<sub>2</sub>O. The mixture was shaken and left to rest 10 minutes for complete precipitation then the precipitate was collected by centrifugation, washed with 5 mL Et<sub>2</sub>O and dried under vacuum affording **6·T2(BF<sub>4</sub>)**<sub>8</sub> as a brown solid (68.2 mg, 0.0232 mmol, FW = 2936.15 g/mol). Yield: 92%.

<sup>1</sup>**H NMR** (500 MHz, CD<sub>3</sub>CN, 298 K, two conformers) δ (ppm) = 9.82 (dd, *J* = 5.9, 0.9 Hz, 1H, partial-cone), 9.71 (d, *J* = 2.0 Hz, 2H, partial-cone), 9.67 (dd, *J* = 6.0, 1.3 Hz, 4H, 1,2-alternate), 9.57 (d, *J* = 5.7 Hz, 2H, partial-cone), 9.40 (d, *J* = 2.0 Hz, 4H, 1,2-alternate), 9.33 (d, *J* = 2.0 Hz, 1H, partial-cone), 9.31 (dd, *J* = 6.0, 1.4 Hz, 1H, partial-cone), 9.29 (d, *J* = 1.9 Hz, 1H, partial-cone), 8.93 (dt, *J* = 7.8, 1.7 Hz, 1H, partial-cone), 8.66 (dt, *J* = 7.7, 1.6 Hz, 4H, 1,2-alternate), 8.64 (dt, *J* = 7.9, 1.7 Hz, 1H, partial-cone), 8.61 – 8.53 (m), 8.46 (t, *J* = 8.1 Hz, 1H, partial-cone), 8.44 (s, 2H, partial-cone), 8.43 (s, 4H, partial-cone), 8.39 (s, 4H, 1,2-alternate), 8.30 (d, *J* = 7.8 Hz, 6H, partial-cone), 8.28 – 8.26 (m), 8.26 (dd, *J* = 4.8, 0.9 Hz, 4H, 1,2-alternate), 8.16 (d, *J* = 8.0 Hz, 2H, partial-cone), 8.12 (dd, *J* = 7.8, 6.0 Hz, 1H, partial-cone), 8.08 – 8.02 (m), 7.95 (dd, *J* = 7.8, 5.9 Hz, 2H), 7.91 (d, *J* = 5.0 Hz, 2H, partial-cone), 7.88 (bs, 2H, partial-cone), 7.81 (bs, 4H, 1,2-alternate), 7.76 (d, *J* = 8.8 Hz, 4H, partial-cone), 7.66 (d, *J* = 8.9 Hz, 8H, 1,2-alternate), 7.26 (m), 7.26 – 7.22 (m), -3.25 (s, 2H, partial-cone), -3.29 (s, 2H, 1,2-alternate).

<sup>13</sup>C NMR (126 MHz, CD<sub>3</sub>CN, 298 K, two conformers) δ (ppm) = 176.00, 175.74, 175.31, 174.68, 174.53, 174.24, 159.29, 159.07, 158.67, 158.42, 158.35, 157.90, 155.84, 155.82, 155.79, 155.72, 155.71, 155.51, 154.11, 153.15, 152.98, 152.58, 152.27, 152.18, 151.84, 151.45, 146.46, 146.37, 146.31, 146.27, 146.19, 145.86, 145.13, 144.20, 143.75, 143.45, 143.39, 143.12, 142.61, 142.01, 141.66, 141.37, 131.65, 131.61, 131.52, 131.43, 127.53, 126.94, 126.82, 126.62, 125.57, 125.38, 125.30, 125.25, 125.20, 124.98, 122.76, 121.29, 121.13, 120.94, 120.46, 119.86, 115.55, 115.50, 115.16.

**ESI-HRMS** for **6·T2**  $[(C_{116}H_{78}N_{20}O_4Pd_4)^{8+}] m/z = [6·T2]^{8+}$ , calcd: 280.1585, found: 280.1583;  $[6\cdotT2 + BF_4]^{7+}$ , calcd: 332.4674, found: 332.4680;  $[6\cdotT2 + 2 BF_4]^{6+}$ , calcd: 402.3793, found: 402.3801;  $[6\cdotT2 + 3 BF_4]^{5+}$ , calcd: 500.2560, found: 500.2573;  $[6\cdotT2 + 4 BF_4]^{4+}$ , calcd: 647.0711, found: 647.0727.



(ppm)

**Figure S16.** <sup>1</sup>H NMR spectrum of **6·T2** (500 MHz, CD<sub>3</sub>CN, 298 K). Numerous overlapping signals prevented complete assignment. The  $C_{2h}$  symmetric conformer was identified by the presence of one set of <sup>1</sup>H NMR signals for the pyridyl moieties of the porphyrin template **T2** and two sets for the imines and aromatic protons of the macrocycle **6**; indeed, only one set of signals would have been expected for the highly symmetric cone ( $C_{4v}$ ) and 1,3-alternate ( $D_{2d}$ ) conformers.



178 176 174 172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 (ppm)

Figure S17. <sup>13</sup>C NMR spectrum of 6·T2 (126 MHz, CD<sub>3</sub>CN, 298 K).



**Figure S19.** Edited <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of **6-T2** (11.7 Tesla, CD<sub>3</sub>CN, 298 K). The unusual shape of the correlation spot for the N=CH is most likely caused by a <sup>1</sup>J coupling constant value out of the usual range covered by standard HSQC parameters.



Figure S20. <sup>1</sup>H-<sup>13</sup>C HMBC spectrum of 6·T2 (11.7 Tesla, CD<sub>3</sub>CN, 298 K).



**Figure S21.** ROESY spectrum of **6·T2** (τ<sub>m</sub>: 500 ms, 500 MHz, CD<sub>3</sub>CN, 298 K).







**Figure S23.** Variable temperature <sup>1</sup>H NMR spectra of **6·T2** (400 MHz,  $CD_3CN$ ) showing slight broadening of signals at 348 K but no coalescence of signals between the two conformers. The bottom spectrum shows that no degradation occurred during the VT experiment.



**Figure S24A.** Top: simulated isotopic pattern, bottom: recorded ESI-HRMS of [**6·T2**]<sup>8+</sup>. The signal was weak for this charge state but intense enough to identify the species.



**Figure S24B.** Top: simulated isotopic pattern, bottom: ESI-HRMS of  $[6-T2 + BF_4]^{7+}$ . The signal was weak for this charge state but intense enough to identify the species. The peak at 333.2499 m/z corresponds to an impurity present during the analysis.







Figure S24D. Top: simulated isotopic pattern, bottom: ESI-HRMS of [6-T2 + 3 BF<sub>4</sub>]<sup>5+</sup>.



Figure S24E. Top: simulated isotopic pattern, bottom: ESI-HRMS of [6·T2 + 4 BF<sub>4</sub>]<sup>4+</sup>.



### 1.5 Synthesis and characterization of reduced macrocycle Pd<sub>3</sub>[3+3] 7·T1

To a stirred suspension of 2,6-diformylpyridine **1** (27.5 mg, 0.203 mmol) and 4,4'-oxydianiline **4** (40.2 mg, 0.201 mmol) in 50 mL MeCN was added a solution of  $[Pd(MeCN)_4](BF_4)_2$  (90.6 mg, 0.204 mmol) in 1 mL MeCN. The orange mixture was stirred at 60°C for 20 h. 1,3,5-tris(3-pyridyl)benzene **T1** (23.1 mg, 0.0672 mmol) was added and the mixture was stirred at 60°C for 2 h. The solution was cooled down to *r.t.* under stirring and 10 mL MeOH were added. After 10 minutes, BH<sub>3</sub>·THF (1M) was added stepwise (10 additions of 100 µL, one every 10 min., total 1.00 mmol) and the reaction was monitored by ESI-MS (see Figure S27). The mixture was concentrated to a volume of *ca.* 5 mL with a rotary evaporator, filtered and slowly poured into 30 mL of Et<sub>2</sub>O. The precipitate was collected by centrifugation, washed with 5 mL Et<sub>2</sub>O and dried under vacuum affording **7·T1(BF<sub>4</sub>)**<sub>6</sub> as a yellowish grey solid (142 mg, purity and yield undetermined at this stage, FW = 2059.55 g/mol).

<sup>1</sup>**H NMR** (500 MHz, CD<sub>3</sub>CN, 298 K, mixture of stereoisomers and conformers)  $\delta$  (ppm) = 9.20 – 5.80 (m), 5.60 – 4.20 (m).

**ESI-HRMS** for **7·T1** [ $(C_{78}H_{66}N_{12}O_{3}Pd_{3})^{6+}$ ] m/z = [**7·T1** + BF<sub>4</sub>]<sup>5+</sup>, calcd: 325.0507, found: 325.0513; [**7·T1** + 2 BF<sub>4</sub>]<sup>4+</sup>, calcd: 428.0645, found: 428.0644; [**7·T1** + 3 BF<sub>4</sub>]<sup>3+</sup>, calcd: 599.4207, found: 599.4202; [**7·T1** + 4 BF<sub>4</sub>]<sup>2+</sup>, calcd: 942.6330, found: 942.6333.



9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 (ppm)

**Figure S25.** <sup>1</sup>H NMR spectrum of **7·T1** (500 MHz, CD<sub>3</sub>CN, 298 K). The large number of stereoisomers and potential conformers prevents NMR characterization (see Figure S26).



**Figure S26.** Expected 16 stereoisomers originating from the 6 NH stereocenters on **7-T1** including 6 pairs of enantiomers and 4 meso compounds.



**Figure S27.** ESI-LRMS monitoring of the reduction of **5**•**T1** leading to **7**•**T1**. Zoom on the region around [**5**•**T1**-2H]<sup>4+</sup> and [**7**•**T1**-2H]<sup>4+</sup>. Spectra from top to bottom: simulated for [**5**•**T1**-2H]<sup>4+</sup>, before addition of BH<sub>3</sub>, after 2, 4, 6, 8, 10 additions, simulated for [**7**•**T1**-2H]<sup>4+</sup>. No change was observed between 8 and 10 additions, therefore the reaction was stopped even if the peak after 10 additions does not match perfectly the simulated spectrum of the product.



**Figure S28A.** Top: ESI-HRMS of  $[7 \cdot T1 + BF_4]^{5+}$ , bottom: simulated isotopic pattern. The signal was weak for this charge state but intense enough to identify the species.



**Figure S28B.** Top: ESI-HRMS of [**7**•**T1** + 2 BF<sub>4</sub>]<sup>4+</sup>, bottom: simulated isotopic pattern.



Figure S28C. Top: ESI-HRMS of [7·T1 + 3 BF<sub>4</sub>]<sup>3+</sup>, bottom: simulated isotopic pattern.



Figure S28D. Top: ESI-HRMS of [7·T1 + 4 BF<sub>4</sub>]<sup>2+</sup>, bottom: simulated isotopic pattern.

#### 1.6 Synthesis and characterization of reduced macrocycle Pd<sub>4</sub>[4+4] 8·T2



To a stirred suspension of 2,6-diformylpyridine **1** (27.2 mg, 0.201 mmol) and 4,4'-oxydianiline **4** (40.4 mg, 0.202 mmol) in 45 mL MeCN were added a solution of  $[Pd(MeCN)_4](BF_4)_2$  (91.1 mg, 0.205 mmol) in 1 mL MeCN and a solution of tetrakis(3-pyridyl)porphyrin **T2** (32.0 mg, 0.0517 mmol) in 5 mL CHCl<sub>3</sub>. The brown mixture was stirred at 60°C for 20 h. The solution was cooled down to *r.t.* under stirring and 10 mL MeOH were added. After 10 minutes, BH<sub>3</sub>·THF (1M) was added stepwise (8 additions of 100 µL, one every 10 min., total 0.800 mmol) and the reaction was monitored by ESI-MS (see Figure S31). The mixture was concentrated to a volume of *ca*. 5 mL with a rotary evaporator, filtered and slowly poured into 30 mL of Et<sub>2</sub>O. The precipitate was collected by centrifugation, washed with 10 mL Et<sub>2</sub>O and dried under vacuum affording **8·T2(BF<sub>4</sub>)**<sub>8</sub> as a brown solid (153 mg, purity and yield undetermined at this stage, FW = 2952.27 g/mol).

<sup>1</sup>**H NMR** (500 MHz, CD<sub>3</sub>CN, 298 K, mixture of stereoisomers and conformers) δ (ppm) = 9.70 - 6.50 (m), 6.30 - 5.80 (m), 5.70 - 4.50 (m), -3.15 - -3.45 (m, NH<sup>porphyrin</sup>).

**ESI-HRMS** for **8·T2**  $[(C_{116}H_{94}N_{20}O_4Pd_4)^{8+}] m/z = [8·T2 + 3 BF_4]^{5+}$ , calcd: 503.4810, found: 503.4801;  $[8\cdotT2 + 4 BF_4]^{4+}$ , calcd: 651.1024, found: 651.1014;  $[8\cdotT2 + 5 BF_4]^{3+}$ , calcd: 897.1380, found: 897.1366;  $[8\cdotT2 + 6 BF_4]^{2+}$ , calcd: 1389.2089, found: 1389.2063.



**Figure S29.** <sup>1</sup>H NMR spectrum of **8·T2** (500 MHz, CD<sub>3</sub>CN, 298 K). The large number of stereoisomers and potential conformers prevents NMR characterization (see Figure S30).



**Figure S30.** Expected 43 stereoisomers originating from the 8 NH stereocenters on **8-T2** including 16 pairs of enantiomers and 11 meso compounds.



**Figure S31.** ESI-LRMS monitoring of the reduction of **6·T2** leading to **8·T2**. Zoom on the region around  $[6\cdotT2-2H]^{6+}$  and  $[8\cdotT2-2H]^{6+}$ . Spectra from top to bottom: simulated for  $[6\cdotT2-2H]^{6+}$ , before addition of BH<sub>3</sub>, after 2, 4, 6, 8 additions, simulated for  $[8\cdotT2-2H]^{6+}$ .



**Figure S32A.** Top: ESI-HRMS of  $[8\cdot T2 + 3 BF_4]^{5+}$ , bottom: simulated isotopic pattern for  $[C_{116}H_{94}N_{20}O_4Pd_4B_3F_{12}]^{5+}$ . The signal was weak for this charge state but intense enough to identify the species.



**Figure S32B.** Top: ESI-HRMS of  $[8\cdot T2 + 4 BF_4]^{4+}$ , bottom: simulated isotopic pattern for  $[C_{116}H_{94}N_{20}O_4Pd_4B_4F_{16}]^{4+}$ .



Figure S32C. Top: ESI-HRMS of  $[8\cdot T2 + 5 BF_4]^{3+}$ , bottom: simulated isotopic pattern for  $[C_{116}H_{94}N_{20}O_4Pd_4B_5F_{20}]^{3+}$ .



**Figure S32D.** Top: ESI-HRMS of  $[8\cdot T2 + 6 BF_4]^{2+}$ , bottom: simulated isotopic pattern for  $[C_{116}H_{94}N_{20}O_4Pd_4B_6F_{24}]^{2+}$ . The signal was weak for this charge state but intense enough to identify the species.

### 1.7 Synthesis and characterization of demetallated macrocycle [3+3] 9



To a stirred solution of **7**·**T1** (crude, 64.0 mg,  $\leq$ 30 µmol) in 6 mL MeCN/CH<sub>2</sub>Cl<sub>2</sub>, 1:1, was added ethylenediamine (12.0 µL, d = 0.897 g/mL, 179 µmol). The mixture was stirred at *r.t.* for 10 min., filtered to remove insoluble material and the solvents were evaporated under vacuum. The resulting solid was dissolved in 3 mL CH<sub>2</sub>Cl<sub>2</sub>, filtered and subjected to preparative layer chromatography (PLC) (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 85:15). The first band was separated in three sections: the central section contained pure **9** while the top and bottom sections contained **9** and impurities. The second band contained pure **T1** (8.7 mg, 28 µmol). The impure fractions of **9** were combined and subjected to as second PLC (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/acetone, 1:1). The main central band contained pure **9**. Pure fractions of **9** from both PLCs were combined and dried under vacuum affording a slightly yellow solid (11.0 mg, 12.1 µmol, FW = 910.10 g/mol). Yield over 4 steps (from **4**): 40%.

<sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>, 298 K) δ (ppm) = 7.60 (t, J = 7.7 Hz, 3H), 7.20 (d, J = 7.7 Hz, 6H), 6.83 (d, J = 8.9 Hz, 12H), 6.61 (d, J = 8.9 Hz, 12H), 4.50 – 5.00 (br, 6H), 4.41 (s, 12H).

<sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, 298 K) δ (ppm) = 158.13, 150.26, 143.82, 137.36, 120.24, 119.69, 114.28, 50.05.

a

**ESI-HRMS** for **9**  $[C_{57}H_{51}N_9O_3 + H^+] m/z = calcd 910.4188$ , found 910.4181.

7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 (ppm)

**Figure S33.** <sup>1</sup>H NMR spectrum of **9** (400 MHz, CDCl<sub>3</sub>, 298 K). s: residual solvents; \*impurity from PLC silica binder.



- 6.2 - 6.4 - 6.6 - 6.8 - 7.0

- 7.2 - 7.4 - 7.6 - 7.8

ł

Figure S35. dqfCOSY spectrum of 9 (500 MHz, CDCl<sub>3</sub>, 298 K).

7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 f2 (ppm)


Figure S36. Edited <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of 9 (11.7 Tesla, CDCl<sub>3</sub>, 298 K).



**Figure S37.** <sup>1</sup>H-<sup>13</sup>C HMBC spectrum of **9** (11.7 Tesla, CDCl<sub>3</sub>, 298 K). The <sup>1</sup>J coupling artifacts are caused by <sup>1</sup>J coupling constant values out of the range filtered by standard HMBC parameters.



**Figure S38.** <sup>1</sup>H NMR spectra (500 MHz, CDCl<sub>3</sub>, 298 K) of **9** (A) as crude material after demetallation, and (B) isolated by PLC. s: residual solvents, \*impurity from PLC silica binder. This comparison shows that the crude material contains mainly **9** and the free template **T1** as proof of the good selectivity of the synthesis method despite the relatively low isolated yield resulting from tedious purification process to remove the minor impurities.



## 1.8 Synthesis and characterization of demetallated macrocycle [4+4] 10

To a stirred solution of 8·T2 (crude, 61.9 mg,  $\leq 20 \ \mu$ mol) in 6 mL MeCN/CH<sub>2</sub>Cl<sub>2</sub>, 1:1, was added ethylenediamine (11.0  $\mu$ L, d = 0.897 g/mL, 164  $\mu$ mol). The mixture was stirred at *r.t.* for 10 min., filtered to remove insoluble material and solvents were evaporated under vacuum. The resulting solid was dissolved in 3 mL CH<sub>2</sub>Cl<sub>2</sub>, filtered and subjected to preparative layer chromatography (PLC) (SiO<sub>2</sub>, CH<sub>2</sub>Cl<sub>2</sub>/MeOH, 85:15). The first band contained pure **10** while the second band contained pure **T2** (11 mg, 18  $\mu$ mol). A small overlapping section was not collected. The pure fraction of **10** was dried under vacuum affording an off-white solid (13.9 mg, 16.9  $\mu$ mol, FW = 1213.46 g/mol). Yield over 3 steps (from **4**): 83%.

<sup>1</sup>**H NMR** (500 MHz, CDCl<sub>3</sub>, 298 K) δ (ppm) = 7.57 (t, *J* = 7.7 Hz, 4H), 7.18 (d, *J* = 7.7 Hz, 8H), 6.81 (d, *J* = 8.9 Hz, 16H), 6.58 (d, *J* = 8.9 Hz, 16H), 4.59 (br, 8H), 4.39 (s, 16H).

<sup>13</sup>**C NMR** (126 MHz, CDCl<sub>3</sub>, 298 K) δ (ppm) = 158.25, 150.18, 143.81, 137.32, 120.11, 119.68, 114.25, 49.98.



**ESI-HRMS** for **10**  $[C_{76}H_{68}N_{12}O_4 + H^+] m/z = calcd 1213.5559$ , found 1213.5549.

7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 (ppm)

Figure S39. <sup>1</sup>H NMR spectrum of **10** (500 MHz, CDCl<sub>3</sub>, 298 K). s: residual solvents.



Figure S41. dqfCOSY spectrum of 10 (500 MHz, CDCl<sub>3</sub>, 298 K).



Figure S42. Edited <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of **10** (11.7 Tesla, CDCl<sub>3</sub>, 298 K).



**Figure S43.** <sup>1</sup>H-<sup>13</sup>C HMBC spectrum of **10** (11.7 Tesla, CDCl<sub>3</sub>, 298 K). The <sup>1</sup>J coupling artifacts are caused by <sup>1</sup>J coupling constant values out of the range filtered by standard HMBC parameters.



**Figure S44.** <sup>1</sup>H NMR spectra (500 MHz, CDCl<sub>3</sub>, 298 K) of **10** (A) as crude material after demetallation, and (B) isolated by PLC. s: residual solvents. This comparison shows that the crude material contains mainly **10** and the free template **T2** as proof of the good selectivity of the synthesis method.



#### 1.9 Synthesis and characterization of bridged macrocycles 52.T33

To a stirred suspension of 2,6-diformylpyridine **1** (13.7 mg, 0.101 mmol), 4,4'-oxydianiline **4** (20.5 mg, 0.102 mmol) and bis(3-pyridyl)naphthalene diimide **T3** (21.1 mg, 0.0502 mmol) in a mixture of 45 mL MeCN and 5 mL CHCl<sub>3</sub> was added a solution of [Pd(MeCN)<sub>4</sub>](BF<sub>4</sub>)<sub>2</sub> (46.3 mg, 0.104 mmol) in 1 mL MeCN. The orange mixture was stirred at 60°C for 20 h. The solution was cooled down to *r.t.*, concentrated to a volume of *ca*. 3 mL with a rotary evaporator, filtered and slowly poured into 30 mL of Et<sub>2</sub>O. The mixture was shaken and left to rest 10 minutes to maximize precipitation then the precipitate was collected by centrifugation. The orange colored supernatant was concentrated to a volume of *ca*. 1 mL, filtered, poured into 30 mL Et<sub>2</sub>O and left to rest for 1 h to complete precipitation. This second precipitate was collected by centrifugation. The combined precipitates were washed with 5 mL Et<sub>2</sub>O and dried under vacuum affording **5**<sub>2</sub>**·T3**<sub>3</sub>(**BF**<sub>4</sub>)<sub>12</sub> as an orange solid (79.4 mg, 0.0168 mmol, FW = 4734.32 g/mol). Quantitative yield.

<sup>1</sup>**H NMR** (500 MHz, CD<sub>3</sub>CN, 298 K) δ (ppm) = 8.57 (t, *J* = 8.1 Hz, 6H), 8.47 (s, 24H, overlapping singlets), 8.45 (d, *J* = 6.6 Hz, 6H), 8.32 (d, *J* = 2.0 Hz, 6H), 8.28 (d, *J* = 8.1 Hz, 12H), 7.49 (d, *J* = 8.4 Hz, 6H), 7.17 (dd, *J* = 8.2, 5.7 Hz, 6H), 7.13 (d, *J* = 8.6 Hz, 24H), 6.95 (br, 24H).

<sup>13</sup>**C NMR** (126 MHz, CD<sub>3</sub>CN, 298 K) δ (ppm) = 172.90, 163.60, 155.80, 152.37, 152.20, 146.21, 142.02, 135.91, 131.43, 128.10, 127.55, 125.71. The number of peaks observed is smaller than the expected 17 peaks because of broadening and/or overlapping.

**ESI-HRMS** for  $5_2 \cdot T3_3$  [( $C_{186}H_{114}N_{30}O_{18}Pd_6$ )<sup>12+</sup>] m/z = [ $5_2 \cdot T3_3 + 4 BF_4$ ]<sup>8+</sup>, calcd: 505.2918, found: 505.2923; [ $5_2 \cdot T3_3 + 5 BF_4$ ]<sup>7+</sup>, calcd: 589.9055, found: 589.9070; [ $5_2 \cdot T3_3 + 6 BF_4$ ]<sup>6+</sup>, calcd: 702.7238, found: 702.7263.



Figure S45. <sup>1</sup>H NMR spectrum of 5<sub>2</sub>·T3<sub>3</sub> (500 MHz, CD<sub>3</sub>CN, 298 K).



**Figure S46.** <sup>13</sup>C NMR spectrum of **5**<sub>2</sub>**·T3**<sub>3</sub> (126 MHz, CD<sub>3</sub>CN, 298 K). Assignment based on HSQC, HMBC spectra and chemical shifts.



Figure S47. dqfCOSY spectrum of 52·T33 (500 MHz, CD3CN, 298 K).



**Figure S48.** Edited <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of **5**<sub>2</sub>**·T3**<sub>3</sub> (11.7 Tesla, CD<sub>3</sub>CN, 298 K).



**Figure S49.** <sup>1</sup>H-<sup>13</sup>C HMBC spectrum of  $5_2$ ·T $3_3$  (11.7 Tesla, CD<sub>3</sub>CN, 298 K). The <sup>1</sup>J coupling artifacts are caused by <sup>1</sup>J coupling constant values out of the range filtered by standard HMBC parameters.



**Figure S50.** <sup>1</sup>H DOSY spectrum of **5**<sub>2</sub>**·T3**<sub>3</sub> (500 MHz, CD<sub>3</sub>CN, 298 K, diffusion delay  $\Delta$  = 32 ms, diffusion gradient length  $\delta$  = 3000 µs).



**Figure S51.** Variable temperature <sup>1</sup>H NMR spectra of  $5_2 \cdot T3_3$  (500 MHz, CD<sub>3</sub>CN) showing desymmetrization at low temperature which is consistent with the helical chirality observed in the solid state.

Considering a coalescence temperature  $T_c = 273\pm5$  K for signals d and d' ( $\Delta v = 308$  Hz), the enantiomerization activation barrier can be estimated to  $\Delta G^{\dagger} = 52\pm2$  kJ mol<sup>-1</sup> at 273 K with the formula  $\Delta G^{\dagger} = R T_c [22.96 + ln(T_c/\Delta v)].^4$ 



**Figure S52.** Variable temperature <sup>19</sup>F NMR spectra of **5**<sub>2</sub>**·T3**<sub>3</sub> (471 MHz, CD<sub>3</sub>CN) showing one signal of BF<sub>4</sub><sup>-</sup> at 298 K indicating fast in-out exchange of BF<sub>4</sub><sup>-</sup> in **5**<sub>2</sub>**·T3**<sub>3</sub> cavity and two signals at 233 K indicating slow in-out exchange.  $\Delta \delta = -1.9$  ppm. Spectra were not calibrated.



**Figure S53.** <sup>1</sup>H NMR spectra (500 MHz, 298 K) showing the assemblies formed with subcomponents **1**, **4**, Pd(II) and various amounts of template **T3** (60°C, 20 h). (A) 0 equiv. of **T3** leading to free macrocycles **5**·(**CD**<sub>3</sub>**CN**)<sub>4</sub> and **6**·(**CD**<sub>3</sub>**CN**)<sub>4</sub> (CD<sub>3</sub>**CN**), (B) 0.25 equiv./Pd of **T3** leading predominantly to free macrocycle **5**·(**CD**<sub>3</sub>**CN**)<sub>3</sub> and fully bridged macrocycles **5**<sub>2</sub>·**T3**<sub>3</sub> with minor species suspected to be intermediates with one or two bridging **T3** (CD<sub>3</sub>CN/CDCl<sub>3</sub>, 10:1), and (C) 0.5 equiv./Pd of **T3** leading to fully bridged macrocycles **5**<sub>2</sub>·**T3**<sub>3</sub> (CD<sub>3</sub>CN/CDCl<sub>3</sub>, 5:1). CDCl<sub>3</sub> was used for the stock solution of **T3** but does not have significant effect on the assembly outcome.



