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The Supporting Information is organized as follows: Appendix S1 through S4 provides

a self-contained presentation of the mathematical foundations of our variability theory. Ap-

pendix S5 through S8 provide details concerning specific applications considered in the main

text: two-species communities in Appendix S5, complex Lotka-Volterra communities in ap-

pendices S6 and S7, and the link between abundance statistics and variability in Appendix S8.

A list of the most important notation used in the Appendices is given in Table S1.

30



Table S1: Notation used throughout the Appendices

symbol meaning equation

�2
in per species variance of applied perturbation (S12)

�2
out per species variance of system response to perturbation (S14, S22)

Cu covariance matrix of individual pulses in multi-pulse pertur-

bation

(S3)

f frequency at which pulses occur in multi-pulse perturbation

E perturbation direction, proportional to fCu (S15)

Cx covariance matrix of species responses to perturbation (S5, S9)

L solution of Lyapunov equation, used to compute stationary

Cx

(S7, S8)

V↵ variability for perturbation type ↵; when index ↵ is omitted,

immigration-type perturbations are assumed (↵ = 0)

(S23)

Vworst
mean-case variability, i.e., variability averaged over pertur-

bation directions

(S18, S24)

Vmean
worst-case variability, i.e., variability maximized over per-

turbation directions

(S19, S25)

Vspec i
variability for the perturbation that a↵ects only species i

I invariability, i.e., variability-based stability measure (S16)
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S1 Response to white-noise perturbation

We describe the response of a linear dynamical system, representing the dynamics of dis-

placement of species around an equilibrium value, to a white-noise perturbation. Stochastic

perturbations in continuous time are mathematically quite subtle (see, e.g., Turelli, 1977).

However, in the setting of linear dynamical systems, the e↵ect of a white-noise perturbation

can be analyzed relatively easily. Because this analysis is not readily available in the ecology

literature, we present here a short overview. We start from a formulation in vector notation,

dx

dt
= Ax+ ⇠(t), (S1)

where x = (xi) denotes the vector of species displacements, ⇠ = (⇠i) the vector of species

perturbations, and A = (Aij) the community matrix.

Suppose that the perturbation ⇠(t) consists in a sequence of pulses. We denote the times

at which these pulses occur by tk, and the corresponding pulse directions by uk = (uk,i). The

multi-pulse perturbation can then be written as

⇠(t) =
X

k

�(t� tk)uk. (S2)

where we have used the Dirac delta function �(t).

We model both the pulse times tk and the pulse directions uk as random variables. Specif-

ically, we assume that the pulse times are distributed according to a Poisson point process

with intensity f . This means that the probability that a pulse occurs in a small time interval

of length �s is equal to f�s, and that this occurrence is independent of any other model

randomness. We denote the average over the pulse times tk by Ef .

Furthermore, we assume that the pulse directions uk are independent (mutually indepen-

dent, and independent of any other model randomness) and identically distributed. They

have zero mean, and their second moments are given by the covariance matrix Cu. That is,

denoting the average over the pulse directions uk by Eu, we have Eu uk,i = 0, Eu u2
k,i = Cu,ii,
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Eu uk,iuk,j = Cu,ij, and Eu uk,iu`,i = Eu uk,iu`,j = 0 for i 6= j and k 6= `. The latter equations

can be written in vector notation,

Cu = Eu uku
>
k and Eu uku

>
` = 0. (S3)

We use this information to compute the statistics of species displacements x(t). Because

the system response to a single pulse perturbation at time tk in direction uk is equal to

e(t�tk)Auk, the system response to the sequence (S2) of pulse perturbations is equal to

x(t) =
X

k|tk<t

e(t�tk)A uk. (S4)

Taking the mean over the perturbation directions, we obtain

Eu x(t) =
X

k|tk<t

e(t�tk)A Eu uk = 0,

showing that the species displacements fluctuate around the unperturbed equilibrium.

Next, we compute the covariance matrix of the species displacements,

Cx = Ef,u x(t)x(t)
>. (S5)

We substitute the response to the multi-pulse perturbation, eq. (S4),

Cx = Ef,u

X

k|tk<t

e(t�tk)A uk

X

`|t`<t

u>
` e(t�t`)A>

= Ef

X

k|tk<t

X

`|t`<t

e(t�tk)A Eu uku
>
` e(t�t`)A>

= Ef

X

k|tk<t

e(t�tk)A Eu uku
>
k e(t�tk)A>

= Ef

X

k|tk<t

e(t�tk)A Cu e
(t�tk)A>

,
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where we have used eq. (S3). To take the average over the pulse times, we partition the time

axis in small intervals of length �s. Writing sn = n�s for any integer n, we get

Cx =
X

n|sn<t

e(t�sn)A Cu e
(t�sn)A>

f�s,

because the contribution of term n is equal to e(t�sn)A Cu e(t�sn)A>
with probability f�s, and

zero otherwise. Assuming that the time intervals �s are infinitesimal, we find the integral