**Figure S54.** ESI-LRMS of  $5_2 \cdot T3_3$  showing the different charge states corresponding to the loss of  $BF_4^-$  anions.



**Figure S55A.** Top: simulated isotopic pattern, bottom: ESI-HRMS of  $[\mathbf{5}_2 \cdot \mathbf{T3}_3 + 4 \text{ BF}_4]^{8+}$ . The signal was weak in ESI-HRMS analysis conditions but intense enough to identify the species.





**Figure S55B.** Top: simulated isotopic pattern, bottom: ESI-HRMS of  $[\mathbf{5}_2 \cdot \mathbf{T3}_3 + 5 \text{ BF}_4]^{7+}$ . The signal was weak in ESI-HRMS analysis conditions but intense enough to identify the species. C:\Users\...\RL-3-140\_190301115152 02-03-19 18:26:29 RL-3-140



**Figure S55C.** Top: simulated isotopic pattern, bottom: ESI-HRMS of  $[\mathbf{5}_2 \cdot \mathbf{T3}_3 + 6 \text{ BF}_4]^{6+}$ . The signal was weak in ESI-HRMS analysis conditions but intense enough to identify the species.

# 1.10 Synthesis and characterization of cages Pd<sub>6</sub>[4+6] **12**·(MeCN)<sub>6</sub> and Pd<sub>9</sub>[6+9] **13**·(MeCN)<sub>9</sub>



To a stirred suspension of 2,6-diformylpyridine **1** (27.5 mg, 0.203 mmol), 1,3,5-tris(4aminophenyl)amine **11** (39.8 mg, 0.137 mmol) in 50 mL MeCN was added a solution of  $[Pd(MeCN)_4](BF_4)_2$  (93.9 mg, 0.211 mmol) in 1 mL MeCN. The black mixture was stirred at 60°C for 20 h. The solution was cooled down to *r.t.*, concentrated to a volume of *ca*. 5 mL with a rotary evaporator, filtered and slowly poured into 30 mL of Et<sub>2</sub>O. The mixture was shaken and left to rest 10 minutes to complete precipitation. The precipitate was collected by centrifugation, washed with 5 mL Et<sub>2</sub>O and dried under vacuum affording a mixture of **12**·(MeCN)<sub>6</sub>(BF<sub>4</sub>)<sub>12</sub> and **13**·(MeCN)<sub>9</sub>(BF<sub>4</sub>)<sub>18</sub> as a black solid (124.6 mg, 0.203 mmol on Pd basis, FW/Pd = 613.75 g/mol). Quantitative yield.

<sup>1</sup>**H NMR** (500 MHz, CD<sub>3</sub>CN, 298 K, mixture of **12·(CD<sub>3</sub>CN)**<sub>6</sub> and **13·(CD<sub>3</sub>CN)**<sub>9</sub>)  $\delta$  (ppm) = 8.55 – 8.45 (m, 6H for **12**, 9H for **13**), 8.35 (s, 12H for **12**), 8.31 (s, 12H for **13**), 8.30 (s, 6H for **13**), 8.20 – 8.13 (m, 12 H for **12**, 18H for **13**), 7.60 – 7.50 (m, 24H for **12**, 36H for **13**), 7.30 (d, *J* = 9.1 Hz, 12H for **13**), 7.28 (d, *J* = 8.9 Hz, 24H for **13**), 7.20 (d, *J* = 9.0 Hz, 24H for **12**).

<sup>13</sup>**C NMR** (126 MHz, CD<sub>3</sub>CN, 298 K, mixture of **12·(CD<sub>3</sub>CN)**<sub>6</sub> and **13·(CD<sub>3</sub>CN)**<sub>9</sub>) δ (ppm) =. 172.43, 157.16, 156.95, 156.85, 150.38, 149.73, 149.53, 146.43, 146.36, 143.26, 143.17, 131.37, 131.26, 126.21, 125.70, 125.56, 125.36. The number of peaks observed is smaller than the expected 8 peaks for **12** and 16 peaks for **13** because of broadening and/or overlapping.

**ESI-LRMS** for  $12 \cdot Cl_6 [(C_{114}H_{78}Cl_6N_{22}Pd_6)^{6+}] m/z = [12 \cdot Cl_6]^{6+}$ , calcd: 434.53, found: 434.34;  $[12 \cdot Cl_6 + BF_4]^{5+}$ , calcd: 538.80, found: 538.65;  $[12 \cdot Cl_6 + 2 BF_4]^{4+}$ , calcd: 695.20, found: 695.44.

**ESI-LRMS** for **13**·**Cl**<sub>9</sub> [( $C_{171}H_{117}Cl_9N_{33}Pd_9$ )<sup>9+</sup>] m/z = [**13**·**Cl**<sub>9</sub>]<sup>9+</sup>, calcd: 434.53, found: 434.34; [**13**·**Cl**<sub>9</sub> + BF<sub>4</sub>]<sup>8+</sup>, calcd: 499.70, found: 499.51; [**13**·**Cl**<sub>9</sub> + 2 BF<sub>4</sub>]<sup>7+</sup>, calcd: 583.48, found: 583.15; [**13**·**Cl**<sub>9</sub> + 3 BF<sub>4</sub>]<sup>6+</sup>, calcd: 695.19, found: 695.44; [**13**·**Cl**<sub>9</sub> + 4 BF<sub>4</sub>]<sup>5+</sup>, calcd: 851.59, found: 851.08.



**Figure S56.** <sup>1</sup>H NMR spectrum of mixture of **12**·(**CD**<sub>3</sub>**CN**)<sub>6</sub> and **13**·(**CD**<sub>3</sub>**CN**)<sub>9</sub> (500 MHz, CD<sub>3</sub>CN, 298 K).



178 176 174 172 170 168 166 164 162 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 (ppm)

Figure S57. <sup>13</sup>C NMR spectrum of mixture of **12**·(CD<sub>3</sub>CN)<sub>6</sub> and **13**·(CD<sub>3</sub>CN)<sub>9</sub> (126 MHz, CD<sub>3</sub>CN, 298 K).



**Figure S59.** Edited <sup>1</sup>H-<sup>13</sup>C HSQC spectrum of mixture of  $12 \cdot (CD_3CN)_6$  and  $13 \cdot (CD_3CN)_9$  (11.7 Tesla, CD<sub>3</sub>CN, 298 K). The unusual shape of the correlation spot for the N=CH is most likely caused by a <sup>1</sup>J coupling constant value out of the usual range covered by standard HSQC parameters.



**Figure S60.** <sup>1</sup>H-<sup>13</sup>C HMBC spectrum of mixture of **12**·(**CD**<sub>3</sub>**CN**)<sub>6</sub> and **13**·(**CD**<sub>3</sub>**CN**)<sub>9</sub> (11.7 Tesla, CD<sub>3</sub>CN, 298 K).



**Figure S61A.** <sup>1</sup>H DOSY spectrum of mixture of **12**·(**CD**<sub>3</sub>**CN**)<sub>6</sub> and **13**·(**CD**<sub>3</sub>**CN**)<sub>9</sub> (500 MHz, CD<sub>3</sub>CN, 298 K, diffusion delay  $\Delta$  = 50 ms, diffusion gradient length  $\delta$  = 3000 µs).



The theoretical radii for a sphere containing **12** and a spheroid containing **13** would be 13.4 Å and 14.7 Å, respectively, based on the crystal structure of  $12 \cdot Cl_6$  and a PM3 model of  $13 \cdot Cl_9$  (see Figure S61B).

Dimensions are expected to be similar for 12-(MeCN)<sub>6</sub> and 13-(MeCN)<sub>9</sub>

Figure S61B. Radii of a theoretical sphere containing cage 12 and a spheroid containing cage 13.

The Stokes-Einstein equation can generally be used to determine the effective radius of a spherical particle moving through a fluid by thermal motion (or diffusion):

 $r = \frac{k_B T}{6 \pi \eta D}$ , where r is the effective radius (in m), k<sub>B</sub> the Boltzmann constant (in J·K<sup>-1</sup>), T the temperature (in K),  $\eta$  the fluid viscosity (in Pa·s), and D the diffusion coefficient of the particle (in m<sup>2</sup>·s<sup>-1</sup>).

Following the Stokes-Einstein equation and with a CD<sub>3</sub>CN viscosity of  $3.41 \times 10^{-4}$  Pa·s,<sup>5</sup> the diffusion coefficients calculated following the DOSY experiment of Figure S61A correspond to solvodynamic radii of 9.8 Å and 12.2 Å for Pd<sub>6</sub>[4+6] **12·(MeCN)**<sub>6</sub> and Pd<sub>9</sub>[6+9] **13·(MeCN)**<sub>9</sub>, respectively (assuming perfect sphere behavior). These calculated solvodynamic radii are smaller than the corresponding particle radii which we infer is due to the shape of cages **12·(MeCN)**<sub>6</sub> and **13·(MeCN)**<sub>9</sub>. Indeed, these cages are hollow with open faces, which leads to a smaller contact surface area compared to the corresponding closed spheres. Therefore, such open cage structures are expected to diffuse more rapidly than the corresponding closed spheres.

The radius values obtained with the Stokes-Einstein equation hold limited physical meaning for particles that deviate strongly from the behavior of a closed spherical particle. As we are not aware of a suitable theoretical model to correlate the diffusion coefficients with the radii of such open cage structures, we interpret the diffusion coefficients qualitatively, noting that larger assembly **13** diffuses more slowly than smaller assembly **12**.



**Figure S62.** ESI-LRMS of mixture of  $12 \cdot Cl_6$  and  $13 \cdot Cl_9$  showing the different charge states corresponding to the loss of  $BF_4^-$  anions.



## 1.11 Enrichment of cages Pd<sub>6</sub>[4+6] **12·Cl<sub>6</sub>** and Pd<sub>9</sub>[6+9] **13·Cl<sub>9</sub>**

To a stirred solution of 12·(MeCN)<sub>6</sub>(BF<sub>4</sub>)<sub>12</sub> and 13·(MeCN)<sub>9</sub>(BF<sub>4</sub>)<sub>18</sub> (124 mg, 0.202 mmol in Pd) in 50 mL MeCN at r.t. was added a solution of  $nBu_4N^+Cl^-$  in MeCN (0.10 M, 2.00 mL, 0.200 mmol).  $nBu_4N^+NTf_2^-$ (523 mg, 1.00 mmol) was added and the mixture was concentrated to a volume of ca. 5 mL with a rotary evaporator and slowly poured into 30 mL of Et<sub>2</sub>O. The mixture was shaken and left to rest 10 minutes to complete precipitation. The precipitate was collected by centrifugation, washed with 5 mL Et<sub>2</sub>O and dissolved in a minimum amount of MeCN without drying. Two more cycles of  $nBu_4N^+NTf_2^$ addition, concentration, precipitation, washing and dissolution were performed. The final precipitate was dried under vacuum affording a poorly soluble black solid containing a mixture of  $12 \cdot Cl_6(NTf_2)_6$ and  $13 \cdot Cl_9(NTf_2)_9$ . Repeated extractions of the solid with 5 mL MeCN were performed, regularly replacing the MeCN (initially after one hour and gradually increasing the extraction time up to one month) and isolating each extract fraction. The extract fractions were gently dried by blowing  $N_2$ affording solids of <10 mg each. <sup>1</sup>H NMR analysis in CD<sub>3</sub>CN showed enrichment in  $12 \cdot Cl_6(NTf_2)_6$  for the early fractions and  $13 \cdot Cl_9(NTf_2)_9$  for the late fractions. The amount of material dissolved over time decreased exponentially, thus the solid was never fully dissolved but some product could continuously be extracted (over 10 extractions for 3 months). Sonication and heating to 60 °C over periods of less than an hour did not show significant effect on the kinetics of dissolution.



Figure S63. <sup>1</sup>H NMR spectra (CD<sub>3</sub>CN, 298 K) of (A)  $12 \cdot (MeCN)_6(BF_4)_{12}$  and  $13 \cdot (MeCN)_9(BF_4)_{18}$  (500 MHz), (B) enriched  $12 \cdot Cl_6(NTf_2)_6$  from first extraction (400 MHz), and (C) enriched  $13 \cdot Cl_9(NTf_2)_9$  from fifth extraction (400 MHz).



## 1.12 Synthesis and characterization of templated cage 13·T3<sub>3</sub>·Cl<sub>3</sub>

To a stirred solution of  $12 \cdot (MeCN)_6 (BF_4)_{12}$  and  $13 \cdot (MeCN)_9 (BF_4)_{18}$  (6.1 mg, 10 µmol in Pd) in 4 mL MeCN at *r.t.* were added bis(3-pyridyl)naphthalene diimide T3 (1.4 mg, 3.3 µmol) and a solution of  $nBu_4N^+Cl^-$  in MeCN (0.10 M, 30 µL, 3.0 µmol). The mixture was stirred and heated under microwave radiation at 150°C for 30 min. The solvent was removed under vacuum and the crude product was analyzed by <sup>1</sup>H NMR spectroscopy showing a yield of 11% based on signal integration comparison with  $nBu_4N^+$ . Further purification was precluded due to the high amount of oligomeric byproducts in the sample.

The synthesis of  $13 \cdot T3 \cdot Cl_3$  was attempted under stirring at *r.t.* or at 60°C (oil bath) for 24 h but the yield of  $13 \cdot T3 \cdot Cl_3$  was in the range 8-10% according to NMR analysis (see Table S1). The synthesis of  $13 \cdot T3 \cdot Cl_3$  was also attempted through aniline exchange without improving the yield (see Figure S80).

<sup>1</sup>**H NMR** (500 MHz, CD<sub>3</sub>CN, 298 K) δ (ppm) = 8.80 (d, J = 5.7 Hz, 6H), 8.63 (d, J = 2.1 Hz, 6H), 8.53 (t, J = 8.1 Hz, 6H), 8.50 (s, 12H), 8.46 (t, J = 8.0 Hz, 3H), 8.40 (s, 12H), 8.37 (s, 6H), 8.23 (d, J = 8.2 Hz, 12H), 8.18 (d, J = 7.9 Hz, 6H), 7.81 (d, J = 8.1 Hz, 6H), 7.66 (d, J = 8.4 Hz, 12H), 7.31 (dd, J = 8.2, 5.7 Hz, 6H), 7.21 (d, J = 8.4 Hz, 12H), 7.11 (d, J = 8.5 Hz, 24H), 6.94 (d, J = 8.6 Hz, 24H).

**ESI-LRMS** for **13·T3·Cl<sub>3</sub>** [( $C_{243}H_{153}Cl_3N_{45}O_{12}Pd_9$ )<sup>15+</sup>] m/z = [**13·T3·Cl<sub>3</sub>** + 2 BF<sub>4</sub>]<sup>13+</sup>, calcd: 394.83, found: 394.92; [**13·T3·Cl<sub>3</sub>** + 3 BF<sub>4</sub>]<sup>12+</sup>, calcd: 434.96, found: 434.99; [**13·T3·Cl<sub>3</sub>** + 4 BF<sub>4</sub>]<sup>11+</sup>, calcd: 482.40, found: 482.40; [**13·T3·Cl<sub>3</sub>** + 5 BF<sub>4</sub>]<sup>10+</sup>, calcd: 539.32, found: 539.31; [**13·T3·Cl<sub>3</sub>** + 6 BF<sub>4</sub>]<sup>9+</sup>, calcd: 608.89, found: 608.87; [**13·T3·Cl<sub>3</sub>** + 7 BF<sub>4</sub>]<sup>8+</sup>, calcd: 695.85, found: 695.89; [**13·T3·Cl<sub>3</sub>** + 8 BF<sub>4</sub>]<sup>7+</sup>, calcd: 807.65, found: 807.69; [**13·T3·Cl<sub>3</sub>** + 9 BF<sub>4</sub>]<sup>6+</sup>, calcd: 956.73, found: 956.90; [**13·T3·Cl<sub>3</sub>** + 10 BF<sub>4</sub>]<sup>5+</sup>, calcd: 1165.44, found: 1165.56.



**Figure S64.** <sup>1</sup>H NMR spectrum of **13·T3·Cl<sub>3</sub>** (500 MHz, CD<sub>3</sub>CN, 298 K, crude mixture). <sup>1</sup>H signal assignment is based on integration, multiplicity and expected chemical shifts. Broad signals correspond presumably to oligomeric species. The low concentration of **13·T3·Cl<sub>3</sub>** prevented full 2D NMR characterization in reasonable spectrometer usage time.



**Figure S65.** ESI-LRMS of **13·T3·Cl<sub>3</sub>** (crude mixture) showing the different charge states corresponding to the loss of  $BF_4^-$  anions. Fluoride is suspected to originate from  $BF_4^-$  fragmentation in ESI-MS conditions.

**Table S1.** Templates tested to form templated covalent cages. Conditions were  $CD_3CN$ , 60 °C, 18 h at a concentration of 2 mM in Pd unless otherwise stated.

| #                      | Starting Material                                                                                                    | Template<br>(equiv/Pd)                      | Expected structure                                                    | Result                                  |
|------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|
| 1                      | 1/11/[Pd(MeCN) <sub>4</sub> ](BF <sub>4</sub> ) <sub>2</sub> ; 3:2:3                                                 | <b>T1</b> (0.167)                           | 12·T1·(MeCN)₃                                                         | Complex mixture                         |
| 2                      | 1/11/[Pd(MeCN) <sub>4</sub> ](BF <sub>4</sub> ) <sub>2</sub> ; 3:2:3                                                 | <b>T1</b> (0.222)                           | 13·T1 <sub>2</sub> ·(MeCN) <sub>3</sub>                               | <b>Complex</b> mixture                  |
| 3                      | 12·(MeCN) <sub>6</sub> (BF <sub>4</sub> ) <sub>12</sub> +<br>13·(MeCN) <sub>9</sub> (BF <sub>4</sub> ) <sub>18</sub> | <b>T1</b> (0.167)                           | 12·T1·(MeCN)₃                                                         | Complex mixture                         |
| 4                      | 12·(MeCN) <sub>6</sub> (BF <sub>4</sub> ) <sub>12</sub> +<br>13·(MeCN) <sub>9</sub> (BF <sub>4</sub> ) <sub>18</sub> | <b>T1</b> (0.222)                           | 13·T1₂·(MeCN)₃                                                        | Complex mixture                         |
| <b>5</b> <sup>a</sup>  | 1/11/[Pd(MeCN) <sub>4</sub> ](BF <sub>4</sub> ) <sub>2</sub> ; 3:2:3                                                 | <b>T2</b> (0.111)                           | 13·T2·(MeCN)₅                                                         | Complex mixture                         |
| <b>6</b> <sup>a</sup>  | 1/11/[Pd(MeCN) <sub>4</sub> ](BF <sub>4</sub> ) <sub>2</sub> ; 3:2:3                                                 | <b>T2</b> (0.167)                           | Pd <sub>12</sub> cage•T2 <sub>2</sub> •(MeCN) <sub>4</sub>            | <b>Complex</b> mixture                  |
| <b>7</b> ª             | 12·(MeCN) <sub>6</sub> (BF <sub>4</sub> ) <sub>12</sub> +<br>13·(MeCN) <sub>9</sub> (BF <sub>4</sub> ) <sub>18</sub> | <b>T2</b> (0.111)                           | 13·T2·(MeCN)₅                                                         | Complex mixture                         |
| <b>8</b> <sup>a</sup>  | 12·(MeCN) <sub>6</sub> (BF <sub>4</sub> ) <sub>12</sub> +<br>13·(MeCN) <sub>9</sub> (BF <sub>4</sub> ) <sub>18</sub> | <b>T2</b> (0.167)                           | Pd <sub>12</sub> cage• <b>T2<sub>2</sub>•(MeCN)</b> <sub>4</sub>      | Complex mixture                         |
| 9                      | <b>1/11</b> /[Pd(MeCN) <sub>4</sub> ](BF <sub>4</sub> ) <sub>2</sub> ; 3:2:3                                         | <b>T3</b> (0.33)                            | <b>13·T3₃·(MeCN)₃</b> or<br>Pd <sub>12</sub> cage <b>·T3₄·(MeCN)₄</b> | Complex mixture                         |
| 10                     | 1/11/[Pd(MeCN) <sub>4</sub> ](BF <sub>4</sub> ) <sub>2</sub> ; 3:2:3                                                 | <b>T3</b> (0.50)                            | Pd <sub>12</sub> cage• <b>T3</b> 6                                    | Complex mixture                         |
| 11                     | 12·(MeCN) <sub>6</sub> (BF <sub>4</sub> ) <sub>12</sub> +<br>13·(MeCN) <sub>9</sub> (BF <sub>4</sub> ) <sub>18</sub> | <b>T3</b> (0.33)                            | <b>13·T3₃·(MeCN)₃</b> or<br>Pd <sub>12</sub> cage <b>·T3₄·(MeCN)₄</b> | Complex mixture                         |
| 12                     | 12·(MeCN) <sub>6</sub> (BF <sub>4</sub> ) <sub>12</sub> +<br>13·(MeCN) <sub>9</sub> (BF <sub>4</sub> ) <sub>18</sub> | <b>T3</b> (0.50)                            | $Pd_{12}$ cage- <b>T3</b> <sub>6</sub>                                | Complex mixture                         |
| <b>13</b> <sup>b</sup> | 12·(MeCN) <sub>6</sub> (BF <sub>4</sub> ) <sub>12</sub> +<br>13·(MeCN) <sub>9</sub> (BF <sub>4</sub> ) <sub>18</sub> | <b>T3</b> (0.33) +<br><i>n</i> Bu₄Cl (0.33) | 13·T3 <sub>3</sub> ·Cl <sub>3</sub>                                   | <b>13·T3₃·Cl₃</b> + oligomers           |
| <b>14</b> <sup>c</sup> | 12·(MeCN) <sub>6</sub> (BF <sub>4</sub> ) <sub>12</sub> +<br>13·(MeCN) <sub>9</sub> (BF <sub>4</sub> ) <sub>18</sub> | <b>T3</b> (0.33) +<br><i>n</i> Bu₄Cl (0.33) | 13·T3 <sub>3</sub> ·Cl <sub>3</sub>                                   | <b>13·T3₃·Cl₃</b> + oligomers           |
| 15 <sup>d</sup>        | 12·(MeCN) <sub>6</sub> (BF <sub>4</sub> ) <sub>12</sub> +<br>13·(MeCN) <sub>9</sub> (BF <sub>4</sub> ) <sub>18</sub> | <b>T3</b> (0.33) +<br><i>n</i> Bu₄Cl (0.33) | 13·T3₃·Cl₃                                                            | <b>13·T3₃·Cl₃</b> + oligomers           |
| 16                     | <b>15e</b> then <b>11</b> (0.67 equiv/Pd)<br>after addition of template                                              | <b>T3</b> (0.33) +<br><i>n</i> Bu₄Cl (0.33) | 13·T3₃·Cl₃                                                            | <b>13·T3</b> ₃ <b>·Cl</b> ₃ + oligomers |

<sup>a</sup> Tests in CD<sub>3</sub>CN and CD<sub>3</sub>CN/CDCl<sub>3</sub>, 9:1 did not show noticeable difference in result.

<sup>b</sup> CD<sub>3</sub>CN gave the expected result but tests in CD<sub>3</sub>CN/CDCl<sub>3</sub> (1:1), CD<sub>3</sub>NO<sub>2</sub> and CD<sub>3</sub>NO<sub>2</sub>/CDCl<sub>3</sub> (1:1) led to unidentified precipitate.

<sup>c</sup> Stirred at room temperature for 18 h.

<sup>d</sup> Stirred at 150 °C under microwave radiation for 30 min.



#### 1.13 Reduction and demetallation of cages Pd<sub>6</sub>[4+6] **12·Cl<sub>6</sub>** and Pd<sub>9</sub>[6+9] **13·Cl<sub>9</sub>**

The reduction and demetallation of cages **12**·**Cl**<sub>6</sub> and **13**·**Cl**<sub>9</sub> was performed. ESI-MS monitoring of the reduction step shows that the reaction proceeds smoothly, similarly to the reduction of macrocycles **5**·**T1** and **6**·**T2** (see Figures S66 and S67). The demetallation occurs swiftly upon addition of ethylenediamine as shown by NMR monitoring (see Figure S68). Unfortunately, the numerous stereoisomers of reduced cages **S2**·**Cl**<sub>6</sub> and **S3**·**Cl**<sub>9</sub> prevented NMR characterization and purity assessment and the low solubility of the final demetallated cages **S4** and **S5** after precipitation prevented further characterization and purity assessment. Therefore, no yield could be determined.

Procedure:

To a stirred solution of **12**·(**MeCN**)<sub>6</sub>(**BF**<sub>4</sub>)<sub>12</sub> and **13**·(**MeCN**)<sub>9</sub>(**BF**<sub>4</sub>)<sub>18</sub> (124 mg, 0.202 mmol in Pd) in 50 mL MeCN at *r.t.* was added a solution of  $nBu_4N^+Cl^-$  in MeCN (0.10 M, 2.00 mL, 0.200 mmol). After 5 min. 10 mL MeOH was added to the mixture. After 10 minutes, BH<sub>3</sub>·THF (1M) was added stepwise (8 additions of 100 µL, one every 10 min., total 0.80 mmol) and the reaction was monitored by ESI-MS (see Figures S66 and S67). The mixture was filtered and slowly poured into 60 mL of Et<sub>2</sub>O. The precipitate was collected by centrifugation, washed with 5 mL Et<sub>2</sub>O <u>without drying</u>. The solid was dissolved in 10 mL MeCN by sonication. The solution was slowly poured into 30 mL Et<sub>2</sub>O, left to rest for 30 min. and the precipitate was collected by centrifugation then washed with 5 mL Et<sub>2</sub>O and dried under vacuum affording a black solid (87.2 mg, presumably mixture of **S2·Cl**<sub>6</sub> and **S3·Cl**<sub>9</sub>).

Note: the two precipitations were performed to remove  $nBu_4N^+BF_4^-$  byproduct.

To a solution of the mixture of **S2·Cl<sub>6</sub>** and **S3·Cl<sub>9</sub>** (2.0 mg, expected 3.8 µmol in Pd) in 0.5 mL DMSO- $d_6$  at *r.t.* was added ethylenediamine (7.6 µmol, stock solution in DMSO- $d_6$ ) under <sup>1</sup>H NMR spectroscopy monitoring (see Figure S68). The mixture was poured into 5 mL H<sub>2</sub>O and the precipitate was collected by centrifugation. The solid material obtained could not be dissolved despite a wide range of solvents tested under heating and sonication: DMSO, DMF, pyridine, toluene, chlorobenzene, CH<sub>2</sub>Cl<sub>2</sub>, CHCl<sub>3</sub>, CH<sub>2</sub>ClCH<sub>2</sub>Cl, CHCl<sub>2</sub>CHCl<sub>2</sub>, CCl<sub>2</sub>=CCl<sub>2</sub>, THF, MeOH, EtOH, MeCN, AcOEt, acetone, hexane. The solvent did not show coloration and spots deposited on TLC plates did not show the presence of product after drying.



**Figure S66.** ESI-LRMS monitoring of the reduction of cages  $12 \cdot Cl_6$  and  $13 \cdot Cl_9$ . Zoom on the region around  $[12 \cdot Cl_6]^{6+}$  and  $[S2 \cdot Cl_6]^{6+}$ . Spectra from top to bottom: simulated for  $[12 \cdot Cl_6]^{6+}$ , before addition of BH<sub>3</sub>, after 2, 4, 6, 8 additions, simulated for  $[S2 \cdot Cl_6]^{6+}$ .



**Figure S67.** ESI-LRMS monitoring of the reduction of cages  $12 \cdot Cl_6$  and  $13 \cdot Cl_9$ . Full spectra showing that both [4+6] and [6+9] cages are reduced. Fluoride is suspected to originate from  $BF_4^-$  fragmentation in ESI-MS conditions.



**Figure S68.** <sup>1</sup>H NMR spectra (500 MHz, DMSO-*d*<sub>6</sub>, 298 K) of (A) the mixture of reduced cages **S2·Cl**<sub>6</sub> and **S3·Cl**<sub>9</sub>, and (B) after addition of ethylenediamine. The assignment proposed for **S4** and **S5** is based on expected chemical shifts and signals intensity. The broadening of the signals might be due to restricted conformational motion of the cages.



# 2. Anion binding by macrocycles 5 and 6

**Figure S69.** Effect of anions on macrocycles  $5 \cdot (CD_3CN)_3$  and  $6 \cdot (CD_3CN)_4$  analyzed by <sup>1</sup>H NMR spectroscopy (500 MHz, CD<sub>3</sub>CN, 298 K).



**Figure S70.** ESI-LRMS of  $5 \cdot Cl_3$  showing the different charge states corresponding to the loss of  $BF_4^-$  anions and solvent adduct peaks.



**Figure S71.** ESI-LRMS of **5**•**Br**<sub>3</sub> showing the different charge states corresponding to the loss of  $BF_4^-$  anions, solvent adduct peak and peaks likely originating from fragmentation in ESI-MS conditions.



# 3. Anion binding by cages 12 and 13

**Figure S72.** Effect of anions on cages **12**·(**CD**<sub>3</sub>**CN**)<sub>6</sub> and **13**·(**CD**<sub>3</sub>**CN**)<sub>9</sub> analyzed by <sup>1</sup>H NMR spectroscopy (500 MHz, CD<sub>3</sub>CN, 298 K). Vertical scaling: x2 for Cl<sup>-</sup>, x2 for Br<sup>-</sup>, x5 for l<sup>-</sup>, x5 for SCN<sup>-</sup>. \*trace of CHCl<sub>3</sub>.

# 4. Cage assembly attempts with tris-anilines other than 11



**Figure S73.** <sup>1</sup>H NMR spectra (500 MHz, CD<sub>3</sub>CN, 298 K) of products from assembly of rigid tris-anilines with **1** and Pd(II). Sharp peaks are extremely small and only stand out because of the extreme broadening of signals for the main oligomeric products. Despite careful stoichiometry balance for the subcomponents, free **1** was observed in some cases which is suspected to originate from non-condensed anilines in the oligomeric species. For comparison purpose, the peaks of remaining **1** integrate for less than 10% of the original value (recorded before addition of Pd(II) and heating). \*traces of solvents.

## 5. Aniline exchange





**Figure S74.** <sup>1</sup>H NMR spectra (500 MHz, CD<sub>3</sub>CN, 298 K) of **15·CD<sub>3</sub>CN** formed by heating reactants (**1/14**/Pd(II), 1:2:1 ratio) at 70°C for 14 h. Such reaction time is not necessary since completion was also observed after 1 h of heating in other experiments. \* Unknown side product ( $\delta$  close to **14f** signals).



**Figure S75.** <sup>1</sup>H NMR spectra (500 MHz, CD<sub>3</sub>CN, 298 K) of the heated mixture of **1/14g**/Pd(II) (1.0:2.2:1.0 ratio) at 70°C for (A) 2 h and (B) 24 h. Despite the excess of aniline **14g**, some unreacted **1** remains present and a complicated mixture of products is formed. Note that the failed clean formation of **15g** could result both from the low nucleophilicity of **14g** and from the bulkier *o*-fluorine substituents on **14g**.



**Figure S76.** <sup>19</sup>F NMR spectra (376 MHz, CD<sub>3</sub>CN, 298 K) of (A) **14g** and (B) the heated mixture of **1/14g**/Pd(II) (1.0:2.2:1.0 ratio) at 70°C for 2 h. Most starting material **14g** remains unreacted and a complicated mixture of products is formed. Note that the failed clean formation of **15g** could result both from the low nucleophilicity of **14g** and from the bulkier *o*-fluorine substituents on **14g**.



**Figure S77.** <sup>1</sup>H NMR spectra (500 MHz, CD<sub>3</sub>CN, 298 K) showing the aniline exchange from mono-nuclear complexes **15·CD<sub>3</sub>CN** to macrocycle **3·(CD<sub>3</sub>CN)**<sub>4</sub>. Non-assigned signals likely correspond to side products resulting from mixed anilines complexes. The most efficient exchanges are observed for **15e** and **15f** since all the starting material was consumed and minimal amount of side product was observed.



**Figure S78.** <sup>1</sup>H NMR spectra (500 MHz, CD<sub>3</sub>CN, 298 K) showing different stages of the aniline exchange from mono-nuclear complex **15e·CD<sub>3</sub>CN** to cages **12·(CD<sub>3</sub>CN)**<sub>6</sub> and **13·(CD<sub>3</sub>CN)**<sub>6</sub>. Non-assigned signals likely correspond to side products resulting from mixed anilines complexes. Top spectrum vertical scale divided by 4. The aniline exchange proceeds fast as shown by the large amount of **14e** released after 15 min. at *r.t.* and starting from **15e** leads almost cleanly to the desired cages contrary to **15f** (see Figure S79).


**Figure S79.** <sup>1</sup>H NMR spectra (500 MHz, CD<sub>3</sub>CN, 298 K) showing different stages of the aniline exchange from mono-nuclear complex **15f·CD<sub>3</sub>CN** to cages **12·(CD<sub>3</sub>CN)**<sub>6</sub> and **13·(CD<sub>3</sub>CN)**<sub>6</sub>. Non-assigned signals likely correspond to side products resulting from mixed anilines complexes. Top spectrum vertical scale divided by 4. The aniline exchange proceeds fast as shown by the large amount of **14f** released after 5 min. at *r.t.* but, in these conditions starting from **15f**, the cages are not cleanly formed.



**Figure S80.** <sup>1</sup>H NMR spectrum (500 MHz, CD<sub>3</sub>CN, 298 K) of the crude **13·T3<sub>3</sub>·Cl**<sub>3</sub> synthesized by aniline exchange from mono-nuclear complex **15e·MeCN**, template **T3** and chloride. The small deviation in integration of **13·T3<sub>3</sub>·Cl**<sub>3</sub> are likely caused by the broad signals overlapping with them despite linear correction of the integrals. Signals integral ratio between **13·T3<sub>3</sub>·Cl**<sub>3</sub> and **14e** indicate a yield of 8% for the desired cage. The rest of the side products are likely oligomeric species.

## 6. Potential cage formation from tetrakis-aniline building blocks

With a 90° divalent building block such as the bis(imino)pyridyl-Pd(II) studied herein and a planar tetravalent building block (90° between linkers), two symmetrical structures can be predicted (*i.e.* structures where all building blocks of the same type have the same role). These structures are either a [6+12] cuboctahedral cage or a linear planar polymer (Figure S81). The cage should be entropically favorable but the linear polymer can be favored if it is more favorable for the divalent and tetravalent building blocks to be in a same plane rather than perpendicular (which is the case in the cage structure).

We tested the assembly of **1**, Pd(II) and the tetrakis(4-aminophenyl)porphyrin subcomponent **S10** under typical assembly conditions (*i.e.* CD<sub>3</sub>CN, 2 mM in Pd, 60°C) but <sup>1</sup>H NMR analysis only revealed extremely broadened signals likely corresponding to polymeric species and nothing was observed by ESI-MS analysis. This result suggests that polymeric species are favored.



**Figure S81.** Potential symmetric structures resulting from the assembly of a divalent 90° bent and a tetravalent planar 90° building blocks.

The fact that polymeric species are favored from the self-assembly of **1** and **S10** building blocks can be put in parallel with the absence of report for the corresponding "classical" Pd(II)<sub>12</sub> coordination cage expected for the tetrakis-pyridyl ligand tetrakis(4-pyridyl)porphyrin while the capped linear oligomers, so-called "porphyrin tapes", were reported.<sup>6</sup> Indeed, aromatic rings stemming from porphyrin cores have a preferential out-of-plane orientation in regard to the porphyrin plane due to steric hindrance and such an orientation is expected to favor the linear polymer over the desired cage (see geometrical details in Figure S82). Other tetrakis-aniline compounds with different geometrical properties might lead to the expected Pd<sub>12</sub> cage with bis(imino)pyridyl-Pd(II) building block but were not explored in the present study.



**Figure S82.** Geometrical constraints favoring linear polymers in Pd(II) complexes involving porphyrin as planar 90° tetravalent building blocks.

# 7. X-ray Crystallography

Data were collected at Beamline 119 of Diamond Light Source employing silicon double crystal monochromated synchrotron radiation (0.6889 Å) with  $\omega$  and  $\psi$  scans at 100(2) K.<sup>7</sup> Data integration and reduction were undertaken with Xia2.<sup>8</sup> Subsequent computations were carried out using the WinGX-32 graphical user interface.<sup>9</sup> Multi-scan empirical absorption corrections were applied to the data using the AIMLESS<sup>10</sup> tool in the CCP4 suite.<sup>11</sup> The structures were solved by dual-space methods using SHELXT<sup>12</sup> then refined and extended with SHELXL.<sup>13</sup> In general, non-hydrogen atoms with occupancies greater than 0.5 were refined anisotropically. Carbon-bound hydrogen atoms were included in idealized positions and refined using a riding model. Disorder was modelled using standard crystallographic methods including constraints, restraints and rigid bodies where necessary. Crystallographic data along with specific details pertaining to the refinement follow. Crystallographic data have been deposited with the CCDC (1903235, 1903236 and 1903237).

#### 7.1 [**3**]·8AsF<sub>6</sub>·8MeCN·2H<sub>2</sub>O

Formula C<sub>92</sub>H<sub>80</sub>As<sub>8</sub>F<sub>48</sub>N<sub>20</sub>O<sub>2</sub>Pd<sub>4</sub>, *M* 3434.72, Monoclinic, space group C 2/c (#15), *a* 52.893(11), *b* 8.1609(16), *c* 38.856(8) Å, *b* 132.39(3)°, *V* 12388(6) Å<sup>3</sup>, *D*<sub>C</sub> 1.842 g cm<sup>-3</sup>, *Z* 4, crystal size 0.050 by 0.050 by 0.050 mm, colour yellow, habit block, temperature 100(2) Kelvin,  $\lambda$ (Synchrotron) 0.6889 Å,  $\mu$ (Synchrotron) 2.580 mm<sup>-1</sup>, *T*(Analytical)<sub>min,max</sub> 0.987469601804, 1.0,  $2\vartheta_{max}$  41.60, *hkl* range -54 54, -8 8, -40 39, *N* 31246, *N*<sub>ind</sub> 7104(*R*<sub>merge</sub> 0.1255), *N*<sub>obs</sub> 4456(I > 2 $\sigma$ (I)), *N*<sub>var</sub> 912, residuals\* *R*1(*F*) 0.0772, *wR*2(*F*<sup>2</sup>) 0.2137, GoF(all) 0.956,  $\Delta\rho_{min,max}$  -0.620, 1.154 e<sup>-</sup> Å<sup>-3</sup>.

\* $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$  for  $F_o > 2\sigma(F_o)$ ; wR2 =  $(\Sigma w (F_o^2 - F_c^2)^2 / \Sigma (w F_c^2)^2)^{1/2}$  all reflections

 $w=1/[\sigma^2(F_o^2)+(0.1429P)^2]$  where  $P=(F_o^2+2F_c^2)/3$ 

#### Specific refinement details:

The crystals of  $[3]\cdot 8AsF_6 \cdot 4MeCN \cdot 2H_2O$  were grown by diffusion at *r.t.* of *i*Pr<sub>2</sub>O into an acetonitrile solution of  $[3\cdot(MeCN)_4]\cdot 8BF_4$  (0.5 mM) containing excess K<sup>+</sup>AsF<sub>6</sub><sup>-</sup> (*ca.* 20 mM). The crystals employed immediately lost solvent after removal from the mother liquor and rapid handling prior to flash cooling in the cryostream was required to collect data. Despite these measures and the use of synchrotron radiation few reflections at greater than 0.97 Å resolution were observed. The asymmetric unit was found to contain one half of a  $3\cdot(MeCN)_4$  assembly and associated counterions and solvent molecules. The hydrogen atoms of the half occupancy water molecules could not be located in the electron density map and were not included in the model.

The anions within the structure show evidence of significant disorder. The four anions (per asymmetric unit) were modelled as disordered over five lattice sites, one of which shows additional disorder of the fluorine atoms. Bond length and thermal parameter restraints were applied to facilitate a reasonable refinement of the disordered  $AsF_6^-$  anions. Even with these restraints some thermal parameters remain larger than ideal as a consequence of the high level of thermal motion or minor unresolved disorder of the anions and solvent molecules.

CheckCIF gives three A and fifteen B level alerts. These alerts (both A and B level) result from the limited data resolution, water molecules for which hydrogens were not modelled and thermal motion and/or unresolved disorder of some anions and solvent molecules as described above.

## 7.2 [**5**<sub>2</sub>**·T3**<sub>3</sub>]·11SbF<sub>6</sub>·BF<sub>4</sub>·7.75(C<sub>6</sub>H<sub>6</sub>)·5.25MeCN·H<sub>2</sub>O [+ solvent]

Formula C<sub>243</sub>H<sub>178.25</sub>BF<sub>70</sub>N<sub>35.25</sub>O<sub>19</sub>Pd<sub>6</sub>Sb<sub>11</sub>, *M* 7214.41, Triclinic, space group P -1 (#2), *a* 21.9773(8), *b* 22.3335(5), *c* 34.7471(9) Å, *a* 107.703(2)°, *b* 91.695(3)°, *y* 116.031(2)°, *V* 14331.9(8) Å<sup>3</sup>, *D*<sub>c</sub> 1.672 g cm<sup>-3</sup>, *Z* 2, crystal size 0.030 by 0.010 by 0.010 mm, colour yellow, habit needle, temperature 100(2) Kelvin,  $\lambda$ (Synchrotron) 0.6889 Å,  $\mu$ (Synchrotron) 1.352 mm<sup>-1</sup>, *T*(Analytical)<sub>min,max</sub> 0.975800029642, 1.0, 2 $\vartheta$ <sub>max</sub> 48.49, *hkl* range -26 25, -26 26, -41 41, *N* 133023, *N*<sub>ind</sub> 48807(*R*<sub>merge</sub> 0.0662), *N*<sub>obs</sub> 27009(I > 2 $\sigma$ (I)), *N*<sub>var</sub> 3893, residuals\* *R*1(*F*) 0.0899, *wR*2(*F*<sup>2</sup>) 0.3145, GoF(all) 1.054,  $\Delta\rho_{min,max}$  -0.983, 1.490 e<sup>-</sup>Å<sup>-3</sup>.

\* $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$  for  $F_o > 2\sigma(F_o)$ ; wR2 =  $(\Sigma w (F_o^2 - F_c^2)^2 / \Sigma (w F_c^2)^2)^{1/2}$  all reflections

 $w=1/[\sigma^2(F_o^2)+(0.2000P)^2]$  where  $P=(F_o^2+2F_c^2)/3$ 

#### Specific refinement details:

The crystals of  $[\mathbf{5}_2 \cdot \mathbf{T3}_3] \cdot 11$ SbF<sub>6</sub>·BF<sub>4</sub>·7.75(C<sub>6</sub>H<sub>6</sub>)·5.25MeCN·H<sub>2</sub>O were grown by diffusion of benzene into an acetonitrile solution of  $[\mathbf{5}_2 \cdot \mathbf{T3}_3] \cdot 12$ BF<sub>4</sub> (0.17 mM) containing excess K<sup>+</sup>SbF<sub>6</sub><sup>-</sup> (*ca.* 20 mM). The crystals employed immediately lost solvent after removal from the mother liquor and rapid handling prior to flash cooling in the cryostream was required to collect data. Data were obtained to 0.84 Å resolution. The asymmetric unit was found to contain one complete  $\mathbf{5}_2 \cdot \mathbf{T3}_3$  assembly and associated counterions and solvent molecules. The structure shows evidence of a significant amount of thermal motion throughout. Therefore, bond lengths and angles within pairs of chemically identical organic ligands were restrained to be similar to each other and thermal parameter restraints (SIMU, RIGU) were applied to all atoms except for palladium and antimony.

The anions and solvent molecules within the structure show evidence of substantial disorder. The 11  $SbF_6^-$  anions were modelled as disordered over 14 lattice sites. Nine of these lattice sites were further disordered over two or three positions. The occupancies of the disordered anions were allowed to refine freely and then fixed at the obtained values. Some additional minor occupancy positions of the anions could not be located in the electron density map and were not included in the model resulting in a discrepancy of 0.85 counterions per  $5_2 \cdot T3_3$  assembly which were included as  $SbF_6^-$  in the formula. Some lower occupancy disordered atoms were applied to facilitate realistic modelling of the disordered  $SbF_6^-$  anions. The content of the cavity was modelled as one  $BF_4^-$  anion disordered over three locations and one disordered water molecule. The disordered  $BF_4^-$  anion was restrained to have an idealized tetrahedral geometry and modelled with isotropic thermal parameters. Most acetonitrile solvent molecules were also modelled as disordered over two or more locations with bond length and thermal parameter areasonable refinement. Benzene solvent molecules were modelled as rigid groups (AFIX 66). The hydrogen atoms of the disordered water and acetonitrile molecules could not be located in the electron density map and were not included in the model.

The SQUEEZE<sup>14</sup> function of PLATON<sup>15</sup> was employed to account for a small quantity of highly disordered solvent, which gave a potential solvent accessible void of 401 Å<sup>3</sup> per unit cell (a total of approximately 116 electrons). Since the identity of these diffuse solvent molecules could not be assigned conclusively they were not included in the formula. Consequently, the molecular weight and density given above are likely to be slightly underestimated.

CheckCIF gives sixteen B level alerts. These alerts all result from thermal motion and/or unresolved disorder, especially of the anions and solvent molecules as described above.

## 7.3 [**12·Cl**<sub>6</sub>]·6(AsF<sub>6</sub>)·4C<sub>6</sub>H<sub>6</sub> [+ solvent]

Formula  $C_{138}H_{102}As_6Cl_6F_{36}N_{22}Pd_6$ , *M* 4053.03, Orthorhombic, space group C m c m (#63), *a* 21.948(4), *b* 30.273(6), *c* 31.103(6) Å, *V* 20666(7) Å<sup>3</sup>, *D*<sub>c</sub> 1.303 g cm<sup>-3</sup>, *Z* 4, crystal size 0.020 by 0.020 by 0.020 mm, colour dark brown, habit block, temperature 100(2) Kelvin,  $\lambda$ (Synchrotron) 0.6889 Å,  $\mu$ (Synchrotron) 1.477 mm<sup>-1</sup>, *T*(Analytical)<sub>min,max</sub> 0.991036337712, 1.0,  $2\vartheta_{max}$  34.86, *hkl* range -19 19, -25 26, -27 27, *N* 22836, *N*<sub>ind</sub> 3798(*R*<sub>merge</sub> 0.0490), *N*<sub>obs</sub> 2179(I > 2 $\sigma$ (I)), *N*<sub>var</sub> 589, residuals\* *R*1(*F*) 0.1278, *wR*2(*F*<sup>2</sup>) 0.3485, GoF(all) 1.074,  $\Delta\rho_{min,max}$  -0.446, 1.105e<sup>-</sup> Å<sup>-3</sup>.

\* $R1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$  for  $F_o > 2\sigma(F_o)$ ; wR2 =  $(\Sigma w (F_o^2 - F_c^2)^2 / \Sigma (w F_c^2)^2)^{1/2}$  all reflections

 $w=1/[\sigma^2(F_o^2)+(0.2000P)^2+150.0000P]$  where  $P=(F_o^2+2F_c^2)/3$ 

#### Specific refinement details:

The crystals of  $[12 \cdot Cl_6] \cdot 6(AsF_6) \cdot 4C_6H_6$  were grown by diffusion of benzene into an acetonitrile solution of  $[12 \cdot (MeCN)_6] \cdot 12BF_4$  and  $[13 \cdot (MeCN)_9] \cdot 18BF_4$  (0.75 mM in Pd) containing  $nBu_4N^+Cl^-$  (0.75 mM, 1 equiv./Pd) and excess K<sup>+</sup>AsF\_6<sup>-</sup> (*ca.* 7.5 mM). The crystals employed immediately lost solvent after removal from the mother liquor and rapid handling prior to flash cooling in the cryostream was required to collect data. The diffraction pattern was extremely broad and diffuse and few reflections were observed at better than 1.15 Å resolution despite the use of synchrotron radiation. As a result of the poorly diffracting ability of the crystals, the quality of the integration was also poor. Despite these limitations the quality of the data is more than sufficient to establish the connectivity of the structure. The asymmetric unit was found to contain one fourth of a  $12 \cdot Cl_6$  assembly and associated counterions and solvent molecules.

Due to the less than ideal resolution, extensive thermal parameter and bond length restraints were required to facilitate realistic modelling for the organic parts of the structure. The GRADE program<sup>16</sup> was employed using the GRADE Web Server<sup>17</sup> to generate a full set of bond distance and angle restraints (DFIX, DANG, FLAT) for the organic ligands. Two ligand phenyl rings were modelled as disordered over two equal occupancy locations and the remaining phenyl rings were all disordered around special positions by symmetry. The disordered atoms were modelled with isotropic thermal parameters. One benzene solvent molecule was modelled as a rigid group (AFIX 66) with partial occupancy. Thermal parameter restraints (SIMU, RIGU) were applied to all atoms except for palladium, arsenic and chlorine. Even with these restraints some thermal parameters remain larger than ideal as a consequence of the high level of thermal motion or minor unresolved disorder present throughout the structure.

The anions within the structure show evidence of significant disorder. One  $AsF_6^-$  anion was modelled as disordered over two locations and another anion was modelled with partial occupancy. The occupancies of the disordered anions were freely refined and then fixed at the obtained values. Some lower occupancy disordered atoms were modelled with isotropic thermal parameters and bond length and thermal parameter restraints were applied to facilitate realistic modelling of the disordered  $AsF_6^$ anions. Further reflecting the solvent loss and poor diffraction properties there is a significant amount of void volume in the lattice containing smeared electron density from disordered solvent. Consequently the SQUEEZE<sup>14</sup> function of PLATON<sup>15</sup> was employed to remove the contribution of the electron density associated with this highly disordered solvent. This gave a potential solvent accessible void of 5668.6 Å<sup>3</sup> per unit cell (a total of approximately 853 electrons). Since the identity of the diffuse solvent molecules could not be assigned conclusively to acetonitrile or benzene, they were not included in the formula. Consequently, the molecular weight and density given above are likely to be slightly underestimated. CheckCIF gives one A and five B level alerts. These alerts (both A and B level) all result from the limited data resolution, and thermal motion and/or unresolved disorder of some anions and solvent molecules as described above.

#### 7.4 Calculation of angle $\boldsymbol{\alpha}$

The angle  $\alpha$  defined in Figure S83 and referred in the manuscript is calculated (in degrees °) through formula (1) where *x*, *y* and *z* are the Cartesian coordinates of atoms a, b, c and d.



Figure S83. Definition of angle  $\alpha$ .

$$\alpha = \frac{180}{\pi} \times \arccos \frac{(x_b - x_a)(x_d - x_c) + (y_b - y_a)(y_d - y_c) + (z_b - z_a)(z_d - z_c)}{\sqrt{[(x_b - x_a)^2 + (y_b - y_a)^2 + (z_b - z_a)^2] \times [(x_d - x_c)^2 + (y_d - y_c)^2 + (z_d - z_c)^2]}}$$
(1)

## 8. Modelling

Geometry optimized structures were modelled with semi-empirical methods using PM3 or PM6 models on SCIGRESS software (Fujitsu Limited, Tokyo, Japan, 2013) version FJ 2.6 (EU 3.1.9) Build 5996.8255.20141202. The Cartesian coordinates given below can be pasted in a text file with .xyz extension.