Cx =

Z t

�1
e(t�s)A Cu e

(t�s)A>
fds

=

Z 1

0

esA Cu e
sA>

fds

=

Z 1

0

esA
�
fCu

�
esA

>
ds. (S6)

Hence, we have obtained the stationary covariance matrix of the species displacements under

a stochastic multi-pulse perturbation.

A white-noise perturbation corresponds to a special case of the stochastic multi-pulse

perturbation, namely, to the case of extremely frequent pulses (large f) of extremely small

size (small kuk). More precisely, we have to take the coupled limit f ! 1 and Cu ! 0 while

keeping fCu constant. Because eq. (S6) depends on f and Cu through the product fCu only,

the same expression is also valid for white-noise perturbations.

Alternatively, the stationary covariance matrix Cx can be obtained by solving the so-called

Lyapunov equation,

ACx + CxA
> + E = 0, (S7)

where E is the covariance matrix characterizing the white noise, equal to fCu in our case.
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Indeed, it can be verified that eq. (S6) satisfies eq. (S7),

ACx + CxA
> =

Z 1

0

⇣
AesA fCu e

sA>
ds+ esA fCu e

sA>
A>
⌘
ds

=

Z 1

0

d

ds

⇣
esA fCu e

sA>
⌘
ds

= esA fCu e
sA>
���
s!1

� esA fCu e
sA>
���
s=0

= �fCu.

For a stable matrix A this is the unique solution of the Lyapunov equation, for which we

introduce the short-hand notation L(A,E),

L(A,E) =

Z 1

0

esA E esA
>
ds. (S8)

Hence, we can write

Cx = L(A, fCu), . (S9)

From a numerical viewpoint, the covariance matrix Cx can be easily obtained by solving the

Lyapunov equation (S7), which can be written as a system of S2 linear equations, rather than

by computing the integral in (S8). Note also that the solution of the Lyapunov equation is

linear in the perturbation covariance matrix,

L(A, c1E1 + c2E2) = c1 L(A,E1) + c2 L(A,E2). (S10)
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S2 Construction of variability measure

We explain the construction of the variability measure V , see eq. (4) in the main text. The

construction is based on the comparison of the intensity of the system response relative to

the intensity of the applied perturbation. It should be stressed that, while we take special

care of quantifying these intensities in a reasonable way, alternative choices are possible.

Perturbation intensity A reasonable measure of the perturbation intensity should in-

crease with the number of pulses and the intensity of each pulse separately. In particular,

we expect it to be proportional to the pulse frequency f and to some function of the pulse

covariance matrix Cu.

We propose to look at the squared displacements kukk2 induced by pulses uk. The accu-

mulated squared displacement in time interval [t, t+ T ] is

X

tk2[t,t+T ]

kukk2.

Taking the average over pulse times and pulse directions,

Ef,u

X

tk2[t,t+T ]

kukk2 =
X

n|t<sn<t+T

Eukuk2 f�s,

where we have partitioned the time axis in small intervals of length �s (see derivation of

eq. (S6)). Then,

Ef,u

X

tk2[t,t+T ]

kukk2 = Tr
�
Cu

�
fT.

The result is proportional to the length T of the considered time interval. The average

accumulated squared displacement per unit of time is

1

T
Ef,u

X

tk2[t,t+T ]

kukk2 = Tr
�
fCu

�
. (S11)

As expected, this quantity is proportional to the pulse frequency f and increases with the pulse
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covariance matrix Cu. Note also that f and Cu appear as a product, so that the expression

is compatible with the white-noise limit.

Eq. (S11) quantifies the intensity of the perturbation applied to the entire ecosystem. This

measure is not directly appropriate to normalize the pertubation intensity across systems.