 Table S2. Cartesian coordinates (in Å) for the PM6 geometry optimized model of 5·T1-cone.



| С  | 6.580000  | 15.848000 | -8.826000  | С  | 8.004000  | 15.334000 | -12.945000 |
|----|-----------|-----------|------------|----|-----------|-----------|------------|
| С  | 6.857000  | 16.184000 | -7.483000  | С  | 7.703000  | 15.677000 | -11.626000 |
| С  | 6.018000  | 17.072000 | -6.826000  | Н  | 7.801000  | 12.541000 | -10.211000 |
| С  | 4.901000  | 17.614000 | -7.506000  | Н  | 8.313000  | 11.926000 | -12.588000 |
| С  | 4.648000  | 17.279000 | -8.849000  | Н  | 8.105000  | 16.124000 | -13.696000 |
| С  | 5.488000  | 16.388000 | -9.519000  | Н  | 7.601000  | 16.727000 | -11.338000 |
| Н  | 7.732000  | 15.744000 | -6.981000  | С  | 8.256000  | 12.606000 | -18.485000 |
| Н  | 6.223000  | 17.339000 | -5.783000  | С  | 9.319000  | 12.714000 | -19.400000 |
| Н  | 3.802000  | 17.733000 | -9.372000  | С  | 10.535000 | 13.252000 | -18.945000 |
| Н  | 5.298000  | 16.131000 | -10.558000 | С  | 10.696000 | 13.676000 | -17.615000 |
| С  | 0.907000  | 20.626000 | -5.556000  | С  | 9.602000  | 13.550000 | -16.739000 |
| С  | 1.000000  | 21.749000 | -4.713000  | N  | 8.428000  | 13.031000 | -17.200000 |
| С  | 2.277000  | 22.196000 | -4.338000  | С  | 9.512000  | 13.917000 | -15.298000 |
| С  | 3.439000  | 21.538000 | -4.776000  | N  | 8.404000  | 13.608000 | -14.669000 |
| С  | 3.295000  | 20.421000 | -5.618000  | С  | 6.883000  | 12.071000 | -18.708000 |
| N  | 2.047000  | 20.022000 | -6.002000  | Ν  | 6.096000  | 11.984000 | -17.663000 |
| С  | 4.356000  | 19.544000 | -6.184000  | Н  | 9.214000  | 12.381000 | -20.444000 |
| N  | 3.965000  | 18.501000 | -6.877000  | Н  | 11.385000 | 13.341000 | -19.648000 |
| С  | -0.315000 | 19.944000 | -6.061000  | Н  | 11.659000 | 14.089000 | -17.274000 |
| N  | -0.140000 | 18.853000 | -6.768000  | Н  | 10.390000 | 14.434000 | -14.859000 |
| Н  | 0.099000  | 22.266000 | -4.348000  | Н  | 6.622000  | 11.786000 | -19.747000 |
| Н  | 2.370000  | 23.080000 | -3.678000  | С  | 2.090000  | 10.718000 | -17.889000 |
| Н  | 4.432000  | 21.891000 | -4.458000  | С  | 2.441000  | 11.930000 | -18.494000 |
| Н  | 5.404000  | 19.844000 | -5.986000  | С  | 3.777000  | 12.336000 | -18.449000 |
| Н  | -1.287000 | 20.413000 | -5.810000  | С  | 4.729000  | 11.541000 | -17.786000 |
| С  | -3.222000 | 16.628000 | -8.557000  | С  | 4.363000  | 10.313000 | -17.197000 |
| С  | -2.126000 | 17.044000 | -9.325000  | С  | 3.037000  | 9.897000  | -17.245000 |
| С  | -1.129000 | 17.800000 | -8.707000  | Н  | 1.703000  | 12.522000 | -19.043000 |
| С  | -1.237000 | 18.129000 | -7.344000  | Н  | 4.072000  | 13.268000 | -18.941000 |
| С  | -2.364000 | 17.725000 | -6.590000  | Н  | 5.118000  | 9.676000  | -16.728000 |
| С  | -3.357000 | 16.968000 | -7.194000  | Н  | 2.726000  | 8.929000  | -16.836000 |
| Н  | -2.051000 | 16.794000 | -10.381000 | Pd | 7.016000  | 12.683000 | -15.923000 |
| Н  | -0.271000 | 18.154000 | -9.285000  | С  | -0.334000 | 10.890000 | -17.882000 |
| Н  | -2.459000 | 17.997000 | -5.532000  | С  | -0.442000 | 12.138000 | -17.250000 |
| Н  | -4.245000 | 16.634000 | -6.635000  | С  | -1.708000 | 12.712000 | -17.125000 |
| Pd | 1.878000  | 18.363000 | -6.990000  | С  | -2.841000 | 12.042000 | -17.623000 |
| С  | 7.610000  | 14.654000 | -10.674000 | С  | -2.711000 | 10.794000 | -18.276000 |
| С  | 7.823000  | 13.301000 | -11.002000 | С  | -1.458000 | 10.212000 | -18.402000 |
| С  | 8.115000  | 12.967000 | -12.319000 | Н  | 0.436000  | 12.655000 | -16.872000 |
| С  | 8.185000  | 13.983000 | -13.295000 | Н  | -1.819000 | 13.694000 | -16.655000 |

| Н  | -3.590000 | 10.277000 | -18.677000 | С | -1.692000 | 11.221000 | -12.612000 |
|----|-----------|-----------|------------|---|-----------|-----------|------------|
| Н  | -1.324000 | 9.241000  | -18.901000 | С | -1.264000 | 12.513000 | -12.975000 |
| С  | -7.156000 | 14.884000 | -16.209000 | С | 0.045000  | 12.977000 | -12.446000 |
| С  | -8.303000 | 15.170000 | -16.970000 | С | 0.115000  | 13.705000 | -11.249000 |
| С  | -8.378000 | 14.662000 | -18.278000 | С | 1.364000  | 13.966000 | -10.660000 |
| С  | -7.343000 | 13.882000 | -18.819000 | С | 2.542000  | 13.528000 | -11.286000 |
| С  | -6.213000 | 13.627000 | -18.020000 | С | 2.470000  | 12.800000 | -12.483000 |
| Ν  | -6.149000 | 14.145000 | -16.760000 | С | 1.224000  | 12.541000 | -13.073000 |
| С  | -4.993000 | 12.842000 | -18.357000 | С | 3.688000  | 12.154000 | -13.037000 |
| Ν  | -4.102000 | 12.690000 | -17.406000 | С | 4.511000  | 12.741000 | -14.019000 |
| С  | -6.855000 | 15.265000 | -14.801000 | Ν | 5.612000  | 12.103000 | -14.513000 |
| Ν  | -5.762000 | 14.774000 | -14.268000 | С | 5.922000  | 10.858000 | -14.040000 |
| Н  | -9.130000 | 15.770000 | -16.557000 | С | 5.149000  | 10.220000 | -13.061000 |
| Н  | -9.275000 | 14.875000 | -18.892000 | С | 4.024000  | 10.874000 | -12.555000 |
| Н  | -7.424000 | 13.480000 | -19.841000 | С | 1.435000  | 14.555000 | -9.297000  |
| Н  | -4.915000 | 12.463000 | -19.395000 | С | 1.595000  | 15.930000 | -9.046000  |
| Н  | -7.584000 | 15.932000 | -14.299000 | N | 1.673000  | 16.433000 | -7.777000  |
| С  | -4.519000 | 15.615000 | -10.341000 | С | 1.593000  | 15.566000 | -6.723000  |
| С  | -4.596000 | 16.675000 | -11.252000 | С | 1.429000  | 14.185000 | -6.903000  |
| С  | -5.039000 | 16.410000 | -12.549000 | С | 1.349000  | 13.676000 | -8.199000  |
| С  | -5.372000 | 15.094000 | -12.919000 | Н | -1.802000 | 14.296000 | -14.127000 |
| С  | -5.305000 | 14.039000 | -11.984000 | Н | -3.253000 | 9.724000  | -12.835000 |
| С  | -4.875000 | 14.297000 | -10.688000 | Н | -1.081000 | 10.600000 | -11.944000 |
| Н  | -4.370000 | 17.701000 | -10.944000 | Н | 4.296000  | 13.739000 | -14.425000 |
| Н  | -5.131000 | 17.233000 | -13.265000 | Н | 5.426000  | 9.219000  | -12.700000 |
| Н  | -5.614000 | 13.029000 | -12.268000 | Н | 3.407000  | 10.390000 | -11.788000 |
| Н  | -4.854000 | 13.510000 | -9.925000  | Н | 1.662000  | 16.653000 | -9.869000  |
| Pd | -4.684000 | 13.601000 | -15.616000 | Н | 1.367000  | 13.517000 | -6.031000  |
| 0  | -4.207000 | 15.759000 | -8.992000  | Н | 1.221000  | 12.598000 | -8.359000  |
| 0  | 7.418000  | 14.859000 | -9.311000  | Н | -4.619000 | 11.178000 | -14.387000 |
| 0  | 0.826000  | 10.139000 | -17.958000 | Н | 6.818000  | 10.370000 | -14.469000 |
| N  | -3.262000 | 12.795000 | -14.322000 | Н | 1.664000  | 16.004000 | -5.708000  |
| С  | -2.083000 | 13.278000 | -13.827000 | Н | -0.801000 | 14.028000 | -10.750000 |
| С  | -3.660000 | 11.538000 | -13.965000 | Н | 3.509000  | 13.713000 | -10.816000 |
| С  | -2.900000 | 10.730000 | -13.107000 | Н | 1.167000  | 11.960000 | -13.995000 |

 Table S3. Cartesian coordinates (in Å) for the PM6 geometry optimized model of 5.T1-partial-cone.



| С      | 6.486000  | 15.914000 | -8.886000  | С       | 10.597000 | 13.050000 | -18.936000 |
|--------|-----------|-----------|------------|---------|-----------|-----------|------------|
| С      | 6.622000  | 16.077000 | -7.488000  | С       | 10.752000 | 13.553000 | -17.633000 |
| С      | 5.771000  | 16.948000 | -6.825000  | С       | 9.658000  | 13.462000 | -16.752000 |
| С      | 4.774000  | 17,639000 | -7.551000  | Ν       | 8,494000  | 12.897000 | -17.184000 |
| C      | 4.673000  | 17.491000 | -8.946000  | C       | 9.565000  | 13.903000 | -15.330000 |
| C      | 5 533000  | 16 624000 | -9 625000  | N       | 8 463000  | 13 607000 | -14 684000 |
| н      | 7 403000  | 15 519000 | -6 951000  | C       | 6 970000  | 11 810000 | -18 629000 |
| н      | 5 872000  | 17 087000 | -5 742000  | N       | 6 190000  | 11 729000 | -17 576000 |
| ч      | 3 929000  | 18 067000 | -9 504000  | н       | 9 291000  | 12 077000 | -20 385000 |
| и<br>Ц | 5 464000  | 16 523000 | -10 706000 | и<br>Ц  | 11 447000 | 13 110000 | -19 644000 |
| C      | 0 529000  | 20 288000 | -5 651000  | 11<br>U | 11 709000 | 13 996000 | -17 317000 |
| C      | 0.323000  | 20.200000 | -4 820000  | 11<br>U | 10 /38000 | 14 452000 | _1/ 921000 |
| c      | 1 720000  | 21.425000 | -4.820000  | п       | 6 700000  | 11 490000 | 10 659000  |
| C      | 1.720000  | 21.996000 | -4.429000  | H       | 6.709000  | 11.489000 | -19.658000 |
| C      | 2.950000  | 21.458000 | -4.841000  | C       | 2.164000  | 10.4//000 | -17.757000 |
| C      | 2.933000  | 20.324000 | -5.6/5000  | C       | 2.602000  | 11.527000 | -18.603000 |
| N      | 1./35000  | 19.800000 | -6.066000  | C       | 3.929000  | 11.91/000 | -18.568000 |
| С      | 4.081000  | 19.54/000 | -6.229000  | C       | 4.828000  | 11.2/0000 | -1/.684000 |
| Ν      | 3.788000  | 18.462000 | -6.905000  | С       | 4.387000  | 10.206000 | -16.881000 |
| С      | -0.608000 | 19.475000 | -6.176000  | С       | 3.042000  | 9.810000  | -16.900000 |
| Ν      | -0.313000 | 18.366000 | -6.811000  | Н       | 1.885000  | 11.995000 | -19.291000 |
| Н      | -0.455000 | 21.854000 | -4.473000  | Н       | 4.271000  | 12.730000 | -19.218000 |
| Н      | 1.714000  | 22.889000 | -3.774000  | Н       | 5.097000  | 9.657000  | -16.258000 |
| Н      | 3.898000  | 21.912000 | -4.511000  | Н       | 2.715000  | 8.963000  | -16.298000 |
| Н      | 5.096000  | 19.950000 | -6.041000  | Pd      | 7.100000  | 12.566000 | -15.892000 |
| Н      | -1.628000 | 19.875000 | -5.995000  | С       | -4.459000 | 14.081000 | -9.757000  |
| С      | -3.173000 | 15.938000 | -8.740000  | С       | -3.555000 | 13.020000 | -9.640000  |
| С      | -2.689000 | 17.092000 | -9.387000  | С       | -3.889000 | 11.792000 | -10.229000 |
| С      | -1.766000 | 17.900000 | -8.733000  | С       | -5.102000 | 11.639000 | -10.921000 |
| С      | -1.315000 | 17.540000 | -7.445000  | С       | -6.039000 | 12.702000 | -10.961000 |
| С      | -1.787000 | 16.371000 | -6.823000  | С       | -5.719000 | 13.920000 | -10.391000 |
| С      | -2.717000 | 15.552000 | -7.476000  | Н       | -2.629000 | 13.126000 | -9.082000  |
| Н      | -3.091000 | 17.372000 | -10.368000 | Н       | -3.205000 | 10.944000 | -10.136000 |
| Н      | -1.411000 | 18.817000 | -9.212000  | Н       | -7.010000 | 12.570000 | -11.451000 |
| Н      | -1,462000 | 16.111000 | -5.810000  | Н       | -6.421000 | 14.766000 | -10.410000 |
| Н      | -3.128000 | 14.672000 | -6.972000  | C       | -5.318000 | 7.276000  | -14.048000 |
| Pd     | 1.747000  | 18.107000 | -6.986000  | C       | -6.364000 | 6.342000  | -14.171000 |
| C      | 7.559000  | 14.715000 | -10.726000 | C       | -7.475000 | 6.474000  | -13.321000 |
| C      | 7 637000  | 13 350000 | -11 070000 | C       | -7 556000 | 7 509000  | -12 373000 |
| C      | 7 979000  | 13 005000 | -12 371000 | C       | -6 485000 | 8 417000  | -12 285000 |
| C      | 8 231000  | 14 017000 | -13 323000 | N       | -5 401000 | 8 253000  | -13 099000 |
| C      | 0.231000  | 15 272000 | -12 040000 | C IN    | -6 359000 | 0.20000   | -11 424000 |
| c      | 7 946000  | 15.373000 | -12.949000 | N       | -0.338000 | 10 422000 | -11.424000 |
| C      | 7.040000  | 10.730000 | -11.043000 | IN<br>C | -3.340000 | 10.422000 | -11.652000 |
| H      | 7.475000  | 12.589000 | -10.300000 | C       | -4.096000 | 7.420000  | -14.895000 |
| H      | 8.082000  | 11.951000 | -12.648000 | N       | -3.386000 | 8.509000  | -14./28000 |
| н      | 8.445000  | 16.159000 | -13.6/1000 | H       | -6.329000 | 5.536000  | -14.921000 |
| н      | /.853000  | 16./82000 | -11.339000 | H<br>   | -8.314000 | 5./56000  | -13.412000 |
| C      | 8.329000  | 12.392000 | -18.440000 | Н       | -8.445000 | /.606000  | -11./31000 |
| С      | 9.391000  | 12.468000 | -19.360000 | Н       | -7.139000 | 9.772000  | -10.649000 |

| Н  | -3.895000 | 6.608000  | -15.621000 | С | 3.758000  | 12.056000 | -13.063000 |
|----|-----------|-----------|------------|---|-----------|-----------|------------|
| С  | -0.081000 | 9.713000  | -17.046000 | С | 4.602000  | 12.639000 | -14.029000 |
| С  | 0.055000  | 8.547000  | -16.292000 | N | 5.716000  | 11.998000 | -14.483000 |
| С  | -1.045000 | 8.101000  | -15.541000 | С | 6.017000  | 10.758000 | -13.991000 |
| С  | -2.239000 | 8.838000  | -15.536000 | С | 5.214000  | 10.120000 | -13.036000 |
| С  | -2.364000 | 10.010000 | -16.319000 | С | 4.075000  | 10.778000 | -12.569000 |
| С  | -1.288000 | 10.450000 | -17.071000 | С | 1.534000  | 14.364000 | -9.280000  |
| Н  | 0.970000  | 7.949000  | -16.326000 | С | 1.625000  | 15.737000 | -8.986000  |
| Н  | -0.960000 | 7.169000  | -14.972000 | Ν | 1.718000  | 16.188000 | -7.703000  |
| Н  | -3.316000 | 10.548000 | -16.353000 | С | 1.714000  | 15.284000 | -6.678000  |
| Н  | -1.364000 | 11.328000 | -17.723000 | С | 1.615000  | 13.905000 | -6.904000  |
| Pd | -4.176000 | 9.743000  | -13.228000 | С | 1.526000  | 13.442000 | -8.217000  |
| 0  | -4.276000 | 15.395000 | -9.396000  | Н | -1.393000 | 10.882000 | -12.381000 |
| 0  | 7.303000  | 14.909000 | -9.370000  | Н | -3.547000 | 14.383000 | -15.162000 |
| 0  | 0.819000  | 10.244000 | -17.962000 | Н | -1.274000 | 14.836000 | -14.200000 |
| N  | -3.073000 | 11.442000 | -13.509000 | Н | 4.394000  | 13.634000 | -14.452000 |
| С  | -1.840000 | 11.684000 | -12.987000 | Н | 5.482000  | 9.124000  | -12.662000 |
| С  | -3.670000 | 12.408000 | -14.270000 | Н | 3.435000  | 10.300000 | -11.818000 |
| С  | -3.044000 | 13.632000 | -14.538000 | Н | 1.628000  | 16.497000 | -9.781000  |
| С  | -1.776000 | 13.883000 | -14.000000 | Н | 1.613000  | 13.205000 | -6.057000  |
| С  | -1.163000 | 12.902000 | -13.207000 | Н | 1.453000  | 12.367000 | -8.417000  |
| С  | 0.160000  | 13.114000 | -12.574000 | Н | -4.677000 | 12.176000 | -14.665000 |
| С  | 0.228000  | 13.740000 | -11.320000 | Н | 6.933000  | 10.275000 | -14.385000 |
| С  | 1.463000  | 13.848000 | -10.667000 | Н | 1.798000  | 15.695000 | -5.653000  |
| С  | 2.629000  | 13.358000 | -11.273000 | Н | -0.680000 | 14.120000 | -10.849000 |
| С  | 2.552000  | 12.729000 | -12.524000 | Н | 3.588000  | 13.441000 | -10.759000 |
| С  | 1.321000  | 12.621000 | -13.187000 | Н | 1.262000  | 12.139000 | -14.164000 |

 Table S4. Cartesian coordinates (in Å) for the PM6 geometry optimized model of 6·T2-cone.



| С       | -6.349000 | -0.230000  | -8.173000  | С       | -9.756000  | -10.741000 | -7.154000 |
|---------|-----------|------------|------------|---------|------------|------------|-----------|
| С       | -7.261000 | 0.316000   | -7.260000  | С       | -9.545000  | -9.485000  | -7.744000 |
| С       | -7.666000 | 1.639000   | -7.440000  | С       | -8.913000  | -8.487000  | -6.979000 |
| С       | -7.172000 | 2,381000   | -8.530000  | Ν       | -8.537000  | -8.754000  | -5,695000 |
| C       | -6.289000 | 1.799000   | -9.465000  | С       | -8.528000  | -7.110000  | -7.389000 |
| C       | -5.866000 | 0.487000   | -9.282000  | N       | -7.868000  | -6.381000  | -6.520000 |
| н       | -7 648000 | -0 274000  | -6 430000  | C       | -8 204000  | -10 004000 | -3 718000 |
| н       | -8 375000 | 2 096000   | -6 743000  | N       | -7 631000  | -8 913000  | -3 270000 |
| ц       | -5 927000 | 2 369000   | -10 329000 | н       | -9 511000  | -12 001000 | -5 392000 |
| ц       | -5 169000 | 0 008000   | -9 986000  | ч       | -10 249000 | -11 542000 | -7 741000 |
| C       | -8 534000 | 7 559000   | -8 162000  | и<br>И  | -9 861000  | -9 297000  | -8 782000 |
| C       | -9 142000 | 8 370000   | -9 139000  | и<br>И  | -8 805000  | -6.806000  | -8 419000 |
| c       | -9.452000 | 7 795000   | _10 392000 | 11<br>U | -9 351000  | -10 947000 | -3 152000 |
| c       | -9.452000 | 6 447000   | 10.582000  | п       | -0.331000  | -10.947000 | -3.132000 |
| C       | -9.164000 | 5.447000   | -10.634000 | C       | -0.190000  | -0.402000  | 0.051000  |
| C NI    | -8.380000 | 5.877000   | -9.844000  | C       | -3.728000  | -9.571000  | -0.108000 |
| IN<br>C | -8.2/6000 | 6.248000   | -8.437000  | C       | -6.209000  | -9.743000  | -1.398000 |
|         | -8.153000 | 4.246000   | -9.687000  | C       | -7.140000  | -8.820000  | -1.922000 |
| N       | -7.574000 | 3./58000   | -8.61/000  | C       | -7.610000  | -7.745000  | -1.145000 |
| C       | -8.061000 | 7.942000   | -6.805000  | C       | -7.143000  | -7.574000  | 0.158000  |
| N       | -7.447000 | 7.023000   | -6.097000  | H       | -4.994000  | -10.267000 | 0.329000  |
| H       | -9.365000 | 9.431000   | -8.945000  | H       | -5.858000  | -10.592000 | -1.997000 |
| H       | -9.928000 | 8.418000   | -11.166000 | н       | -8.349000  | -7.053000  | -1.559000 |
| H       | -9.404000 | 6.015000   | -11.639000 | H       | -7.509000  | -6./54000  | 0.775000  |
| H       | -8.380000 | 3.692000   | -10.620000 | Pd      | -/.56/000  | -7.395000  | -4./10000 |
| H       | -8.242000 | 8.991000   | -6.496000  | С       | -6.154000  | -/.889000  | 3.009000  |
| C       | -5.494000 | 2./16000   | 8.216000   | С       | -7.522000  | -8.009000  | 3.2/9000  |
| C       | -6.828000 | 3.04/000   | 8.4/5000   | С       | -7.987000  | -/.648000  | 4.545000  |
| C       | -7.262000 | 4.342000   | 8.186000   | С       | -7.088000  | -/.156000  | 5.510000  |
| С       | -6.370000 | 5.274000   | 7.625000   | С       | -5.711000  | -7.031000  | 5.216000  |
| С       | -5.026000 | 4.920000   | 7.364000   | С       | -5.239000  | -7.392000  | 3.963000  |
| С       | -4.584000 | 3.638000   | 7.653000   | Н       | -8.213000  | -8.426000  | 2.542000  |
| Н       | -7.511000 | 2.335000   | 8.945000   | Н       | -9.051000  | -7.759000  | 4.777000  |
| Н       | -8.298000 | 4.622000   | 8.405000   | Н       | -5.015000  | -6.684000  | 5.985000  |
| Н       | -4.330000 | 5.664000   | 6.968000   | Н       | -4.172000  | -7.350000  | 3.716000  |
| Н       | -3.539000 | 3.344000   | 7.507000   | С       | -8.260000  | -5.314000  | 10.426000 |
| Pd      | -7.334000 | 5.191000   | -7.112000  | С       | -8.877000  | -6.013000  | 11.479000 |
| С       | -6.388000 | -2.589000  | -7.573000  | С       | -9.315000  | -7.327000  | 11.240000 |
| С       | -5.508000 | -3.574000  | -7.074000  | С       | -9.139000  | -7.937000  | 9.988000  |
| С       | -6.022000 | -4.815000  | -6.729000  | С       | -8.512000  | -7.197000  | 8.967000  |
| С       | -7.406000 | -5.066000  | -6.872000  | N       | -8.107000  | -5.918000  | 9.211000  |
| С       | -8.269000 | -4.069000  | -7.361000  | С       | -8.165000  | -7.631000  | 7.588000  |
| С       | -7.763000 | -2.813000  | -7.704000  | N       | -7.511000  | -6.780000  | 6.832000  |
| Н       | -4.434000 | -3.363000  | -7.024000  | С       | -7.713000  | -3.931000  | 10.427000 |
| Н       | -5.354000 | -5.609000  | -6.380000  | N       | -7.164000  | -3.506000  | 9.315000  |
| Н       | -9.339000 | -4.267000  | -7.484000  | Н       | -9.013000  | -5.553000  | 12.471000 |
| Н       | -8.427000 | -2.050000  | -8.118000  | Н       | -9.803000  | -7.894000  | 12.058000 |
| С       | -8.724000 | -9.974000  | -5.111000  | Н       | -9.480000  | -8.971000  | 9.819000  |
| С       | -9.348000 | -11.006000 | -5.836000  | Н       | -8.463000  | -8.660000  | 7.304000  |

| Н       | -7.818000 | -3.354000                  | 11.368000 | С        | -5.744000 | 1.962000  | -2.643000 |
|---------|-----------|----------------------------|-----------|----------|-----------|-----------|-----------|
| С       | -5.605000 | 0.353000                   | 8.779000  | С        | -5.853000 | 0.515000  | -2.752000 |
| C       | -6 655000 | -0 084000                  | 7 962000  | Ċ        | -5 796000 | -0 204000 | -4 064000 |
| C       | -7 169000 | -1 365000                  | 8 170000  | C        | -5 827000 | -1 528000 | -3 791000 |
| C       | -6 638000 | -2 173000                  | 9 192000  | C        | -5 903000 | -1 681000 | -2 309000 |
| C       | -5 605000 | -1 702000                  | 10 031000 | N        | -5 9/8000 | -0 351000 | _1 739000 |
| C       | -5.005000 | -1.702000                  | 10.031000 | N        | -5.948000 | -0.331000 | -1.739000 |
| C       | -5.076000 | -0.433000                  | 9.819000  | C        | -5.848000 | -2.851000 | -1.61/000 |
| Н       | -/.069000 | 0.559000                   | /.185000  | C        | -5.8/2000 | -3.005000 | -0.1/4000 |
| Н       | -7.990000 | -1.735000                  | 7.550000  | N        | -5.830000 | -1.972000 | 0.765000  |
| Н       | -5.210000 | -2.323000                  | 10.843000 | С        | -5.779000 | -2.515000 | 2.052000  |
| Н       | -4.265000 | -0.038000                  | 10.448000 | С        | -5.818000 | -3.931000 | 1.914000  |
| Pd      | -7.165000 | -4.963000                  | 7.811000  | С        | -5.873000 | -4.231000 | 0.549000  |
| 0       | -4.881000 | 1.517000                   | 8.536000  | С        | -5.628000 | -1.764000 | 3.283000  |
| 0       | -5.711000 | -1.452000                  | -7.977000 | С        | -5.327000 | -2.591000 | 4.493000  |
| 0       | -5.519000 | -8.310000                  | 1,854000  | С        | -3.977000 | -2.748000 | 4.858000  |
| C       | -5 755000 | 7 907000                   | -2 350000 | C        | -6 315000 | -3 215000 | 5 283000  |
| C       | -4 959000 | 7 328000                   | -3 363000 | N        | -6.000000 | -3 947000 | 6 394000  |
| c       | 5 540000  | 7.020000                   | 4 501000  | C IN     | 4 692000  | 1 074000  | 6 742000  |
| C       | -3.340000 | 7.049000                   | -4.591000 | C        | -4.003000 | -4.074000 | 6.743000  |
| C       | -6.909000 | 7.334000                   | -4.800000 | C        | -3.652000 | -3.493000 | 5.993000  |
| C       | -7.687000 | 7.910000                   | -3.779000 | С        | -5.052000 | 4.221000  | 2.946000  |
| С       | -7.112000 | 8.190000                   | -2.537000 | С        | -3.685000 | 4.554000  | 2.979000  |
| Н       | -3.890000 | 7.167000                   | -3.184000 | С        | -3.264000 | 5.682000  | 3.685000  |
| Н       | -4.934000 | 6.642000                   | -5.406000 | С        | -4.219000 | 6.462000  | 4.352000  |
| Н       | -8.742000 | 8.148000                   | -3.946000 | Ν        | -5.550000 | 6.147000  | 4.347000  |
| Н       | -7.706000 | 8.673000                   | -1.757000 | С        | -5.957000 | 5.042000  | 3.654000  |
| С       | -5.593000 | 8.488000                   | 0.009000  | С        | -5.467000 | 2.691000  | -3.908000 |
| С       | -6.609000 | 7.708000                   | 0.575000  | С        | -6.447000 | 3,412000  | -4.625000 |
| C       | -6 964000 | 7 944000                   | 1 904000  | N        | -6 162000 | 4 064000  | -5 792000 |
| C       | -6 313000 | 8 957000                   | 2 633000  | C        | -4 885000 | 4 012000  | -6 277000 |
| C       | -5 320000 | 9 761000                   | 2.033000  | C        | -3 863000 | 3 319000  | -5 614000 |
| c       | 1 040000  | 9.701000                   | 2.033000  | C        | 1 156000  | 2 655000  | 1 122000  |
| C<br>II | -4.949000 | 9.521000                   | 0.714000  | C        | -4.138000 | 2.055000  | -4.423000 |
| н       | -7.120000 | 6.942000                   | -0.006000 | C        | -5.608000 | -4.123000 | -2.366000 |
| Н       | -/./55000 | /.353000                   | 2.3/5000  | С        | -4.286000 | -4.605000 | -2.420000 |
| Н       | -4.833000 | 10.568000                  | 2.594000  | С        | -4.014000 | -5.792000 | -3.102000 |
| Н       | -4.172000 | 10.123000                  | 0.220000  | С        | -5.068000 | -6.481000 | -3.717000 |
| С       | -7.625000 | 8.791000                   | 7.834000  | N        | -6.357000 | -6.028000 | -3.676000 |
| С       | -8.119000 | 9.834000                   | 8.640000  | С        | -6.621000 | -4.863000 | -3.009000 |
| С       | -8.307000 | 11.096000                  | 8.054000  | Н        | -5.270000 | -0.120000 | 5.637000  |
| С       | -8.010000 | 11.323000                  | 6.699000  | Н        | -5.192000 | 2.510000  | 5.010000  |
| С       | -7.522000 | 10.247000                  | 5.935000  | Н        | -5.991000 | 1.153000  | 0.078000  |
| N       | -7.357000 | 9.023000                   | 6.517000  | Н        | -5.401000 | 4.791000  | -2.143000 |
| C       | -7 135000 | 10 232000                  | 4 498000  | ц        | -5 227000 | 5 367000  | 0 482000  |
| N       | -6 676000 | 0.102000                   | 4.450000  | 11<br>U  | -5 727000 | 0 200000  | -5 016000 |
|         | -0.070000 | 3.102000                   | 4.01/000  | п        | -5.727000 | 0.209000  | -3.010000 |
|         | -7.294000 | 7.395000                   | 8.225000  | H        | -5.793000 | -2.359000 | -4.4/3000 |
| IN<br>  | -6.765000 | 6.619000                   | 7.308000  | H        | -5.822000 | -0.9/8000 | 0.546000  |
| Н       | -8.348000 | 9.6/5000                   | 9./06000  | Н        | -5./93000 | -4.640000 | 2./20000  |
| Н       | -8.692000 | 11.931000                  | 8.672000  | Н        | -5.893000 | -5.212000 | 0.112000  |
| Н       | -8.152000 | 12.322000                  | 6.258000  | Н        | -3.182000 | -2.288000 | 4.255000  |
| Н       | -7.273000 | 11.177000                  | 3.934000  | Н        | -7.382000 | -3.137000 | 5.028000  |
| Н       | -7.496000 | 7.115000                   | 9.278000  | Н        | -2.604000 | -3.625000 | 6.296000  |
| Pd      | -6.570000 | 7.595000                   | 5.468000  | Н        | -2.951000 | 3.929000  | 2.454000  |
| 0       | -5.009000 | 8.205000                   | -1.223000 | Н        | -2.201000 | 5.960000  | 3.719000  |
| С       | -5.389000 | 0.352000                   | 4,677000  | Н        | -7.033000 | 4.814000  | 3,674000  |
| C       | -5 348000 | 1 666000                   | 4 364000  | н        | -7 484000 | 3 471000  | -4 265000 |
| C       | -5 545000 | 1 768000                   | 2 884000  | ч        | -2 846000 | 3 302000  | -6.031000 |
| N       | -5 728000 | 1 . , 000000<br>0 . 550000 | 2 3/3000  | 11<br>11 | -3 360000 | 2 105000  | _3 201000 |
| л<br>И  | -J./20000 | 0.00000                    | 2.343000  | п        | -3.309000 | 2.103000  | -J.091000 |
|         | -3.614000 | -0.409000                  | 3.412000  | H<br>    | -3.4/5000 | -4.054000 | -1.92/000 |
| С       | -5.464000 | 3.027000                   | 2.162000  | Н        | -2.988000 | -6.185000 | -3.157000 |
| С       | -5.586000 | 3.155000                   | 0.805000  | Н        | -7.668000 | -4.528000 | -2.995000 |
| N       | -5.844000 | 2.141000                   | -0.149000 | Н        | -4.463000 | -4.663000 | 7.654000  |
| С       | -5.726000 | 2.655000                   | -1.464000 | Н        | -3.922000 | 7.369000  | 4.914000  |
| С       | -5.495000 | 4.123000                   | -1.300000 | Н        | -4.688000 | 4.547000  | -7.226000 |
| С       | -5.410000 | 4.412000                   | 0.014000  | Н        | -4.888000 | -7.427000 | -4.263000 |

 Table S5. Cartesian coordinates (in Å) for the PM6 geometry optimized model of 6·T2-partial-cone.



| С       | -6.259000 | -0.233000 | -7.960000  | С         | -10.088000 | -10.741000 | -5.521000  |
|---------|-----------|-----------|------------|-----------|------------|------------|------------|
| С       | -7.614000 | 0.104000  | -8.041000  | С         | -10.470000 | -10.529000 | -6.856000  |
| С       | -7.958000 | 1.449000  | -8.199000  | С         | -10.119000 | -9.352000  | -7.537000  |
| С       | -6.954000 | 2.432000  | -8.252000  | С         | -9.383000  | -8.374000  | -6.842000  |
| С       | -5.589000 | 2.072000  | -8.180000  | Ν         | -9.046000  | -8.582000  | -5.536000  |
| С       | -5.236000 | 0.740000  | -8.025000  | С         | -8.861000  | -7.076000  | -7.347000  |
| Н       | -8.394000 | -0.660000 | -8.038000  | N         | -8.147000  | -6.350000  | -6.520000  |
| Н       | -9.014000 | 1.726000  | -8.284000  | С         | -8.802000  | -9.735000  | -3.489000  |
| Н       | -4.812000 | 2.835000  | -8.278000  | N         | -8.093000  | -8.695000  | -3.120000  |
| Н       | -4.188000 | 0.422000  | -8.007000  | Н         | -10.357000 | -11.678000 | -5.007000  |
| С       | -7.944000 | 7.716000  | -8.153000  | Н         | -11.052000 | -11.310000 | -7.386000  |
| C       | -8,508000 | 8,508000  | -9.172000  | Н         | -10.412000 | -9.209000  | -8.589000  |
| C       | -8.912000 | 7.875000  | -10.359000 | Н         | -9.115000  | -6.814000  | -8.394000  |
| C       | -8.759000 | 6.489000  | -10.535000 | Н         | -9.031000  | -10.623000 | -2.866000  |
| C       | -8.185000 | 5.743000  | -9.489000  | С         | -6.388000  | -8.352000  | 0.705000   |
| N       | -7.805000 | 6.373000  | -8.340000  | C         | -6.080000  | -9.492000  | -0.061000  |
| С       | -7.894000 | 4.285000  | -9.439000  | C         | -6.655000  | -9.627000  | -1.319000  |
| N       | -7 271000 | 3 831000  | -8 378000  | C         | -7 519000  | -8 619000  | -1 802000  |
| C       | -7 461000 | 8 139000  | -6.813000  | C         | -7 826000  | -7 492000  | -1 018000  |
| N       | -6 912000 | 7 231000  | -6.036000  | C         | -7 262000  | -7 355000  | 0 252000   |
| н       | -8 629000 | 9 596000  | -9.052000  | н         | -5 397000  | -10 255000 | 0 341000   |
| н       | -9 357000 | 8 480000  | -11 173000 | н         | -6 428000  | -10 512000 | -1 924000  |
| н       | -9 078000 | 6 009000  | -11 474000 | н         | -8 515000  | -6 733000  | -1 396000  |
| н       | -8 218000 | 3 683000  | -10 312000 | н         | -7 496000  | -6 489000  | 0 872000   |
| и       | -7 614000 | 9 207000  | -6 553000  | Pd        | -7 916000  | -7 277000  | -4 652000  |
| C       | -4 601000 | 8 670000  | -0.001000  | C         | -6 135000  | -7 820000  | 3 072000   |
| C       | -4 402000 | 9 736000  | 0.001000   | C         | -7 489000  | -7 757000  | 3 415000   |
| C       | -3 543000 | 9 553000  | 1 977000   | C         | -7 831000  | -7 402000  | 4 722000   |
| C       | -2 891000 | 8 306000  | 2 150000   | C         | -6 823000  | -7 096000  | 5 655000   |
| C       | -3 077000 | 7 269000  | 1 225000   | C         | -5 460000  | -7 169000  | 5 292000   |
| C       | -3 935000 | 7.209000  | 1,22,5000  | C         | -5 110000  | -7 524000  | 3 998000   |
| ч       | -4 928000 | 10 690000 | 0.131000   | Ч         | -8 271000  | -8 029000  | 2 702000   |
| и<br>П  | -3 379000 | 10.373000 | 2 687000   | 11<br>L   | -8 886000  | -7 371000  | 5 011000   |
| и<br>П  | -2 543000 | 6 325000  | 1 345000   | и<br>И    | -4 681000  | -6 979000  | 6 036000   |
| и<br>П  | -4 062000 | 6 655000  | -0 600000  | 11<br>U   | -4.062000  | -7 629000  | 3 694000   |
| n<br>Dd | -6 888000 | 5 345000  | -6 981000  | II<br>C   | -7 872000  | -5 056000  | 10 519000  |
| ru<br>C | -6 500000 | -2 634000 | -7 584000  | C         | -8 /19000  | -5 720000  | 11 633000  |
| C       | -6 146000 | -3 763000 | -8 347000  | C         | -8 782000  | -7 070000  | 11 / 90000 |
| C       | -6 705000 | -1 993000 | -8 019000  | C         | -8 605000  | -7 748000  | 10 273000  |
| C       | -7 599000 | -5 084000 | -6 930000  | C         | -8 050000  | -7 041000  | 9 19000    |
| C       | -7.956000 | -3 942000 | -6 190000  | N         | -7 709000  | -5 720000  | 9.190000   |
| C       | -7.958000 | -3.942000 | -6.190000  | N         | -7.709000  | -3.729000  | 9.343000   |
|         | -7.407000 | -2.701000 | -0.520000  | N         | -7.744000  | -7.550000  | 7.019000   |
| п<br>u  | -5.442000 | -5.000000 | -9.100000  | 11        | -7 120000  | -3 642000  | 10 409000  |
| п<br>u  | -0.443000 | -1 023000 | -5.360000  | C N       | -6 991000  | -3.042000  | 10.400000  |
| п       | -0.0/3000 | -4.023000 | -3.309000  | LN<br>T T | -0.001000  | = 3.233000 | 9.2/0000   |
| п       | -/.00000  | -1.80/000 | -3.960000  | H         | -0.009000  | -3.204000  | 12.396000  |
| C       | -9.353000 | -9./33000 | -4.8/0000  | н         | -9.213000  | -/.0TTOOO  | 12.336000  |

| ц  | -8 892000 | -8 808000 | 10 179000 | C      | -5 484000            | 4 341000  | 0 120000             |
|----|-----------|-----------|-----------|--------|----------------------|-----------|----------------------|
|    | 0.092000  | 0.000000  | 10.1/9000 | C      | 5.404000             | 1.062000  | 0.120000             |
| Н  | -8.041000 | -8.5/3000 | 1.585000  | C      | -5.427000            | 1.963000  | -2.625000            |
| Н  | -7.605000 | -3.002000 | 11.297000 | С      | -5.512000            | 0.523000  | -2.791000            |
| С  | -5.872000 | 0.821000  | 8.893000  | С      | -5.474000            | -0.150000 | -4.128000            |
| С  | -7.216000 | 0.467000  | 9.154000  | С      | -5.535000            | -1.481000 | -3.901000            |
| С  | -7.543000 | -0.873000 | 9.275000  | С      | -5.607000            | -1.686000 | -2.424000            |
| С  | -6.540000 | -1.861000 | 9.114000  | N      | -5.608000            | -0.378000 | -1.807000            |
| C  | -5 219000 | -1 493000 | 8 816000  | C      | -5 606000            | -2 881000 | -1 775000            |
| c  | 4 975000  | 1 20000   | 0.010000  | C      | 5.000000             | 2.001000  | 1.775000             |
|    | -4.8/5000 | -0.139000 | 8.701000  | C      | -5.585000            | -3.08/000 | -0.339000            |
| Н  | -/.966000 | 1.255000  | 9.301000  | Ν      | -5.566000            | -2.083000 | 0.632000             |
| Н  | -8.576000 | -1.159000 | 9.499000  | С      | -5.462000            | -2.665000 | 1.899000             |
| Н  | -4.443000 | -2.255000 | 8.716000  | С      | -5.434000            | -4.076000 | 1.715000             |
| Н  | -3.834000 | 0.148000  | 8.543000  | С      | -5.509000            | -4.334000 | 0.342000             |
| Pd | -6.813000 | -4.829000 | 7.884000  | С      | -5.371000            | -1.950000 | 3.156000             |
| 0  | -5.707000 | 2,193000  | 8,975000  | С      | -5.051000            | -2.797000 | 4,344000             |
| 0  | -5 733000 | -1 510000 | -7 879000 | Ċ      | -3 705000            | -3 157000 | 4 543000             |
| 0  | -5 617000 | -8 238000 | 1 859000  | C      | -6 012000            | -3 228000 | 5 281000             |
| 0  | 5.01/000  | 0.230000  | 2 121000  | N      | 5.012000<br>E.CC0000 | 2.00000   | C 201000             |
| C  | -5.814000 | 8.3/9000  | -2.131000 | N      | -5.669000            | -3.960000 | 6.381000             |
| C  | -4.858000 | 7.766000  | -2.944000 | C      | -4.353000            | -4.282000 | 6.5/4000             |
| С  | -5.232000 | 7.378000  | -4.238000 | С      | -3.353000            | -3.903000 | 5.670000             |
| С  | -6.541000 | 7.598000  | -4.692000 | С      | -5.371000            | 4.082000  | 3.079000             |
| С  | -7.504000 | 8.197000  | -3.840000 | С      | -6.547000            | 4.694000  | 3.550000             |
| С  | -7.148000 | 8.579000  | -2.558000 | С      | -6.455000            | 5.832000  | 4.353000             |
| Н  | -3.821000 | 7,662000  | -2.622000 | С      | -5.188000            | 6.344000  | 4,675000             |
| Н  | -4 484000 | 6 942000  | -4 905000 | N      | -4 038000            | 5 758000  | 4 231000             |
| и  | -8 530000 | 8 364000  | -4 187000 | C      | -4 130000            | 4 643000  | 3 447000             |
| 11 | 7 964000  | 0.071000  | 1 997000  | C      | 5 105000             | 2 762000  | 2 925000             |
| п  | -7.884000 | 9.071000  | -1.887000 | C      | -3.103000            | 2.762000  | -3.833000            |
| C  | -4.6/2000 | 2.918000  | 8.415000  | C      | -6.069000            | 3.490000  | -4.566000            |
| С  | -3.962000 | 2.587000  | 7.257000  | N      | -5.731000            | 4.258000  | -5.642000            |
| С  | -3.088000 | 3.536000  | 6.713000  | С      | -4.419000            | 4.320000  | -6.022000            |
| С  | -2.928000 | 4.782000  | 7.338000  | С      | -3.416000            | 3.604000  | -5.354000            |
| С  | -3.621000 | 5.084000  | 8.536000  | С      | -3.763000            | 2.817000  | -4.255000            |
| С  | -4.500000 | 4.158000  | 9.073000  | С      | -5.505000            | -4.135000 | -2.583000            |
| Н  | -4.075000 | 1.613000  | 6.784000  | C      | -4.224000            | -4.635000 | -2.882000            |
| н  | -2 523000 | 3 298000  | 5 809000  | C      | -4 102000            | -5 805000 | -3 633000            |
| ц  | -3 475000 | 6 047000  | 9.000000  | Ċ      | -5 263000            | -6 459000 | -4 072000            |
| п  | -3.473000 | 0.047000  | 9.040000  |        | -5.205000            | -0.438000 | -4.072000            |
| н  | -5.059000 | 4.364000  | 9.998000  | N      | -6.515000            | -5.98/000 | -3./88000            |
| C  | -0.228000 | 8.65/000  | 4./54000  | С      | -6.631000            | -4.841000 | -3.052000            |
| С  | 0.903000  | 9.362000  | 5.206000  | Н      | -5.378000            | -0.378000 | 5.591000             |
| С  | 1.452000  | 9.012000  | 6.451000  | Н      | -5.468000            | 2.279000  | 5.052000             |
| С  | 0.887000  | 7.993000  | 7.236000  | Н      | -5.640000            | 1.034000  | 0.053000             |
| С  | -0.243000 | 7.318000  | 6.739000  | Н      | -5.432000            | 4.795000  | -2.022000            |
| Ν  | -0.751000 | 7,656000  | 5,519000  | Н      | -5,499000            | 5,293000  | 0.632000             |
| C  | -1 044000 | 6 249000  | 7 392000  | н      | -5 401000            | 0 375000  | -5 063000            |
| N  | -2 069000 | 5 765000  | 6 730000  | ч      | -5 515000            | -2 290000 | -4 610000            |
| C  | 1 015000  | 9 960000  | 2 511000  | 11     | 5.515000             | 1 002000  | 4.010000             |
|    | -1.013000 | 0.005000  | 3.311000  | п      | -5.000000            | -1.003000 | 0.440000             |
| N  | -2.046000 | 8.085000  | 3.297000  | H      | -5.354000            | -4.808000 | 2.497000             |
| Н  | 1.350000  | 10.1/3000 | 4.609000  | Н      | -5.489000            | -5.302000 | -0.125000            |
| Н  | 2.343000  | 9.555000  | 6.824000  | Н      | -2.938000            | -2.854000 | 3.819000             |
| Н  | 1.322000  | 7.740000  | 8.216000  | Н      | -7.080000            | -2.990000 | 5.157000             |
| Н  | -0.724000 | 5.942000  | 8.409000  | Н      | -2.307000            | -4.190000 | 5.848000             |
| Н  | -0.679000 | 9.697000  | 2.852000  | Н      | -7.529000            | 4.279000  | 3.290000             |
| Pd | -2.323000 | 6.720000  | 4.879000  | Н      | -7.361000            | 6.328000  | 4.730000             |
| 0  | -5 615000 | 8 964000  | -0 892000 | н      | -3 183000            | 4 195000  | 3 113000             |
| C  | -5 409000 | 0.121000  | 4 639000  | и<br>Ц | -7 134000            | 3 462000  | -1 291000            |
| c  | 5.409000  | 1 446000  | 4.039000  | 11     | 2 272000             | 3.402000  | 4.291000<br>E CO4000 |
| C  | -5.446000 | 1.446000  | 4.3/3000  | H      | -2.3/3000            | 3.666000  | -5.694000            |
| C  | -5.485000 | 1.590000  | 2.885000  | Н      | -2.994000            | 2.24/000  | -3.720000            |
| Ν  | -5.518000 | 0.393000  | 2.290000  | Н      | -3.327000            | -4.112000 | -2.525000            |
| С  | -5.445000 | -0.603000 | 3.335000  | Н      | -3.111000            | -6.213000 | -3.880000            |
| С  | -5.455000 | 2.877000  | 2.215000  | Н      | -7.651000            | -4.492000 | -2.837000            |
| С  | -5.519000 | 3.043000  | 0.860000  | Н      | -4.111000            | -4.862000 | 7.486000             |
| Ν  | -5.581000 | 2.039000  | -0.135000 | Н      | -5.077000            | 7.246000  | 5.306000             |
| С  | -5.498000 | 2.613000  | -1.425000 | Н      | -4.180000            | 4.965000  | -6.890000            |
| C  | -5,459000 | 4.092000  | -1.205000 | Н      | -5.202000            | -7.387000 | -4.671000            |

 Table S6. Cartesian coordinates (in Å) for the PM6 geometry optimized model of 6·T2-1,2-alternate.



| С       | -6.335000             | -0.242000 | -7.782000  | С       | -10.371000 | -10.577000 | -5.009000 |
|---------|-----------------------|-----------|------------|---------|------------|------------|-----------|
| С       | -7.687000             | 0.108000  | -7.858000  | С       | -10.974000 | -10.281000 | -6.242000 |
| С       | -8.019000             | 1.452000  | -8.036000  | С       | -10.674000 | -9.096000  | -6.936000 |
| С       | -7.004000             | 2.424000  | -8.114000  | С       | -9.759000  | -8.198000  | -6.356000 |
| С       | -5.643000             | 2.052000  | -8.044000  | Ν       | -9.200000  | -8.489000  | -5.145000 |
| С       | -5.303000             | 0.718000  | -7.871000  | С       | -9.255000  | -6.909000  | -6.901000 |
| Н       | -8.475000             | -0.649000 | -7.834000  | N       | -8.381000  | -6.253000  | -6.177000 |
| Н       | -9.072000             | 1.739000  | -8.118000  | С       | -8.656000  | -9.752000  | -3.227000 |
| Н       | -4.859000             | 2.806000  | -8.158000  | N       | -7.837000  | -8.765000  | -2.946000 |
| н       | -4.258000             | 0.390000  | -7.856000  | Н       | -10.606000 | -11.516000 | -4.485000 |
| С       | -8.081000             | 7.689000  | -8.063000  | Н       | -11.693000 | -11.001000 | -6.682000 |
| C       | -8.665000             | 8,460000  | -9.086000  | Н       | -11.144000 | -8.888000  | -7.910000 |
| C       | -9.056000             | 7.810000  | -10.267000 | Н       | -9.654000  | -6.596000  | -7.887000 |
| C       | -8.871000             | 6.427000  | -10.435000 | Н       | -8.797000  | -10.672000 | -2.624000 |
| C       | -8.279000             | 5.702000  | -9.384000  | C       | -5.265000  | -8.888000  | 0.380000  |
| N       | -7 912000             | 6 348000  | -8 239000  | C       | -5 268000  | -9 983000  | -0 514000 |
| C       | -7 961000             | 4 251000  | -9 321000  | C       | -6 130000  | -9 957000  | -1 598000 |
| N       | -7 318000             | 3 821000  | -8 261000  | C       | -6 976000  | -8 838000  | -1 796000 |
| C       | -7 606000             | 8 131000  | -6 726000  | C       | -6 972000  | -7 767000  | -0.888000 |
| N       | -7 021000             | 7 244000  | -5 952000  | C       | -6 114000  | -7 789000  | 0.216000  |
| ц       | -8 812000             | 9 546000  | -8 972000  | С<br>Н  | -4 593000  | -10 833000 | -0.335000 |
| н       | -9 516000             | 8 399000  | -11 085000 | и<br>И  | -6 142000  | -10.800000 | -2 298000 |
| н       | -9 180000             | 5 933000  | -11 370000 | и<br>И  | -7 648000  | -6 921000  | -1 036000 |
| н       | -8 289000             | 3 632000  | -10 180000 | и<br>И  | -6 111000  | -6 963000  | 0 927000  |
| и<br>П  | -7 796000             | 9 193000  | -6 466000  | Dd      | -7 887000  | -7 266000  | -4 410000 |
| C       | -1 772000             | 8 879000  | 0.400000   | ru<br>C | -1 262000  | 0 227000   | 8 277000  |
| C       | -4.640000             | 9 966000  | 0.031000   | C       | -2 938000  | -0.208000  | 8 400000  |
| C       | -3 752000             | 9.900000  | 2 003000   | C       | -2 70000   | -1 565000  | 8 621000  |
| C       | -3 004000             | 8 665000  | 2.003000   | C       | -3 779000  | -2 467000  | 8 690000  |
| c       | -3.004000             | 7 606000  | 2.1/4000   | C       | -3.779000  | -2.407000  | 8.090000  |
| C       | -3.130000             | 7.000000  | 1.203000   | C       | -5.109000  | -2.012000  | 0.339000  |
|         | -4.017000<br>5.240000 | 10 975000 | 0.103000   | U U     | -3.336000  | -0.003000  | 0.34/000  |
| п       | -3.240000             | 10.673000 | 2 704000   | п       | -2.103000  | 1 010000   | 0.370000  |
| п       | -3.642000             | 10.094000 | 2.704000   | п       | -1.0/1000  | -1.910000  | 0.743000  |
| п       | -2.525000             | 6.703000  | 1.303000   | п       | -3.943000  | -2.714000  | 0.00000   |
| п<br>Dd | -4.102000             | 5.901000  | -0.337000  | п       | -0.377000  | -0.270000  | 0.292000  |
| ra<br>c | -0.940000             | 2 610000  | -0.00000   | C       | -2.030000  | -7.750000  | 0.707000  |
| C       | -6.636000             | -2.619000 | -7.350000  | C       | -2.386000  | -8.533000  | 9.8/1000  |
| C       | -6.381000             | -3.761000 | -8.129000  | C       | -2.121000  | -7.884000  | 11.088000 |
| C       | -6.983000             | -4.962000 | -7.767000  | C       | -2.299000  | -6.498000  | 10 110000 |
| C       | -7.817000             | -5.007000 | -6.630000  | C       | -2.754000  | -5.767000  | 10.118000 |
| C       | -8.081000             | -3.849000 | -5.8/8000  | N       | -3.000000  | -6.411000  | 8.940000  |
| C       | -7.489000             | -2.63/000 | -6.240000  | C       | -3.026000  | -4.309000  | 10.010000 |
| H       | -5./22000             | -3.694000 | -9.006000  | N       | -3.548000  | -3.8/5000  | 8.888000  |
| H       | -0.8UIUUU             | -2.861000 | -8.368000  | C       | -3.169000  | -8.191000  | 1.405000  |
| н       | -8./58000             | -3.892000 | -5.020000  | N<br>   | -3.6/3000  | -/.298000  | 6.583000  |
| Н       | -7.690000             | -1.730000 | -5.671000  | H       | -2.246000  | -9.622000  | 9.777000  |
| C       | -9.460000             | -9.647000 | -4.473000  | Н       | -1.766000  | -8.479000  | 11.954000 |

| Н    | -2.090000 | -6.006000 | 12.194000 | С       | -5.026000 | 4.318000  | 0.204000  |
|------|-----------|-----------|-----------|---------|-----------|-----------|-----------|
| н    | -2.763000 | -3,688000 | 10.890000 | С       | -5.136000 | 2,010000  | -2.597000 |
| н    | -2 946000 | -9 249000 | 7 155000  | C       | -5 233000 | 0 573000  | -2 793000 |
| C    | -4 242000 | -8 443000 | 2 571000  | C       | -5 221000 | -0 072000 | -4 143000 |
| C    | -2 931000 | -8 420000 | 3 103000  | C       | -5 286000 | -1 407000 | -3 943000 |
| C    | -2 754000 | -8 041000 | 4 421000  | C       | -5 338000 | -1 642000 | -2 470000 |
| C    | -3 875000 | -7 662000 | 5 202000  | N       | -5 317000 | -0 347000 | -1 826000 |
| C    | -3.873000 | -7.002000 | 1. (10000 | N       | -3.317000 | -0.347000 | -1.020000 |
|      | -3.163000 | -7.050000 | 4.049000  | C       | -3.330000 | -2.049000 | -1.042000 |
| C    | -5.356000 | -8.052000 | 3.318000  | С       | -5.330000 | -3.077000 | -0.410000 |
| H    | -2.08/000 | -8./42000 | 2.4/8000  | N       | -5.3/1000 | -2.094000 | 0.583000  |
| Н    | -1.748000 | -8.041000 | 4.854000  | С       | -5.319000 | -2.701000 | 1.839000  |
| Н    | -6.027000 | -7.388000 | 5.261000  | С       | -5.234000 | -4.105000 | 1.628000  |
| Н    | -6.366000 | -8.114000 | 2.910000  | С       | -5.236000 | -4.335000 | 0.247000  |
| Pd   | -3.820000 | -5.414000 | 7.496000  | С       | -5.370000 | -2.016000 | 3.118000  |
| 0    | -4.669000 | 1.542000  | 8.137000  | С       | -5.662000 | -2.908000 | 4.281000  |
| 0    | -5.832000 | -1.526000 | -7.675000 | С       | -7.009000 | -3.116000 | 4.626000  |
| 0    | -4.237000 | -8.990000 | 1.300000  | С       | -4.663000 | -3.559000 | 5.036000  |
| С    | -5.980000 | 8.476000  | -2.060000 | Ν       | -4.967000 | -4.380000 | 6.083000  |
| С    | -4.983000 | 7.945000  | -2.882000 | С       | -6.284000 | -4.574000 | 6.403000  |
| C    | -5.336000 | 7.522000  | -4.171000 | C       | -7.323000 | -3,957000 | 5,696000  |
| C    | -6 664000 | 7 631000  | -4 609000 | C       | -4 983000 | 4 021000  | 3 144000  |
| C    | -7 667000 | 8 144000  | -3 747000 | C       | -6 179000 | 4 493000  | 3 718000  |
| C    | -7 331000 | 0.144000  | -2 470000 | C       | -6 159000 | 5 647000  | 4 502000  |
| C II | -7.331000 | 8.337000  | -2.470000 | C       | -0.139000 | 5.647000  | 4.302000  |
| н    | -3.938000 | 7.932000  | -2.5/1000 |         | -4.942000 | 6.315000  | 4.705000  |
| Н    | -4.562000 | 7.148000  | -4.846000 | N       | -3.770000 | 5.866000  | 4.16/000  |
| H    | -8./06000 | 8.221000  | -4.084000 | С       | -3./92000 | 4./34000  | 3.401000  |
| H    | -8.080000 | 8.985000  | -1.789000 | С       | -4.913000 | 2.843000  | -3.807000 |
| С    | -3.773000 | 2.557000  | 7.799000  | С       | -5.949000 | 3.519000  | -4.489000 |
| С    | -2.954000 | 2.492000  | 6.664000  | N       | -5.705000 | 4.313000  | -5.572000 |
| С    | -2.257000 | 3.638000  | 6.279000  | С       | -4.416000 | 4.451000  | -6.008000 |
| С    | -2.382000 | 4.817000  | 7.037000  | С       | -3.344000 | 3.793000  | -5.390000 |
| С    | -3.178000 | 4.853000  | 8.201000  | С       | -3.597000 | 2.981000  | -4.283000 |
| С    | -3.887000 | 3.717000  | 8.583000  | С       | -5.296000 | -4.094000 | -2.668000 |
| Н    | -2.864000 | 1.568000  | 6.091000  | С       | -4.049000 | -4.541000 | -3.141000 |
| Н    | -1.610000 | 3.616000  | 5.400000  | С       | -3.981000 | -5.711000 | -3.900000 |
| Н    | -3.250000 | 5.764000  | 8.806000  | C       | -5.161000 | -6.417000 | -4.174000 |
| н    | -4 524000 | 3 716000  | 9 479000  | N       | -6 381000 | -5 997000 | -3 722000 |
| C    | -0 383000 | 9.710000  | 4 775000  | C       | -6 445000 | -4 851000 | -2 979000 |
| C    | 0.505000  | 10 106000 | 5 260000  | ч       | -5 446000 | -0.486000 | 5 592000  |
| C    | 1 220000  | 10.100000 | 5.269000  | н       | -5.446000 | -0.400000 | 5.562000  |
| C    | 1.239000  | 9.771000  | 6.488000  | н       | -5.242000 | 2.167000  | 5.106000  |
| C    | 0.849000  | 8.629000  | 7.209000  | H       | -5.161000 | 1.013000  | 0.071000  |
| С    | -0.164000 | 7.815000  | 6.671000  | Н       | -5.051000 | 4.819000  | -1.929000 |
| Ν    | -0.731000 | 8.143000  | 5.473000  | Н       | -5.009000 | 5.258000  | 0.735000  |
| С    | -0.768000 | 6.584000  | 7.249000  | Н       | -5.158000 | 0.471000  | -5.069000 |
| N    | -1.716000 | 6.00000   | 6.557000  | Н       | -5.282000 | -2.200000 | -4.671000 |
| С    | -1.210000 | 9.425000  | 3.551000  | Н       | -5.418000 | -1.091000 | 0.415000  |
| N    | -2.121000 | 8.513000  | 3.301000  | Н       | -5.169000 | -4.850000 | 2.398000  |
| Н    | 0.936000  | 11.012000 | 4.722000  | Н       | -5.158000 | -5.288000 | -0.242000 |
| Н    | 2.037000  | 10.423000 | 6.894000  | Н       | -7.810000 | -2.625000 | 4.059000  |
| Н    | 1.328000  | 8.390000  | 8.171000  | Н       | -3.595000 | -3.429000 | 4.802000  |
| Н    | -0.375000 | 6.251000  | 8.231000  | Н       | -8.369000 | -4.132000 | 5.983000  |
| н    | -1.004000 | 10.324000 | 2.935000  | Н       | -7.122000 | 3.958000  | 3.546000  |
| Pd   | -2 163000 | 7 029000  | 4 790000  | н       | -7 083000 | 6 034000  | 4 955000  |
| 0    | -5 814000 | 9 089000  | -0.830000 | и<br>Ц  | -2 830000 | 1 397000  | 2 990000  |
| C    | -5 329000 | 0.025000  | 4 642000  | 11<br>U | -6.007000 | 3 427000  | _1 169000 |
| C    | -5.320000 | 1 250000  | 4.042000  | п       | -2 222000 | 2 017000  | -4.100000 |
| C    | -5.224000 | 1.352000  | 4.405000  | н       | -2.322000 | 3.917000  | -5.774000 |
| C    | -5.100000 | 1.522000  | 2.923000  | Н       | -2.//2000 | 2.455000  | -3./8/000 |
| N    | -5.113000 | 0.336000  | 2.305000  | Н       | -3.134000 | -3.978000 | -2.911000 |
| С    | -5.266000 | -0.677000 | 3.326000  | Н       | -3.017000 | -6.078000 | -4.279000 |
| С    | -5.016000 | 2.819000  | 2.272000  | Н       | -7.440000 | -4.543000 | -2.629000 |
| С    | -5.053000 | 3.005000  | 0.918000  | Н       | -6.496000 | -5.248000 | 7.257000  |
| Ν    | -5.127000 | 2.023000  | -0.097000 | Н       | -4.890000 | 7.239000  | 5.313000  |
| С    | -5.116000 | 2.627000  | -1.377000 | Н       | -4.252000 | 5.112000  | -6.882000 |
| С    | -5.055000 | 4.100000  | -1.126000 | Н       | -5.145000 | -7.349000 | -4.771000 |

 Table S7. Cartesian coordinates (in Å) for the PM6 geometry optimized model of 6·T2-1,3-alternate.



| С      | -6.621000 | -0.512000  | -8.057000  | С       | -1.403000 | -10.388000 | -6.744000 |
|--------|-----------|------------|------------|---------|-----------|------------|-----------|
| С      | -7.828000 | 0.219000   | -8.182000  | С       | -1.791000 | -10.630000 | -5.417000 |
| С      | -7.765000 | 1.589000   | -8.363000  | С       | -2.610000 | -9.680000  | -4.778000 |
| С      | -6.505000 | 2,237000   | -8.396000  | Ν       | -2,991000 | -8.556000  | -5,449000 |
| C      | -5.321000 | 1,503000   | -8.244000  | С       | -3.190000 | -9.728000  | -3,409000 |
| C      | -5.373000 | 0.113000   | -8.069000  | N       | -3.952000 | -8.726000  | -3.035000 |
| н      | -8 787000 | -0 315000  | -8 177000  | C       | -3 249000 | -7 058000  | -7 258000 |
| н      | -8 689000 | 2 163000   | -8 488000  | N       | -3 996000 | -6 363000  | -6 433000 |
| ц      | -4 349000 | 2 000000   | -8 298000  | ц       | -1 523000 | -9 069000  | -8 475000 |
| и<br>П | -4 447000 | -0.463000  | -8 019000  | ч       | -0 759000 | -11 124000 | -7 265000 |
| C      | -6 688000 | 7 619000   | -8 589000  | и<br>Ц  | -1 463000 | -11 546000 | -1 899000 |
| C      | -6 954000 | 8 426000   | -9 712000  | 11<br>U | -2 945000 | -10 622000 | -2 80000  |
| c      | -0.954000 | 7 702000   | 10 041000  | п       | -2.943000 | -10.022000 | -2.000000 |
| C      | -7.202000 | 7.793000   | -10.941000 | H       | -3.033000 | -0.801000  | -8.315000 |
| C      | -/.184000 | 6.393000   | -11.058000 | C       | -5.998000 | -2.866000  | -7.658000 |
| 0      | -6.912000 | 5.632000   | -9.906000  | C       | -6.336000 | -4.096000  | -8.268000 |
| N      | -6.686000 | 6.262000   | -8./18000  | C       | -5.660000 | -5.243000  | -/.885000 |
| C      | -6.845000 | 4.153000   | -9./63000  | С       | -4.658000 | -5.165000  | -6.88/000 |
| Ν      | -6.464000 | 3.666000   | -8.604000  | С       | -4.315000 | -3.933000  | -6.312000 |
| С      | -6.407000 | 8.037000   | -7.191000  | С       | -4.985000 | -2.766000  | -6.700000 |
| Ν      | -6.083000 | 7.108000   | -6.319000  | Н       | -7.123000 | -4.123000  | -9.036000 |
| Н      | -6.967000 | 9.525000   | -9.638000  | Н       | -5.908000 | -6.202000  | -8.355000 |
| Н      | -7.413000 | 8.410000   | -11.837000 | Н       | -3.516000 | -3.876000  | -5.570000 |
| Н      | -7.376000 | 5.913000   | -12.031000 | Н       | -4.710000 | -1.807000  | -6.264000 |
| Н      | -7.140000 | 3.557000   | -10.652000 | Pd      | -4.168000 | -7.300000  | -4.559000 |
| Н      | -6.508000 | 9.122000   | -6.974000  | С       | -6.586000 | -8.144000  | 3.001000  |
| С      | -4.722000 | 8.795000   | -0.057000  | С       | -7.797000 | -8.118000  | 3.733000  |
| С      | -4.710000 | 9.915000   | 0.806000   | С       | -7.769000 | -7.721000  | 5.058000  |
| С      | -3.972000 | 9.853000   | 1.976000   | С       | -6.542000 | -7.328000  | 5.651000  |
| С      | -3.258000 | 8.671000   | 2.294000   | С       | -5.359000 | -7.321000  | 4.899000  |
| С      | -3.259000 | 7.578000   | 1.413000   | С       | -5.374000 | -7.731000  | 3.559000  |
| С      | -3.990000 | 7.636000   | 0.220000   | Н       | -8.728000 | -8.450000  | 3.253000  |
| Н      | -5.281000 | 10.816000  | 0.535000   | Н       | -8.696000 | -7.717000  | 5.642000  |
| Н      | -3,953000 | 10.717000  | 2,651000   | Н       | -4.411000 | -7.036000  | 5.362000  |
| Н      | -2.677000 | 6.685000   | 1.651000   | Н       | -4.441000 | -7.788000  | 2.997000  |
| н      | -3.973000 | 6.801000   | -0.474000  | C       | -6.808000 | -5.475000  | 10.713000 |
| Pd     | -6 112000 | 5 194000   | -7 210000  | C       | -7 089000 | -6 219000  | 11 874000 |
| C      | -5 920000 | -8 673000  | 0 686000   | C       | -7 325000 | -7 597000  | 11 741000 |
| C      | -6 104000 | -9 787000  | -0 164000  | C       | -7 283000 | -8 226000  | 10 486000 |
| C      | -5 437000 | -9 821000  | -1 378000  | C       | -6 997000 | -7 438000  | 9 355000  |
| c      | -1 599000 | -9 742000  | _1 749000  | N       | -6 779000 | -6 100000  | 9.555000  |
| c      | -4.398000 | -0.742000  | -1.740000  | IN<br>C | -0.779000 | -0.100000  | 7 022000  |
| c      | -4.400000 | -7.034000  | -0.881000  | C NI    | -0.905000 | -7.857000  | 7.933000  |
| C II   | -3.066000 | = 7.617000 | 0.333000   | IN<br>C | -0.525000 | -0.903000  | 10 50000  |
| H      | -6.769000 | -10.605000 | 0.149000   | C       | -6.538000 | -4.019000  | 10.586000 |
| н      | -5.5/1000 | -10.681000 | -2.044000  | N       | -6.208000 | -3.560000  | 9.401000  |
| H      | -3./33000 | -6.841000  | -1.161000  | H       | -/.122000 | -5./41000  | 12.86/000 |
| Н      | -4.913000 | -6.//8000  | 1.031000   | H<br>   | -/.548000 | -8.200000  | 12.644000 |
| C      | -2.641000 | -8.316000  | -6./46000  | H       | -/.468000 | -9.308000  | T0.398000 |
| С      | -1.824000 | -9.236000  | -7.429000  | Н       | -7.183000 | -8.909000  | 7.712000  |

| ы      | -6 652000    | -3 415000 | 11 510000 | C        | -5 244000 | 1 9/1000  | -2 566000 |
|--------|--------------|-----------|-----------|----------|-----------|-----------|-----------|
| п<br>~ | -0.032000    | -3.413000 | 11.510000 | C        | -J.244000 | 1.941000  | -2.300000 |
| C      | -2.818000    | 0.5/3000  | 8.683000  | С        | -5.48/000 | 0.514000  | -2./00000 |
| С      | -6.995000    | 0.091000  | 9.307000  | С        | -5.780000 | -0.147000 | -4.009000 |
| С      | -7.111000    | -1.263000 | 9.563000  | С        | -5.982000 | -1.459000 | -3.748000 |
| Ċ      | -6 060000    | -2 1/3000 | 9 195000  | C        | -5 807000 | -1 660000 | -2 281000 |
| ~      | 0.000000     | 2.143000  | 9.195000  | 0        | 5.007000  | 1.000000  | 2.201000  |
| C      | -4.890000    | -1.644000 | 8.60/000  | N        | -5.50/000 | -0.3/1000 | -1./01000 |
| С      | -4.762000    | -0.273000 | 8.341000  | С        | -5.918000 | -2.834000 | -1.604000 |
| Н      | -7.788000    | 0.799000  | 9.586000  | С        | -5.803000 | -3.016000 | -0.171000 |
| ч      | -8 019000    | -1 645000 | 10 044000 | N        | -5 540000 | -2 012000 | 0 765000  |
| 11     | 4 0 (1 0 0 0 | 2.217000  | 0.074000  | N        | 5.510000  | 2.012000  | 0.700000  |
| н      | -4.061000    | -2.31/000 | 8.3/4000  | C        | -5.500000 | -2.570000 | 2.043000  |
| Н      | -3.838000    | 0.111000  | 7.910000  | С        | -5.753000 | -3.963000 | 1.907000  |
| Pd     | -6.204000    | -5.093000 | 7.951000  | С        | -5.947000 | -4.235000 | 0.548000  |
| 0      | -5 962000    | 1 920000  | 8 395000  | C        | -5 246000 | -1 846000 | 3 275000  |
| 0      | _6 990000    | _1 969000 | -9 016000 | C        | _1 020000 | -2 713000 | 4 416000  |
| 0      | -0.009000    | -1.000000 | -0.010000 | C        | -4.020000 | -2.713000 | 4.410000  |
| 0      | -6./94000    | -8./12000 | 1./58000  | С        | -3.455000 | -2.991000 | 4.538000  |
| С      | -5.626000    | 8.343000  | -2.312000 | С        | -5.720000 | -3.283000 | 5.350000  |
| С      | -4.533000    | 7.770000  | -2.963000 | Ν        | -5.285000 | -4.091000 | 6.360000  |
| C      | -4 691000    | 7 343000  | -4 290000 | C        | -3 945000 | -4 353000 | 6 463000  |
| c      | F 02C000     | 7.010000  | 1.250000  | C        | 2 000000  | 2 010000  | E E72000  |
| C      | -5.926000    | 7.490000  | -4.935000 | C        | -3.008000 | -3.818000 | 5.572000  |
| С      | -7.036000    | 8.043000  | -4.245000 | С        | -5.480000 | 4.200000  | 3.065000  |
| С      | -6.893000    | 8.459000  | -2.933000 | С        | -6.732000 | 4.781000  | 3.337000  |
| Н      | -3.550000    | 7.723000  | -2.490000 | С        | -6.791000 | 5,994000  | 4.028000  |
| U      | -3 831000    | 6 936000  | -1 828000 | C        | -5 599000 | 6 603000  | 1 112000  |
| 11     | 0.001000     | 0.950000  | 4.020000  |          | 1.077000  | 0.005000  | 4.942000  |
| Н      | -8.005000    | 8.151000  | -4./45000 | N        | -4.3//000 | 6.035000  | 4.215000  |
| Н      | -7.727000    | 8.917000  | -2.384000 | С        | -4.320000 | 4.850000  | 3.538000  |
| С      | -4.973000    | 2.816000  | 8.043000  | С        | -4.802000 | 2.656000  | -3.787000 |
| С      | -3.589000    | 2.637000  | 8.056000  | С        | -5.663000 | 3.400000  | -4.622000 |
| C      | -2 760000    | 3 700000  | 7 600000  | N        | -5 204000 | 4 061000  | -5 724000 |
| Ĉ      | -2.769000    | 3.709000  | 7.000000  | IN<br>~  | -3.204000 | 4.001000  | -3.724000 |
| С      | -3.341000    | 4.92/000  | 7.281000  | С        | -3.8/1000 | 3.995000  | -6.026000 |
| С      | -4.746000    | 5.101000  | 7.298000  | С        | -2.965000 | 3.265000  | -5.246000 |
| С      | -5.564000    | 4.050000  | 7.669000  | С        | -3.436000 | 2.589000  | -4.120000 |
| н      | -3 135000    | 1 703000  | 8 398000  | C        | -6 232000 | -4 076000 | -2 370000 |
|        | 1 (00000     | 1.700000  | 7 704000  | C        | 7 571000  | 1.070000  | 2.570000  |
| н      | -1.682000    | 3.582000  | 7.704000  | C        | -7.571000 | -4.4//000 | -2.524000 |
| H      | -5.181000    | 6.075000  | 7.051000  | С        | -7.859000 | -5.639000 | -3.241000 |
| Н      | -6.653000    | 4.159000  | 7.728000  | С        | -6.806000 | -6.385000 | -3.791000 |
| С      | -0.935000    | 9.248000  | 5.176000  | Ν        | -5.501000 | -6.008000 | -3.646000 |
| Ċ      | 0 067000     | 10 048000 | 5 757000  | C        | -5 219000 | -4 870000 | -2 945000 |
| 2      | 0.007000     | 10.040000 | 7.015000  |          | 1.071000  | 4.070000  | 2.943000  |
| C      | 0.569000     | 9.6/6000  | /.015000  | Н        | -4.9/1000 | -0.229000 | 5.6/0000  |
| С      | 0.085000     | 8.541000  | 7.687000  | H        | -5.130000 | 2.415000  | 5.099000  |
| С      | -0.919000    | 7.776000  | 7.066000  | Н        | -5.548000 | 1.073000  | 0.121000  |
| Ν      | -1.387000    | 8.146000  | 5.840000  | Н        | -5.143000 | 4.784000  | -2.018000 |
| C      | -1 620000    | 6 570000  | 7 586000  | ц        | -5 380000 | 5 340000  | 0 614000  |
|        | 1.020000     | 0.370000  | 7.300000  | 11       | 5.300000  | 0.0770000 | 0.014000  |
| IN     | -2.562000    | 6.051000  | 6.836000  | Н        | -5.832000 | 0.377000  | -4.945000 |
| С      | -1.629000    | 9.434000  | 3.873000  | H        | -6.246000 | -2.254000 | -4.423000 |
| Ν      | -2.538000    | 8.550000  | 3.536000  | Н        | -5.410000 | -1.026000 | 0.548000  |
| Н      | 0.451000     | 10,946000 | 5.247000  | Н        | -5.801000 | -4.672000 | 2,712000  |
| U      | 1 257000     | 10 204000 | 7 100000  | ц        | -6 197000 | _5 100000 | 0 114000  |
| 11     | 1.337000     | 10.294000 | 7.409000  | 11       | 0.107000  | 5.100000  | 0.114000  |
| н      | 0.484000     | 8.2/0000  | 8.6/8000  | Н        | -2./38000 | -2.56/000 | 3.824000  |
| Н      | -1.310000    | 6.211000  | 8.588000  | Н        | -6.804000 | -3.097000 | 5.293000  |
| Н      | -1.321000    | 10.314000 | 3.272000  | Н        | -1.940000 | -4.049000 | 5.684000  |
| Pd     | -2.808000    | 7.103000  | 5.036000  | Н        | -7.655000 | 4.288000  | 3.006000  |
| 0      | -5 649000    | 9 957000  | -1 071000 | ц        | -7 750000 | 6 460000  | 1 244000  |
| 0      | -5.040000    | 0.957000  | -1.0/1000 | п        | -7.759000 | 0.409000  | 4.244000  |
| С      | -5.102000    | 0.254000  | 4.718000  | Н        | -3.321000 | 4.420000  | 3.377000  |
| С      | -5.179000    | 1.573000  | 4.434000  | Н        | -6.741000 | 3.470000  | -4.412000 |
| С      | -5.368000    | 1.690000  | 2.953000  | Н        | -1.902000 | 3.230000  | -5.520000 |
| N      | -5.438000    | 0.482000  | 2.385000  | н        | -2.745000 | 2.010000  | -3.495000 |
| C      | _5 260000    | _0 407000 | 2 120000  | 11<br>TT | _0 202000 | _3 003000 | _2 002000 |
| Č      | -3.200000    | -0.49/000 | 5.430000  | п        | -0.303000 | -3.002000 | -2.003000 |
| C      | -5.414000    | 2.960000  | 2.252000  | H        | -8.899000 | -5.972000 | -3.376000 |
| С      | -5.430000    | 3.095000  | 0.891000  | Н        | -4.158000 | -4.599000 | -2.847000 |
| Ν      | -5.446000    | 2.072000  | -0.084000 | Н        | -3.627000 | -5.014000 | 7.295000  |
| C      | -5 304000    | 2 620000  | -1 382000 | н        | -5 605000 | 7 575000  | 4 971000  |
| c      | 5.301000     | 4 100000  | 1 100000  | ±±<br>TT | 2 524000  | A 5510000 | C 00000   |
| C      | -5.23/000    | 4.100000  | -1.189000 | Н        | -3.534000 | 4.331000  | -0.923000 |
| С      | -5.346000    | 4.377000  | 0.125000  | H        | -6.996000 | -7.311000 | -4.365000 |

**Table S8.** Cartesian coordinates (in Å) for the PM3 geometry optimized model of  $13 \cdot Cl_9$ .



| С  | 0.330000  | 0.031000  | -1.861000  | Н  | 3.979000  | 14.841000 | 1.642000   |
|----|-----------|-----------|------------|----|-----------|-----------|------------|
| С  | -0.237000 | -0.688000 | -0.800000  | С  | 10.639000 | 14.102000 | 6.714000   |
| С  | 0.316000  | -1.897000 | -0.400000  | С  | 10.842000 | 15.080000 | 7.695000   |
| С  | 1.456000  | -2.400000 | -1.044000  | С  | 9.804000  | 15.984000 | 7.953000   |
| С  | 2.035000  | -1.677000 | -2.096000  | С  | 8.587000  | 15.932000 | 7.263000   |
| С  | 1.464000  | -0.480000 | -2.510000  | С  | 8.420000  | 14.940000 | 6.289000   |
| Н  | -1.119000 | -0.300000 | -0.274000  | Ν  | 9.446000  | 14.077000 | 6.062000   |
| Н  | -0.151000 | -2.442000 | 0.431000   | С  | 7.266000  | 14.649000 | 5.417000   |
| Н  | 2.959000  | -2.019000 | -2.587000  | Ν  | 7.363000  | 13.639000 | 4.571000   |
| Н  | 1.924000  | 0.071000  | -3.341000  | С  | 11.540000 | 13.037000 | 6.231000   |
| С  | 5.227000  | 8.990000  | -11.107000 | Ν  | 11.107000 | 12.241000 | 5.271000   |
| С  | 6.451000  | 9.363000  | -10.531000 | Н  | 11.790000 | 15.138000 | 8.247000   |
| С  | 7.637000  | 9.220000  | -11.240000 | Н  | 9.949000  | 16.758000 | 8.722000   |
| С  | 7.611000  | 8.733000  | -12.554000 | Н  | 7.785000  | 16.651000 | 7.480000   |
| С  | 6.387000  | 8.372000  | -13.137000 | Н  | 6.373000  | 15.291000 | 5.514000   |
| С  | 5.207000  | 8.492000  | -12.417000 | Н  | 12.537000 | 12.958000 | 6.698000   |
| Н  | 6.485000  | 9.754000  | -9.505000  | Pd | 9.192000  | 12.712000 | 4.693000   |
| Н  | 8.586000  | 9.463000  | -10.738000 | С  | 3.606000  | 10.306000 | -9.722000  |
| Н  | 6.342000  | 7.983000  | -14.163000 | С  | 2.769000  | 10.275000 | -8.595000  |
| Н  | 4.259000  | 8.187000  | -12.881000 | С  | 2.411000  | 11.448000 | -7.948000  |
| С  | 12.433000 | 7.977000  | -14.820000 | С  | 2.862000  | 12.684000 | -8.436000  |
| С  | 12.828000 | 8.311000  | -16.121000 | С  | 3.678000  | 12.721000 | -9.576000  |
| С  | 11.882000 | 8.903000  | -16.968000 | С  | 4.052000  | 11.544000 | -10.209000 |
| С  | 10.572000 | 9.166000  | -16.548000 | Н  | 2.403000  | 9.317000  | -8.201000  |
| С  | 10.215000 | 8.820000  | -15.240000 | Н  | 1.799000  | 11.380000 | -7.035000  |
| Ν  | 11.154000 | 8.243000  | -14.443000 | Н  | 4.040000  | 13.676000 | -9.981000  |
| С  | 8.931000  | 8.982000  | -14.530000 | Н  | 4.705000  | 11.591000 | -11.090000 |
| Ν  | 8.859000  | 8.584000  | -13.273000 | С  | 1.636000  | 16.879000 | -5.306000  |
| С  | 13.201000 | 7.355000  | -13.724000 | С  | 1.190000  | 18.146000 | -5.703000  |
| Ν  | 12.588000 | 7.144000  | -12.573000 | С  | 1.041000  | 18.396000 | -7.073000  |
| Н  | 13.850000 | 8.114000  | -16.469000 | С  | 1.322000  | 17.423000 | -8.041000  |
| Н  | 12.178000 | 9.171000  | -17.994000 | С  | 1.767000  | 16.168000 | -7.608000  |
| Н  | 9.846000  | 9.633000  | -17.227000 | Ν  | 1.902000  | 15.958000 | -6.271000  |
| Н  | 8.089000  | 9.431000  | -15.085000 | С  | 2.127000  | 14.964000 | -8.383000  |
| Н  | 14.256000 | 7.096000  | -13.920000 | Ν  | 2.503000  | 13.887000 | -7.719000  |
| Pd | 10.637000 | 7.787000  | -12.619000 | С  | 1.872000  | 16.333000 | -3.954000  |
| С  | 4.122000  | 12.698000 | 1.987000   | Ν  | 2.306000  | 15.090000 | -3.858000  |
| С  | 4.816000  | 11.686000 | 2.668000   | Н  | 0.963000  | 18.923000 | -4.961000  |
| С  | 5.879000  | 11.998000 | 3.505000   | Н  | 0.690000  | 19.387000 | -7.399000  |
| С  | 6.246000  | 13.336000 | 3.700000   | Н  | 1.195000  | 17.639000 | -9.110000  |
| С  | 5.550000  | 14.351000 | 3.027000   | Н  | 2.062000  | 15.021000 | -9.483000  |
| С  | 4.502000  | 14.035000 | 2.173000   | Н  | 1.669000  | 16.987000 | -3.089000  |
| Н  | 4.535000  | 10.633000 | 2.530000   | С  | 2.903000  | 13.140000 | -0.141000  |
| Н  | 6.439000  | 11.174000 | 3.977000   | С  | 1.754000  | 13.916000 | -0.341000  |
| Н  | 5.824000  | 15.407000 | 3.156000   | С  | 1.569000  | 14.592000 | -1.540000  |

| С      | 2.526000  | 14.491000 | -2.559000     | Н     | -2.043000              | 10.108000     | 4.001000   |
|--------|-----------|-----------|---------------|-------|------------------------|---------------|------------|
| С      | 3.691000  | 13.741000 | -2.349000     | С     | 1.985000               | 11.497000     | 1.473000   |
| C      | 3 882000  | 13 081000 | -1 141000     | C     | 1 630000               | 11 355000     | 2 823000   |
| U<br>U | 0 983000  | 13 982000 | 0 438000      | C     | 0 607000               | 10 /9/000     | 3 192000   |
| 11     | 0.903000  | 15.902000 | 1 (7(000      | C     | 0.007000               | 0.740000      | 2 22000    |
| н      | 0.657000  | 13.189000 | -1.6/6000     | C     | -0.074000              | 9.746000      | 2.220000   |
| Н      | 4.449000  | 13.624000 | -3.140000     | C     | 0.2/9000               | 9.882000      | 0.869000   |
| Н      | 4.797000  | 12.492000 | -0.991000     | С     | 1.289000               | 10.759000     | 0.502000   |
| Pd     | 2.512000  | 14.198000 | -5.695000     | Н     | 2.163000               | 11.920000     | 3.600000   |
| С      | 3.028000  | 8.013000  | -10.469000    | Н     | 0.351000               | 10.404000     | 4.256000   |
| С      | 3.316000  | 6.732000  | -9.984000     | Н     | -0.207000              | 9.282000      | 0.084000   |
| С      | 2.346000  | 5.736000  | -10.013000    | Н     | 1.550000               | 10.856000     | -0.561000  |
| C      | 1 083000  | 6 008000  | -10 555000    | Pd    | -1 394000              | 6 902000      | 1 873000   |
| c      | 0 010000  | 7 277000  | 11 097000     | I G   | 2 007000               | 12 222000     | 1 050000   |
| C      | 0.810000  | 7.277000  | -11.08/000    | IN    | 3.087000               | 12.323000     | 1.050000   |
| C      | 1.775000  | 8.2/5000  | -11.038000    | N     | 4.032000               | 9.054000      | -10.293000 |
| Н      | 4.301000  | 6.508000  | -9.551000     | N     | -0.167000              | 1.331000      | -2.256000  |
| Н      | 2.581000  | 4.757000  | -9.567000     | С     | 13.602000              | 9.136000      | 3.791000   |
| Н      | -0.167000 | 7.505000  | -11.532000    | С     | 13.502000              | 9.353000      | 5.172000   |
| Н      | 1.538000  | 9.271000  | -11.434000    | С     | 12.700000              | 10.375000     | 5.663000   |
| С      | -2,627000 | 2,206000  | -9.742000     | С     | 11,973000              | 11.188000     | 4,782000   |
| C      | -3 571000 | 1 716000  | -10 652000    | Ċ     | 12 057000              | 10 964000     | 3 401000   |
| C      | -3 578000 | 2 247000  | -11 948000    | C     | 12 879000              | 9 956000      | 2 912000   |
| C      | 0.0770000 | 2.247000  | 12.240000     |       | 14.051000              | 9.930000      | 2.912000   |
| C      | -2.677000 | 3.242000  | -12.349000    | H     | 14.051000              | 8./14000      | 5.877000   |
| С      | -1.748000 | 3.709000  | -11.412000    | H     | 12.643000              | 10.525000     | 6.750000   |
| Ν      | -1.767000 | 3.173000  | -10.161000    | H     | 11.457000              | 11.549000     | 2.687000   |
| С      | -0.699000 | 4.741000  | -11.543000    | Н     | 12.941000              | 9.796000      | 1.827000   |
| Ν      | 0.061000  | 4.986000  | -10.493000    | С     | 14.697000              | 5.383000      | -9.329000  |
| С      | -2.387000 | 1.846000  | -8.331000     | С     | 13.396000              | 4.966000      | -9.651000  |
| N      | -1.425000 | 2.478000  | -7.682000     | С     | 12.708000              | 5.550000      | -10.707000 |
| ч      | -4 288000 | 0 938000  | -10 358000    | C     | 13 326000              | 6 541000      | -11 482000 |
| 11     | 4.215000  | 1 971000  | 12 674000     | C     | 14 620000              | 6 052000      | 11 160000  |
| п      | -4.313000 | 1.0/1000  | -12.074000    | C     | 14.030000              | 6.955000      | -11.109000 |
| H      | -2.701000 | 3.644000  | -13.370000    | С     | 15.306000              | 6.384000      | -10.099000 |
| Н      | -0.605000 | 5.262000  | -12.511000    | Н     | 12.902000              | 4.186000      | -9.058000  |
| Н      | -3.026000 | 1.065000  | -7.883000     | Н     | 11.667000              | 5.243000      | -10.893000 |
| С      | -0.558000 | 1.579000  | -3.620000     | Н     | 15.133000              | 7.733000      | -11.757000 |
| С      | -0.813000 | 0.540000  | -4.527000     | Н     | 16.320000              | 6.730000      | -9.858000  |
| С      | -1.116000 | 0.824000  | -5.851000     | С     | 9.761000               | -3.486000     | 0.011000   |
| C      | -1 159000 | 2 153000  | -6 298000     | Ċ     | 8 724000               | -2 761000     | 0 616000   |
| C      | -0 900000 | 3 195000  | -5 396000     | C     | 7 432000               | -3 269000     | 0 646000   |
| c      | 0.900000  | 2.00000   | 1 0 0 0 0 0 0 | C     | 7.452000               | 1 520000      | 0.040000   |
| C      | -0.61/000 | 2.908000  | -4.069000     | C     | 7.164000               | -4.530000     | 0.096000   |
| H      | -0.768000 | -0.507000 | -4.200000     | С     | 8.202000               | -5.263000     | -0.500000  |
| Н      | -1.311000 | -0.010000 | -6.538000     | С     | 9.487000               | -4.741000     | -0.549000  |
| Н      | -0.884000 | 4.247000  | -5.721000     | Н     | 8.921000               | -1.774000     | 1.057000   |
| Н      | -0.420000 | 3.738000  | -3.375000     | Н     | 6.630000               | -2.648000     | 1.075000   |
| Pd     | -0.463000 | 3.837000  | -8.874000     | Н     | 8.015000               | -6.251000     | -0.942000  |
| С      | -0.738000 | 2.187000  | -1.223000     | Н     | 10.284000              | -5.319000     | -1.036000  |
| C      | -2.113000 | 2.441000  | -1.140000     | С     | 1.972000               | -5.940000     | 0.058000   |
| C      | -2 599000 | 3 342000  | -0.202000     | C     | 1 421000               | -7 185000     | 0 381000   |
| c      | 2.399000  | 1 000000  | 0.202000      | C     | 2 201000               | 7.105000      | 0.301000   |
| C      | -1.714000 | 4.009000  | 0.658000      | C     | 2.291000               | -8.217000     | 0.756000   |
| C      | -0.341000 | 3./34000  | 0.594000      | C     | 3.6/8000               | -8.033000     | 0.815000   |
| С      | 0.140000  | 2.818000  | -0.334000     | С     | 4.193000               | -6.773000     | 0.486000   |
| Н      | -2.815000 | 1.945000  | -1.823000     | N     | 3.323000               | -5.793000     | 0.124000   |
| Н      | -3.680000 | 3.531000  | -0.159000     | С     | 5.588000               | -6.291000     | 0.463000   |
| Н      | 0.380000  | 4.261000  | 1.238000      | Ν     | 5.807000               | -5.034000     | 0.127000   |
| Н      | 1.218000  | 2,615000  | -0.377000     | С     | 1.314000               | -4.689000     | -0.368000  |
| C      | -3 054000 | 8 142000  | 3 823000      | N     | 2 074000               | -3 640000     | -0 623000  |
| C      | -4 124000 | 8 226000  | 4 721000      | LI LI | 0 336000               | -7 350000     | 0.341000   |
| c      | 4.124000  | 7 110000  | 4.721000      | 11    | 1 072000               | 7.550000      | 1 012000   |
| C      | -4.972000 | 7.118000  | 4.846000      | H     | 1.8/2000               | -9.202000     | 1.012000   |
| C      | -4.///000 | 5.946000  | 4.103000      | Н     | 4.343000               | -8.855000     | 1.112000   |
| С      | -3.698000 | 5.899000  | 3.213000      | Н     | 6.385000               | -7.008000     | 0.730000   |
| Ν      | -2.893000 | 6.992000  | 3.115000      | Н     | 0.213000               | -4.691000     | -0.454000  |
| С      | -3.255000 | 4.817000  | 2.310000      | Pd    | 4.064000               | -4.046000     | -0.322000  |
| Ν      | -2.180000 | 5.027000  | 1.574000      | С     | 15.510000              | 3.406000      | -8.018000  |
| С      | -2.014000 | 9.133000  | 3.483000      | С     | 15.695000              | 2.878000      | -6.730000  |
| N      | -1.110000 | 8.803000  | 2.578000      | C     | 15.787000              | 1.508000      | -6.533000  |
| ц      | -4 205000 | 9 135000  | 5 313000      | C     | 15 722000              | T.200000      | _7 630000  |
| 11     | H.ZJJUUU  | J.IJJUUU  | J.J.JUUU      |       | 15.722000<br>15.550000 | 1 1 6 0 0 0 0 | 1.030000   |
| п      | -2.818000 | /.I/UUUU  | 5.548000      |       | 15.550000              | T.TROUDO      | -0.920000  |
| Н      | -5.455000 | 5.089000  | 4.216000      | С     | 15.439000              | 2.530000      | -9.111000  |
| Н      | -3.846000 | 3.885000  | 2.291000      | Н     | 15.753000              | 3.545000      | -5.859000  |

| Н        | 15.878000 | 1.130000  | -5.502000  | С  | 17.328000 | 8.721000  | 0.283000   |
|----------|-----------|-----------|------------|----|-----------|-----------|------------|
| Н        | 15.493000 | 0.499000  | -9.795000  | С  | 16.732000 | 7.459000  | 0.424000   |
| н        | 15.289000 | 2,920000  | -10.127000 | С  | 15,793000 | 7.245000  | 1,423000   |
| С        | 15.702000 | -4.580000 | -6.319000  | Н  | 15.722000 | 10.379000 | 2.793000   |
| C        | 16.379000 | -5.626000 | -6.955000  | Н  | 17.414000 | 10.757000 | 1.059000   |
| C        | 17.160000 | -5.324000 | -8.079000  | Н  | 16.965000 | 6.632000  | -0.264000  |
| C        | 17 277000 | -4 018000 | -8 572000  | Н  | 15 339000 | 6 249000  | 1 523000   |
| C        | 16 586000 | -2 997000 | -7 910000  | Pd | 18 142000 | 8 312000  | -2 735000  |
| N        | 15 837000 | -3 323000 | -6 823000  | C  | 14 439000 | 6 798000  | 4 005000   |
| C        | 16 526000 | -1 548000 | -8 191000  | C  | 15 621000 | 6 380000  | 4.631000   |
| N        | 15 799000 | -0 788000 | -7 392000  | C  | 15.679000 | 5 138000  | 5 250000   |
| C        | 14 924000 | -4 596000 | -5 131000  | C  | 14 550000 | 1 204000  | 5 230000   |
| N        | 14.024000 | -3 454000 | _1 739000  | C  | 13 367000 | 4.294000  | 1 644000   |
| IN<br>LI | 16 302000 | -6.657000 | -6.585000  | C  | 13.307000 | 5 077000  | 4.044000   |
| п        | 17 602000 | -0.037000 | -0.303000  | U  | 16 514000 | 7 01000   | 4.042000   |
| п        | 17.090000 | -0.137000 | -0.300000  | н  | 16.514000 | 1.019000  | 4.023000   |
| п        | 17.096000 | -3.803000 | -9.455000  | н  | 10.010000 | 4.027000  | 1 50000    |
| н        | 17.096000 | -1.168000 | -9.056000  | н  | 12.4/9000 | 4.075000  | 4.599000   |
| Н        | 14.65/000 | -5.563000 | -4.626000  | H  | 12.367000 | 6.301000  | 3.5/3000   |
| C        | 11.865000 | -3.13/000 | -1.277000  | C  | 14.658000 | -0.878000 | 6.698000   |
| C        | 13.035000 | -3.907000 | -1.235000  | C  | 15.16/000 | -1.430000 | 7.880000   |
| С        | 13.81/000 | -4.04/000 | -2.3/4000  | С  | 15./18000 | -0.562000 | 8.832000   |
| С        | 13.445000 | -3.410000 | -3.567000  | С  | 15.771000 | 0.824000  | 8.631000   |
| С        | 12.260000 | -2.664000 | -3.618000  | С  | 15.254000 | 1.339000  | 7.437000   |
| С        | 11.469000 | -2.541000 | -2.481000  | N  | 14.726000 | 0.470000  | 6.533000   |
| Н        | 13.352000 | -4.391000 | -0.302000  | С  | 15.182000 | 2.733000  | 6.953000   |
| Н        | 14.733000 | -4.651000 | -2.317000  | N  | 14.628000 | 2.951000  | 5.776000   |
| Н        | 11.955000 | -2.131000 | -4.532000  | С  | 14.030000 | -1.533000 | 5.534000   |
| Н        | 10.545000 | -1.950000 | -2.533000  | N  | 13.641000 | -0.773000 | 4.526000   |
| Pd       | 14.884000 | -1.881000 | -5.921000  | Н  | 15.137000 | -2.513000 | 8.057000   |
| С        | 16.217000 | 5.693000  | -7.381000  | Н  | 16.122000 | -0.981000 | 9.766000   |
| С        | 15.635000 | 6.701000  | -6.603000  | Н  | 16.208000 | 1.486000  | 9.390000   |
| С        | 16.419000 | 7.468000  | -5.748000  | Н  | 15.601000 | 3.526000  | 7.597000   |
| С        | 17.801000 | 7.248000  | -5.682000  | Н  | 13.916000 | -2.631000 | 5.560000   |
| С        | 18.392000 | 6.273000  | -6.500000  | С  | 11.753000 | -2.428000 | 1.099000   |
| С        | 17.603000 | 5.498000  | -7.340000  | С  | 11.406000 | -2.887000 | 2.379000   |
| Н        | 14.552000 | 6.879000  | -6.640000  | С  | 12.035000 | -2.369000 | 3.502000   |
| Н        | 15.924000 | 8.210000  | -5.103000  | С  | 13.014000 | -1.374000 | 3.371000   |
| Н        | 19.476000 | 6.097000  | -6.478000  | С  | 13.368000 | -0.916000 | 2.093000   |
| Н        | 18.076000 | 4.721000  | -7.955000  | С  | 12.752000 | -1.450000 | 0.970000   |
| С        | 20.332000 | 9.790000  | -1.680000  | Н  | 10.630000 | -3.653000 | 2.503000   |
| С        | 21.574000 | 10.434000 | -1.719000  | Н  | 11.742000 | -2.748000 | 4.491000   |
| С        | 22.270000 | 10.458000 | -2.935000  | Н  | 14.107000 | -0.111000 | 1.955000   |
| С        | 21.760000 | 9.860000  | -4.094000  | Н  | 13.044000 | -1.082000 | -0.023000  |
| С        | 20.516000 | 9.223000  | -4.018000  | Pd | 14.012000 | 1.210000  | 4.878000   |
| Ν        | 19.864000 | 9.221000  | -2.823000  | Ν  | 11.069000 | -2.874000 | -0.087000  |
| С        | 19.747000 | 8.506000  | -5.056000  | Ν  | 15.336000 | 4.829000  | -8.156000  |
| Ν        | 18.582000 | 7.990000  | -4.715000  | Ν  | 14.363000 | 8.036000  | 3.240000   |
| С        | 19.390000 | 9.602000  | -0.559000  | Cl | 3.232000  | 12.136000 | -4.995000  |
| N        | 18.279000 | 8.926000  | -0.787000  | Cl | 4.937000  | -1.990000 | -0.843000  |
| Н        | 21.994000 | 10.907000 | -0.821000  | Cl | 13.174000 | 2.105000  | 2.939000   |
| Н        | 23.247000 | 10.962000 | -2.980000  | Cl | 13.750000 | -0.201000 | -4.848000  |
| Н        | 22.323000 | 9.889000  | -5.036000  | Cl | 16.119000 | 7.235000  | -2.649000  |
| Н        | 20.188000 | 8.431000  | -6.065000  | Cl | 10.027000 | 7.257000  | -10.474000 |
| Н        | 19.661000 | 10.034000 | 0.420000   | Cl | 1.083000  | 4.625000  | -7.375000  |
| C        | 15.411000 | 8.288000  | 2,282000   | Cl | 0.369000  | 6.775000  | 0.412000   |
| C        | 16.008000 | 9,549000  | 2.135000   | Cl | 8.898000  | 11.109000 | 3.080000   |
| C        | 16.962000 | 9.761000  | 1.149000   | 01 |           |           | 2.200000   |
| -        |           |           |            |    |           |           |            |

**Table S9.** Cartesian coordinates (in Å) for the PM3 geometry optimized model of  $13 \cdot T3_3 \cdot Cl_3$ .



| С  | 0.006000  | 0.302000  | -1.933000  | Н  | 5.573000  | 15.200000 | 3.317000   |
|----|-----------|-----------|------------|----|-----------|-----------|------------|
| С  | -0.527000 | -0.571000 | -0.977000  | Н  | 3.594000  | 14.825000 | 1.943000   |
| С  | 0.183000  | -1.699000 | -0.582000  | С  | 10.530000 | 13.700000 | 6.536000   |
| С  | 1.439000  | -1.990000 | -1.142000  | С  | 10.703000 | 14.627000 | 7.576000   |
| С  | 1.981000  | -1.107000 | -2.083000  | С  | 9.640000  | 15.484000 | 7.887000   |
| С  | 1.268000  | 0.023000  | -2.476000  | С  | 8.426000  | 15.430000 | 7.189000   |
| Н  | -1.512000 | -0.378000 | -0.528000  | С  | 8.294000  | 14.492000 | 6.154000   |
| Н  | -0.270000 | -2.355000 | 0.176000   | N  | 9.345000  | 13.674000 | 5.867000   |
| Н  | 2.985000  | -1.275000 | -2.506000  | С  | 7.143000  | 14.231000 | 5.279000   |
| Н  | 1.711000  | 0.693000  | -3.225000  | Ν  | 7.253000  | 13.295000 | 4.351000   |
| С  | 4.913000  | 8.996000  | -11.020000 | С  | 11.466000 | 12.689000 | 6.031000   |
| С  | 6.098000  | 9.162000  | -10.290000 | N  | 11.091000 | 11.906000 | 5.032000   |
| С  | 7.339000  | 8.957000  | -10.887000 | Н  | 11.650000 | 14.679000 | 8.135000   |
| С  | 7.421000  | 8.590000  | -12.236000 | Н  | 9.761000  | 16.220000 | 8.701000   |
| С  | 6.232000  | 8.403000  | -12.961000 | Н  | 7.597000  | 16.107000 | 7.448000   |
| С  | 4.994000  | 8.609000  | -12.364000 | Н  | 6.235000  | 14.842000 | 5.445000   |
| Н  | 6.063000  | 9.460000  | -9.234000  | Н  | 12.453000 | 12.607000 | 6.533000   |
| Н  | 8.248000  | 9.063000  | -10.272000 | Pd | 9.120000  | 12.391000 | 4.445000   |
| Н  | 6.250000  | 8.095000  | -14.017000 | С  | 3.259000  | 10.453000 | -9.815000  |
| Н  | 4.084000  | 8.465000  | -12.962000 | С  | 2.181000  | 10.562000 | -8.916000  |
| С  | 12.328000 | 7.810000  | -14.393000 | С  | 1.881000  | 11.766000 | -8.297000  |
| С  | 12.728000 | 8.143000  | -15.697000 | С  | 2.662000  | 12.904000 | -8.537000  |
| С  | 11.791000 | 8.747000  | -16.546000 | С  | 3.713000  | 12.820000 | -9.462000  |
| С  | 10.485000 | 9.022000  | -16.120000 | С  | 4.005000  | 11.614000 | -10.088000 |
| С  | 10.124000 | 8.671000  | -14.811000 | Н  | 1.547000  | 9.692000  | -8.704000  |
| N  | 11.051000 | 8.077000  | -14.007000 | Н  | 1.006000  | 11.809000 | -7.634000  |
| С  | 8.837000  | 8.847000  | -14.124000 | Н  | 4.313000  | 13.706000 | -9.715000  |
| Ν  | 8.722000  | 8.421000  | -12.877000 | Н  | 4.833000  | 11.581000 | -10.811000 |
| С  | 13.109000 | 7.196000  | -13.313000 | С  | 1.485000  | 17.099000 | -5.348000  |
| N  | 12.529000 | 6.972000  | -12.145000 | С  | 1.057000  | 18.377000 | -5.743000  |
| Н  | 13.751000 | 7.937000  | -16.044000 | С  | 0.932000  | 18.643000 | -7.115000  |
| Н  | 12.090000 | 9.013000  | -17.575000 | С  | 1.220000  | 17.672000 | -8.085000  |
| Н  | 9.762000  | 9.501000  | -16.797000 | С  | 1.646000  | 16.405000 | -7.655000  |
| Н  | 8.022000  | 9.330000  | -14.697000 | N  | 1.757000  | 16.178000 | -6.315000  |
| Н  | 14.176000 | 6.964000  | -13.520000 | С  | 1.991000  | 15.216000 | -8.460000  |
| Pd | 10.519000 | 7.623000  | -12.210000 | N  | 2.365000  | 14.130000 | -7.810000  |
| С  | 3.821000  | 12.660000 | 1.880000   | С  | 1.684000  | 16.566000 | -3.985000  |
| С  | 4.611000  | 11.581000 | 2.298000   | N  | 2.130000  | 15.329000 | -3.876000  |
| С  | 5.741000  | 11.787000 | 3.088000   | Н  | 0.823000  | 19.153000 | -4.996000  |
| С  | 6.097000  | 13.082000 | 3.485000   | Н  | 0.595000  | 19.645000 | -7.440000  |
| С  | 5.316000  | 14.164000 | 3.047000   | Н  | 1.114000  | 17.900000 | -9.158000  |
| С  | 4.189000  | 13.957000 | 2.259000   | Н  | 1.908000  | 15.287000 | -9.561000  |
| Н  | 4.349000  | 10.555000 | 2.011000   | Н  | 1.436000  | 17.219000 | -3.127000  |
| Н  | 6.357000  | 10.917000 | 3.369000   | С  | 2.521000  | 13.282000 | -0.149000  |

| С   | 1.306000  | 13.891000     | -0.499000  | Н      | -5.982000 | 5.272000  | 4.220000   |
|-----|-----------|---------------|------------|--------|-----------|-----------|------------|
| C   | 1 181000  | 14 594000     | -1 694000  | н      | -4 408000 | 4 040000  | 2 320000   |
| c   | 2 272000  | 14 712000     | 2 565000   | 11     | 2 400000  | 10 246000 | 4 006000   |
| Ĉ   | 2.2/3000  | 14./13000     | -2.363000  | п      | -2.490000 | 10.246000 | 4.096000   |
| C   | 3.514000  | 14.193000     | -2.1/2000  | C      | 1.566000  | 11.628000 | 1.484000   |
| С   | 3.634000  | 13.484000     | -0.984000  | С      | 1.440000  | 11.258000 | 2.836000   |
| Н   | 0.436000  | 13.828000     | 0.171000   | С      | 0.432000  | 10.396000 | 3.254000   |
| Н   | 0.214000  | 15.061000     | -1.932000  | С      | -0.483000 | 9.872000  | 2.330000   |
| Н   | 4.413000  | 14.347000     | -2.783000  | С      | -0.395000 | 10.270000 | 0.990000   |
| н   | 4.618000  | 13.082000     | -0.701000  | С      | 0.617000  | 11.124000 | 0.575000   |
| Pd  | 2 394000  | 14 448000     | -5 755000  | ц      | 2 141000  | 11 656000 | 3 584000   |
| c   | 2.554000  | 0 140000      | 10 592000  | 11     | 2.141000  | 10 145000 | 1 221000   |
| Ĉ   | 2.013000  | 0.140000      | -10.363000 | п      | 0.301000  | 10.145000 | 4.321000   |
| C   | 2.9/8000  | 6.800000      | -10.422000 | Н      | -1.132000 | 9.935000  | 0.249000   |
| С   | 2.026000  | 5.791000      | -10.503000 | Н      | 0.655000  | 11.415000 | -0.483000  |
| С   | 0.681000  | 6.104000      | -10.736000 | Pd     | -1.802000 | 6.976000  | 2.030000   |
| С   | 0.327000  | 7.437000      | -10.987000 | N      | 2.670000  | 12.418000 | 1.009000   |
| С   | 1.284000  | 8.445000      | -10.915000 | Ν      | 3.621000  | 9.170000  | -10.353000 |
| Н   | 4.027000  | 6.528000      | -10.234000 | Ν      | -0.699000 | 1,523000  | -2.327000  |
| ч   | 2 357000  | 4 750000      | -10 394000 | C      | 13 932000 | 8 980000  | 3 738000   |
| 11  | 2.337000  | 7 707000      | 11 255000  | C      | 14 027000 | 0.526000  | 5.750000   |
| п   | -0.704000 | 7.707000      | -11.255000 | C      | 14.027000 | 9.556000  | 5.020000   |
| Н   | 0.980000  | 9.4/9000      | -11.134000 | C      | 13.102000 | 10.486000 | 5.434000   |
| С   | -3.061000 | 2.299000      | -9.897000  | C      | 12.058000 | 10.904000 | 4.589000   |
| С   | -4.021000 | 1.834000      | -10.810000 | С      | 11.970000 | 10.349000 | 3.307000   |
| С   | -4.033000 | 2.381000      | -12.102000 | С      | 12.902000 | 9.401000  | 2.888000   |
| С   | -3.119000 | 3.369000      | -12.494000 | Н      | 14.826000 | 9.232000  | 5.710000   |
| C   | -2.171000 | 3.812000      | -11.556000 | н      | 13.213000 | 10.928000 | 6.440000   |
| N   | -2 186000 | 3 260000      | -10 309000 | н      | 11 159000 | 10 635000 | 2 615000   |
| C   | 1 121000  | 4 0 2 0 0 0 0 | 11 700000  | 11     | 12 915000 | 10.033000 | 1 974000   |
|     | -1.121000 | 4.030000      | -11.709000 | п      | 12.013000 | 0.909000  | 1.0/4000   |
| Ν   | -0.326000 | 5.053000      | -10.6/8000 | С      | 14.983000 | 5.233000  | -9.101000  |
| С   | -2.847000 | 1.905000      | -8.490000  | C      | 13.587000 | 5.143000  | -9.033000  |
| Ν   | -1.868000 | 2.500000      | -7.835000  | С      | 12.784000 | 5.712000  | -10.019000 |
| Н   | -4.750000 | 1.059000      | -10.521000 | С      | 13.365000 | 6.379000  | -11.103000 |
| Н   | -4.784000 | 2.023000      | -12.830000 | С      | 14.768000 | 6.457000  | -11.173000 |
| н   | -3.145000 | 3.788000      | -13.513000 | С      | 15.570000 | 5.896000  | -10.186000 |
| н   | -1 060000 | 5 383000      | -12 670000 | н      | 13 105000 | 4 617000  | -8 199000  |
| U U | -3 522000 | 1 146000      | _9 051000  | и<br>и | 11 696000 | 5 639000  | -0.015000  |
| п   | -3.322000 | 1.715000      | -8.031000  | п      | 15.000000 | 5.050000  | 12 020000  |
| C   | -1.092000 | 1./15000      | -3.697000  | н      | 15.256000 | 6.953000  | -12.030000 |
| C   | -1.021000 | 0.6/8000      | -4.645000  | Н      | 16.662000 | 5.980000  | -10.2/4000 |
| С   | -1.291000 | 0.914000      | -5.989000  | С      | 10.097000 | -3.365000 | 0.030000   |
| С   | -1.639000 | 2.199000      | -6.429000  | С      | 9.073000  | -2.418000 | 0.150000   |
| С   | -1.760000 | 3.227000      | -5.485000  | С      | 7.734000  | -2.806000 | 0.136000   |
| С   | -1.481000 | 2.991000      | -4.147000  | С      | 7.393000  | -4.157000 | 0.010000   |
| н   | -0 754000 | -0 341000     | -4 330000  | C      | 8 427000  | -5 105000 | -0 099000  |
| U   | -1 237000 | 0 072000      | -6 693000  | C      | 9 762000  | -1 719000 | -0 093000  |
| 11  | 2 000000  | 4 22000       | 5 770000   |        | 0 211000  | 1 252000  | 0.055000   |
| п   | -2.098000 | 4.229000      | -3.779000  | п      | 9.311000  | -1.332000 | 0.201000   |
| Н   | -1.58/000 | 3.820000      | -3.436000  | Н      | 6.956000  | -2.025000 | 0.210000   |
| Pd  | -0.848000 | 3.845000      | -9.053000  | Н      | 8.190000  | -6.181000 | -0.171000  |
| С   | -1.286000 | 2.321000      | -1.265000  | Н      | 10.541000 | -5.488000 | -0.183000  |
| С   | -2.598000 | 2.819000      | -1.317000  | С      | 2.140000  | -5.525000 | -0.165000  |
| С   | -3.066000 | 3.694000      | -0.342000  | С      | 1.607000  | -6.793000 | 0.108000   |
| С   | -2.235000 | 4.087000      | 0.717000   | С      | 2,486000  | -7.818000 | 0,485000   |
| C   | -0 961000 | 3 512000      | 0 829000   | C      | 3 866000  | -7 599000 | 0 586000   |
| C   | -0 193000 | 2 646000      | -0 151000  | C      | 4 360000  | -6 317000 | 0 301000   |
|     | -0.493000 | 2.040000      | -0.131000  | C N    | 4.300000  | -0.317000 | 0.301000   |
| H   | -3.278000 | 2.51/000      | -2.12/000  | IN     | 3.485000  | -5.337000 | -0.052000  |
| Н   | -4.100000 | 4.059000      | -0.414000  | С      | 5.747000  | -5.835000 | 0.313000   |
| Н   | -0.317000 | 3.721000      | 1.693000   | N      | 5.992000  | -4.572000 | 0.004000   |
| Н   | 0.511000  | 2.212000      | -0.042000  | С      | 1.447000  | -4.295000 | -0.574000  |
| С   | -3.492000 | 8.270000      | 3.893000   | N      | 2.164000  | -3.199000 | -0.762000  |
| С   | -4.586000 | 8.377000      | 4.767000   | Н      | 0.525000  | -6.982000 | 0.028000   |
| C   | -5.466000 | 7,290000      | 4,869000   | н      | 2.081000  | -8.821000 | 0 706000   |
| č   | -5 278000 | 6 115000      | 4 127000   | ц<br>Ц | 4 544000  | -8 414000 | 0 880000   |
| c   | J.Z/0000  | C 041000      | 7.12/000   | П.     | J44000    | 0.414000  | 0.000000   |
|     | -4.1/4000 | 0.041000      | 3.262000   | Н      | 0.343000  | -0.368000 | 0.201000   |
| N   | -3.338000 | 7.115000      | 3.185000   | Н      | 0.349000  | -4.353000 | -0.701000  |
| С   | -3.764000 | 4.938000      | 2.370000   | Pd     | 4.179000  | -3.581000 | -0.446000  |
| N   | -2.656000 | 5.100000      | 1.672000   | С      | 15.986000 | 3.250000  | -7.941000  |
| С   | -2.442000 | 9.263000      | 3.590000   | С      | 16.506000 | 2.666000  | -6.770000  |
| Ν   | -1.514000 | 8.919000      | 2.717000   | С      | 16.589000 | 1.288000  | -6.631000  |
| н   | -4.752000 | 9,293000      | 5.358000   | C      | 16.135000 | 0.442000  | -7.651000  |
| H   | -6 332000 | 7 361000      | 5 553000   | Č      | 15 652000 | 1 010000  | -8 838000  |
| ± ± | 0.002000  | ,.JUTUUU      | 5.555000   | $\sim$ |           | T.OT0000  | 0.000000   |

| С  | 15.578000  | 2.391000  | -8.978000 | С  | 16.152000 | 6.158000  | 4.490000      |
|----|------------|-----------|-----------|----|-----------|-----------|---------------|
| Н  | 16.869000  | 3.298000  | -5.950000 | С  | 16.175000 | 4.927000  | 5.140000      |
| н  | 17 036000  | 0 882000  | -5 714000 | C  | 14 980000 | 4 247000  | 5 413000      |
| ц  | 15 337000  | 0 376000  | -0 670000 | Ċ  | 13 761000 | 1 967000  | 5 100000      |
|    | 15.337000  | 0.370000  | 9.079000  | C  | 13.701000 | 4.007000  | 3.100000      |
| Н  | 15.198000  | 2.808000  | -9.923000 | С  | 13./41000 | 6.091000  | 4.452000      |
| С  | 16.038000  | -4.783000 | -6.296000 | Н  | 17.105000 | 6.676000  | 4.305000      |
| С  | 16.730000  | -5.837000 | -6.913000 | Н  | 17.146000 | 4.509000  | 5.442000      |
| C  | 17 528000  | -5 547000 | -8 030000 | н  | 12 804000 | 4 409000  | 5 391000      |
| C  | 17 640000  | -4 243000 | -9 533000 | ц  | 12 771000 | 6 555000  | 1 222000      |
|    | 17.049000  | -4.243000 | -0.00000  | п  | 12.771000 | 0.00000   | 4.222000      |
| C  | 16.944000  | -3.212000 | -/.891000 | С  | 14.990000 | -0.952000 | 6.880000      |
| Ν  | 16.176000  | -3.528000 | -6.809000 | С  | 15.529000 | -1.504000 | 8.053000      |
| С  | 16.914000  | -1.769000 | -8.204000 | С  | 16.124000 | -0.640000 | 8.984000      |
| Ν  | 16.167000  | -0.998000 | -7.438000 | С  | 16.191000 | 0.744000  | 8.770000      |
| C  | 15 15/000  | -4 817000 | -5 113000 | C  | 15 642000 | 1 264000  | 7 586000      |
|    | 11.59000   | 4.01/000  | J.IIJ000  | C  | 15.042000 | 1.204000  | 7.300000      |
| IN | 14.590000  | -3.683000 | -4./42000 | IN | 15.0/1000 | 0.398000  | 6.702000      |
| Н  | 16.650000  | -6.868000 | -6.532000 | С  | 15.596000 | 2.664000  | 7.118000      |
| Н  | 18.078000  | -6.368000 | -8.526000 | N  | 14.990000 | 2.903000  | 5.971000      |
| Н  | 18,283000  | -4.035000 | -9,410000 | С  | 14.335000 | -1,633000 | 5,745000      |
| ц  | 17 526000  | -1 405000 | -9 051000 | N  | 13 913000 | -0 880000 | 4 747000      |
| 11 | 15.020000  | 1.400000  | 1 500000  | 11 | 15.010000 | 0.000000  |               |
| Н  | 15.020000  | -5./83000 | -4.590000 | Н  | 15.488000 | -2.590000 | 8.239000      |
| С  | 12.260000  | -3.260000 | -1.190000 | H  | 16.552000 | -1.062000 | 9.912000      |
| С  | 13.548000  | -3.815000 | -1.132000 | Н  | 16.665000 | 1.406000  | 9.513000      |
| С  | 14.298000  | -3,994000 | -2.290000 | Н  | 16.084000 | 3,438000  | 7,741000      |
| C  | 13 774000  | -3 630000 | -3 538000 | ц  | 14 243000 | -2 735000 | 5 779000      |
| 0  | 12 45000   | 2 17(000  | 2 (12000  |    | 12 120000 | 2.755000  | 1 212000      |
| C  | 12.450000  | -3.1/6000 | -3.612000 | C  | 12.139000 | -2.518000 | 1.212000      |
| С  | 11.706000  | -2.991000 | -2.454000 | С  | 11.535000 | -2.710000 | 2.468000      |
| Н  | 13.980000  | -4.127000 | -0.169000 | С  | 12.111000 | -2.205000 | 3.628000      |
| Н  | 15,301000  | -4,436000 | -2.205000 | С  | 13.314000 | -1,486000 | 3,568000      |
| ц  | 11 972000  | -2 972000 | -4 579000 | C  | 13 949000 | -1 333000 | 2 329000      |
| 11 | 10 671000  | 2.572000  | 2 520000  | C  | 12 207000 | 1 020000  | 1 172000      |
| н  | 10.6/1000  | -2.631000 | -2.539000 | C  | 13.36/000 | -1.830000 | 1.1/3000      |
| Pd | 15.181000  | -2.102000 | -5.978000 | Н  | 10.593000 | -3.273000 | 2.547000      |
| С  | 16.678000  | 5.589000  | -7.318000 | Н  | 11.613000 | -2.390000 | 4.589000      |
| С  | 16.153000  | 6.811000  | -6.862000 | Н  | 14.926000 | -0.836000 | 2.251000      |
| C  | 16 917000  | 7 664000  | -6 075000 | н  | 13 893000 | -1 688000 | 0 219000      |
| C  | 18 224000  | 7 314000  | -5 714000 | Pd | 14 281000 | 1 134000  | 5 107000      |
|    | 10.224000  | 7.514000  | 5.714000  | Fu | 11 401000 | 1.134000  | 0.010000      |
| C  | 18.785000  | 6.144000  | -6.245000 | IN | 11.491000 | -2.908000 | -0.010000     |
| С  | 18.021000  | 5.295000  | -7.041000 | N  | 15.790000 | 4.672000  | -8.011000     |
| Н  | 15.129000  | 7.108000  | -7.129000 | N  | 14.856000 | 7.936000  | 3.279000      |
| Н  | 16.474000  | 8.618000  | -5.758000 | Cl | 4.980000  | -1.413000 | -0.960000     |
| н  | 19 836000  | 5 883000  | -6 053000 | Cl | 9 820000  | 7 105000  | -10 007000    |
| ц  | 19,000000  | 1 301000  | -7 457000 | Cl | 9.020000  | 10 921000 | 2 704000      |
|    | 10.494000  | 4.594000  | 1.437000  | CI | 6.60000   | 1 020000  | 2.704000      |
| C  | 20.682000  | 10.028000 | -1./44000 | С  | 6.693000  | 1.930000  | 1.164000      |
| С  | 21.911000  | 10.704000 | -1.808000 | С  | 5.380000  | 2.402000  | 0.929000      |
| С  | 22.601000  | 10.717000 | -3.029000 | С  | 7.673000  | 2.790000  | 1.606000      |
| С  | 22.097000  | 10.076000 | -4.170000 | С  | 7.360000  | 4.152000  | 1.887000      |
| C  | 20 865000  | 9 409000  | -4 072000 | C  | 6 055000  | 4 627000  | 1 640000      |
| N  | 20.0000000 | 0.41.0000 | 2.072000  | C  | 5.033000  | 2 720000  | 1 1 2 2 0 0 0 |
| IN | 20.219000  | 9.416000  | -2.8/2000 | C  | 5.072000  | 3.728000  | 1.133000      |
| С  | 20.131000  | 8.654000  | -5.106000 | С  | 8.337000  | 5.045000  | 2.414000      |
| Ν  | 18.962000  | 8.142000  | -4.771000 | С  | 8.000000  | 6.345000  | 2.716000      |
| С  | 19.775000  | 9.850000  | -0.592000 | С  | 6.696000  | 6.824000  | 2.455000      |
| Ν  | 18.667000  | 9.163000  | -0.793000 | С  | 5.747000  | 5,993000  | 1,905000      |
| ц. | 22 325000  | 11 212000 | -0 922000 | C  | 9 064000  | 2 301000  | 1 764000      |
|    | 22.525000  | 11.212000 | 0.922000  | C  | 9.004000  | 2.301000  | 1.704000      |
| Н  | 23.5/0000  | 11.245000 | -3.093000 | Ν  | 10.049000 | 3.21/000  | 2.281000      |
| Н  | 22.656000  | 10.096000 | -5.120000 | С  | 9.729000  | 4.580000  | 2.624000      |
| Н  | 20.600000  | 8.540000  | -6.102000 | 0  | 10.643000 | 5.268000  | 3.044000      |
| Н  | 20.073000  | 10.286000 | 0.381000  | 0  | 9.454000  | 1.186000  | 1.464000      |
| C  | 15 897000  | 8 278000  | 2 348000  | C  | 11 457000 | 2 819000  | 2 259000      |
| 0  | 10.007000  | 0.270000  | 1 000000  | C  | 12 004000 | 2.010000  | 2.20000       |
| C  | 10.105000  | 9.612000  | 1.990000  | C  | 12.064000 | 2.292000  | 3.408000      |
| С  | T\.080000  | 9.916000  | 0.988000  | N  | T3.3/9000 | 1.923000  | 3.409000      |
| С  | 17.755000  | 8.892000  | 0.309000  | С  | 14.106000 | 2.074000  | 2.263000      |
| С  | 17.533000  | 7.563000  | 0.693000  | С  | 13.543000 | 2.593000  | 1.098000      |
| С  | 16,613000  | 7,263000  | 1,686000  | C  | 12,206000 | 2,972000  | 1.088000      |
| ч  | 15 65/000  | 10 436000 | 2 508000  | č  | 3 71/000  | 4 225000  | 0 805000      |
| 11 | 17 070000  | 10 070000 | 2.300000  |    | 2 121000  | T.22JUUU  | 1 001000      |
| н  | 10.270000  | TO 9/2000 | 0./49000  | IN | 3.431000  | 5.623000  | 1.021000      |
| Н  | 18.092000  | 6.739000  | 0.232000  | С  | 4.408000  | 6.532000  | 1.565000      |
| Н  | 16.462000  | 6.210000  | 1.960000  | 0  | 4.068000  | 7.697000  | 1.681000      |
| Pd | 18.505000  | 8.543000  | -2.770000 | С  | 2.185000  | 6.171000  | 0.487000      |
|    |            |           |           |    |           |           |               |

| Ν      | -0.118000 | 6.807000  | 0.826000  | Н        | 15.594000 | 9.427000             | -3.185000 |
|--------|-----------|-----------|-----------|----------|-----------|----------------------|-----------|
| С      | -0.180000 | 7.188000  | -0.484000 | Н        | 17.454000 | 5.774000             | -2.134000 |
| С      | 0.916000  | 7.074000  | -1.337000 | Н        | 15.247000 | 4.623000             | -2.010000 |
| С      | 2.115000  | 6.563000  | -0.854000 | Н        | 13,152000 | 5.899000             | -2.475000 |
| 0      | 2.812000  | 3.552000  | 0.339000  | Н        | 5.154000  | 13.238000            | -5.170000 |
| H      | 6.912000  | 0.868000  | 0.972000  | Н        | 1,193000  | 11.752000            | -5.072000 |
| н      | 4 622000  | 1 689000  | 0 568000  | н        | 1 995000  | 9 509000             | -4 340000 |
| н      | 8 739000  | 7 035000  | 3 152000  | и        | 4 438000  | 9 107000             | -4 016000 |
| и<br>П | 6 463000  | 7 875000  | 2 690000  | C        | 8 971000  | 3 61 60 00           | -7 626000 |
| и<br>П | 11 /92000 | 2 168000  | 2.090000  | C        | 7 665000  | 1 090000             | -7 887000 |
| ц      | 15 164000 | 1 767000  | 2 279000  | C        | 0 175000  | 2 606000             | -6 713000 |
| п      | 14 157000 | 2 600000  | 2.270000  | C        | 9.175000  | 2.000000             | -0.713000 |
| п      | 14.157000 | 2.099000  | 0.197000  | C        | 6.066000  | 1.988000             | -0.000000 |
| н      | 1.000000  | 5.380000  | 0.1/5000  | C        | 6.763000  | 2.469000             | -6.31/000 |
| H      | 1.088000  | 5.997000  | 2.369000  | C        | 6.584000  | 3.552000             | -7.225000 |
| H      | -1.133000 | 7.598000  | -0.858000 | C        | 8.243000  | 0.888000             | -5.1/8000 |
| н      | 0.827000  | 7.388000  | -2.383000 | C        | 7.153000  | 0.280000             | -4.59/000 |
| Н      | 2.981000  | 6.469000  | -1.519000 | C        | 5.849000  | 0.//3000             | -4.834000 |
| С      | 10.188000 | 10.199000 | -1.315000 | С        | 5.656000  | 1.860000             | -5.657000 |
| С      | 8.884000  | 10.690000 | -1.562000 | С        | 10.557000 | 2.181000             | -6.382000 |
| С      | 10.927000 | 9.645000  | -2.336000 | N        | 10.727000 | 1.080000             | -5.468000 |
| С      | 10.410000 | 9.615000  | -3.663000 | С        | 9.607000  | 0.402000             | -4.862000 |
| С      | 9.105000  | 10.091000 | -3.908000 | 0        | 9.868000  | -0.516000            | -4.105000 |
| С      | 8.339000  | 10.610000 | -2.824000 | 0        | 11.572000 | 2.708000             | -6.801000 |
| С      | 11.183000 | 9.115000  | -4.750000 | С        | 12.071000 | 0.771000             | -4.981000 |
| С      | 10.678000 | 9.136000  | -6.031000 | С        | 12.819000 | -0.260000            | -5.569000 |
| С      | 9.365000  | 9.600000  | -6.273000 | Ν        | 14.072000 | -0.570000            | -5.121000 |
| С      | 8.582000  | 10.045000 | -5.232000 | С        | 14.595000 | 0.146000             | -4.081000 |
| С      | 12.255000 | 9.050000  | -2.043000 | С        | 13.886000 | 1.176000             | -3.467000 |
| Ν      | 13.020000 | 8.526000  | -3.146000 | С        | 12.610000 | 1.498000             | -3.915000 |
| С      | 12.533000 | 8.552000  | -4.504000 | С        | 5.230000  | 4.114000             | -7.448000 |
| 0      | 13.263000 | 8.080000  | -5.356000 | Ν        | 4.125000  | 3.530000             | -6.729000 |
| 0      | 12.745000 | 8.940000  | -0.934000 | С        | 4.291000  | 2.412000             | -5.835000 |
| С      | 14.228000 | 7.753000  | -2.859000 | 0        | 3.291000  | 2.014000             | -5.263000 |
| С      | 15.491000 | 8.361000  | -2.922000 | С        | 2.833000  | 4.213000             | -6.763000 |
| N      | 16.631000 | 7.653000  | -2.666000 | С        | 1.838000  | 3.807000             | -7.665000 |
| С      | 16.525000 | 6.330000  | -2.343000 | N        | 0.625000  | 4,435000             | -7.712000 |
| С      | 15.291000 | 5.686000  | -2.271000 | С        | 0.391000  | 5,479000             | -6.863000 |
| C      | 14.126000 | 6.398000  | -2.530000 | C        | 1.351000  | 5.915000             | -5.951000 |
| C      | 6.941000  | 11.049000 | -3.049000 | C        | 2.586000  | 5.280000             | -5.893000 |
| N      | 6.402000  | 10.944000 | -4.383000 | 0        | 4.972000  | 5.056000             | -8.175000 |
| C      | 7 180000  | 10 454000 | -5 493000 | н        | 9 816000  | 4 082000             | -8 158000 |
| 0      | 6 615000  | 10 383000 | -6 570000 | н        | 7 538000  | 4 904000             | -8 619000 |
| C      | 4 966000  | 11 146000 | -4 570000 | и<br>Ц   | 7.276000  | -0 588000            | -3 932000 |
| C      | 4 471000  | 12 393000 | -4 980000 | и<br>Ц   | 4 999000  | 0.279000             | -4 339000 |
| N      | 3 133000  | 12.555000 | -5 156000 | и<br>Ц   | 12 /11000 | -0.850000            | -6 407000 |
| C      | 2 270000  | 11 560000 | -1 923000 | 11<br>11 | 15 600000 | -0 112000            | -3 736000 |
| c      | 2.270000  | 10 212000 | -4.923000 | п        | 14 227000 | -0.112000            | -3.730000 |
| C      | 2.710000  | 10.313000 | -4.516000 | п        | 12 04000  | 1.727000             | -2.034000 |
| 0      | 4.0/0000  | 11 472000 | -4.330000 | н        | 2 011000  | 2.30/000             | -3.43/000 |
| U      | 0.190000  | 10 20000  | -2.109000 | H        | 2.UIIUUU  | 2.969000             | -0.300000 |
| п<br>ц | 10.38/000 | 11 110000 | -0.290000 | H        | -0.392000 | 5.9/3000             | -0.911000 |
| п<br>ц | 0.J1/UUU  | 11.119000 | -0./21000 | H        | 1.12/000  | 0./36UUU<br>E.(10000 | -J.284000 |
| н      | 11.2/9000 | 8.780000  | -6.883000 | Н        | 3.34/000  | 2.018000             | -2.180000 |
| Н      | 8.982000  | 9.585000  | -/.305000 |          |           |                      |           |

## 9. References

<sup>1</sup> Yuan, J.; Fang, X.; Zhang, L.; Hong, G.; Lin, Y.; Zheng, Q.; Xu, Y.; Ruan, Y.; Weng, W.; Xia, H.; Chen, G. Multiresponsive self-healing metallo-supramolecular gels based on "click" ligand. *J. Mat. Chem.* **2012**, *22*, 11515– 11522.

<sup>2</sup> Koshkakaryan, G.; Klivansky, L. M.; Cao, D.; Snauko, M.; Teat, S. J.; Struppe, J. O.; Liu, Y. Alternative Donor–Acceptor Stacks from Crown Ethers and Naphthalene Diimide Derivatives: Rapid, Selective Formation from Solution and Solid State Grinding. *J. Am. Chem. Soc.* **2009**, *131*, 2078–2079.

<sup>3</sup> Pun, A.; Hanifi, D. A.; Kiel, G.; O'Brien, E.; Liu, Y. Facile Route to an All-Organic, Triply Threaded, Interlocked Structure by Templated Dynamic Clipping. *Angew. Chem., Int. Ed.* **2012**, *51*, 13119–13122.

<sup>4</sup> Harris, R. K. *Nuclear Magnetic Resonance Spectroscopy—A Physicochemical Approach*; Pitman: London, 1983.

<sup>5</sup> Poveda, A.; Alonso, I.; Fernández-Ibáñez, M. Á. Experimental and computational studies on the mechanism of the Pd-catalyzed C(sp<sup>3</sup>)–H γ-arylation of amino acid derivatives assisted by the 2-pyridylsulfonyl group. *Chem. Sci.* **2014**, *5*, 3873–3882.

<sup>6</sup> a) Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Porphyrin Tessellation by Design: Metal-Mediated Self-Assembly of Large Arrays and Tapes. *Angew. Chem., Int. Ed.* **1998**, *37*, 2344–2347. b) lengo, E.; Minatel, R.; Milani, B.; Marzilli, L. G.; Alessio, E. Metal-Mediated Self-Assembly of Molecular Squares of Porphyrins Rimmed with Coordination Compounds. *Eur. J. Inorg. Chem.* **2001**, 609–612.

<sup>7</sup> Allan, D.; Nowell, H.; Barnett, S.; Warren, M.; Wilcox, A.; Christensen, J.; Saunders, L.; Peach, A.; Hooper, M.; Zaja, L.; Patel, S.; Cahill, L.; Marshall, R.; Trimnell, S.; Foster, A.; Bates, T.; Lay, S.; Williams, M.; Hathaway, P.; Winter, G.; Gerstel, M.; Wooley, R. A Novel Dual Air-Bearing Fixed-χ Diffractometer for Small-Molecule Single-Crystal X-ray Diffraction on Beamline 119 at Diamond Light Source. *Crystals* **2017**, *7*, 336.

<sup>8</sup> a) Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. *Acta Cryst.* **1994**, *D50*, 760–763. b) Evans, P. Scaling and assessment of data quality. *Acta Cryst.* **2006**, *D62*, 72–82. c) Winter, G. xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. **2010**, *43*, 186–190.

<sup>9</sup> Farrugia, L. WinGX and ORTEP for Windows: an update. *J. Appl. Crystallogr.* **2012**, *45*, 849–854.

<sup>10</sup> Evans, P. R.; Murshudov, G. N. How good are my data and what is the resolution? *Acta Cryst.* **2013**, *D69*, 1204–1214.

<sup>11</sup> Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.; Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A. G. W.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.; Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin, A.; Wilson, K. S. Overview of the CCP4 suite and current developments. *Acta Cryst.* **2011**, *D67*, 235– 242.

<sup>12</sup> Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. *Acta Cryst.* **2015**, *A71*, 3–8.

<sup>13</sup> Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. **2015**, C71, 3–8.

<sup>14</sup> van der Sluis, P.; Spek, A. L. BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. *Acta Cryst.* **1990**, *A46*, 194–201.

<sup>15</sup> Spek, A. L. *PLATON: A Multipurpose Crystallographic Tool*; Utrecht University: Utrecht, The Netherlands, 2008.
 <sup>16</sup> Bricogne, G.; Blanc, E.; Brandle, M.; Flensburg, C.; Keller, P.; Paciorek, W.; Roversi, P.; Sharff, A.; Smart, O. S.; Vonrhein, C.; Womack, T. O. *BUSTER* 2.11.2 ed.; Global Phasing Ltd.: Cambridge, United Kingdom, 2011.

<sup>17</sup> Smart, O. S.; Womack, T. O. *Grade Web Server*; Global Phasing Ltd.: Cambridge, United Kingdom, 2014.