Indeed, when keeping the total perturbation intensity constant, the perturbation applied to a

given species would be weaker in a community with a larger number of species. To eliminate

this artefact, we normalize the perturbation intensity on a per species basis. Thus, we propose

to quantify the perturbation intensity as

�2
in =

f

S
TrCu. (S12)

Response intensity We measure the intensity of the system response in terms of the

covariance matrix Cx. This matrix encodes the statistical properties of the abundance (or

biomass) fluctuations in stationary state. For example, species abundance xi(t) fluctuates

around its equilibrium value Ni with variance Cx,ii. More generally, we can describe the

fluctuations of any function ' of species abundance. The dynamics near equilibrium are

'(n(t)) = '(N ) + v>x(t),

where vector v = r' is the gradient of the function ' evaluated at the equilibrium N . This

vector gives the direction in which the system fluctuations are observed. Then, denoting the

temporal mean and variance by Et and Vart, we have

Vart ('(n(t)) = Et

⇣�
v>x(t)

�2⌘

= Et

⇣
v>x(t)x(t)>v

⌘

= v>Et

�
x(t)x(t)>

�
v

= v>Cx v. (S13)

We use this variance to quantify the intensity of the system response. Rather than choosing
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a particular vector v, we consider the average over all observation directions. Specifically, we

restrict attention to unit vectors v and average over the uniform distribution of such vectors.

Denoting this average by Ev, we get

Ev Vart
�
'(n(t)

�
= Ev

�
v>Cxv

�
= Tr Ev vv

>Cx.

It follows from species symmetry that the average Ev vv> is proportional to the unit matrix.

Moreover, because Tr vv> = 1 for all vectors v, the constant of proportionality is equal to 1
S .

Hence,

Ev Vart
�
'(n(t)

�
=

1

S
TrCx.

Therefore, we propose to quantify the response intensity as

�2
out =

1

S
TrCx. (S14)

Variability and invariability The response intensity �2
out is linear in the perturbation

intensity �2
in. More precisely, when increasing all species-specific pulse intensities by a factor

c, the pulse covariance matrix Cu, the perturbation intensity �2
in, the response covariance

matrix Cx (due to the linearity of the Lyapunov equation, see eqs. (S9–S10)) and the response

intensity �2
out all also increase by a factor c.

Therefore, we define variability V as the ratio of the response intensity �2
out and the

perturbation intensity �2
in,

V =
�2
out

�2
in

=
1
S TrCx

f
S TrCu

=
TrCx

f TrCu
.

Substituting eq. (S9) for Cx, we get

V =
TrL(A, fCu)

f TrCu
= TrL

�
A,

Cu

TrCu

�
,

where we have used the linearity property (S10). We see that only the normalized perturbation

38



covariance matrix matters in this expression. That is, the variability measure focuses on the

directional e↵ect of the perturbation. We make this dependence explicit in the notation, and

write

V(E) = TrL(A,E), (S15)

where E = Cu
TrCu

is the perturbation direction, i.e., a covariance matrix with unit trace.

Variability is inversely related to stability: the more variable an ecosytem, the less stable

it is. For purpose of comparison, we construct a stability measure based on variability V(E),

which we call invariability I(E),

I(E) =
1

2V(E)
. (S16)

The factor 2 in this definition guarantees that we recover asymptotic resilience for the simplest

dynamical systems. To see this, consider a system of S non-interacting species, in which all

species have the same return rate �. The community matrix is equal to A = ��1 where

1 denotes the identity matrix. From the Lyapunov equation (S7) we get the stationary

covariance matrix L(A,E) = 1
2�E. Therefore, V(E) = 1

2� and I(E) = �, which is equal to

the asymptotic resilience of this example system.
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S3 Worst-case and mean-case variability

Worst-case variability is defined as

Vworst = max
E

V(E) = max
E

TrL(A,E) (S17)

where the maximum is taken over perturbation directions, i.e., over covariance matricesE with

TrE = 1. The function TrL(A,E) is linear in the perturbation direction E, see eq. (S10),

and the set of perturbation directions is convex. Hence, the maximum is reached at an

extreme point, that is, on the boundary of the set. The extreme points are the purely

directional perturbations (see Appendix S5 for the argument in the two-species case), so that

the maximum is reached at a purely directional perturbation. Arnoldi et al. (2016) showed

that the worst-case variability can be easily computed, namely, as a specific norm of the

operator bA�1 that maps E to L(A,E). Concretely, defining bA = A⌦ 1 + 1 ⌦ A,

Vworst = || bA�1||, (S18)

where || · || stands for the spectral norm of S2 ⇥ S2 matrices.

To define mean-case variability Vmean, we assume a probability distribution over the

perturbation directions, and compute the mean system response over this distribution. Due

to the linearity property (S10), this mean response is equal to the response to the mean

perturbation direction. Hence, we do not have to specify the full probability distribution over

the perturbation directions; it su�ces to determine the mean perturbation direction. As can

be directly verified in the two-species case (Appendix S5), if, averaged over the distribution

of perturbation directions, perturbation intensities are evenly distributed across species, and

perturbation directions are uniformly distributed across all possible directions, then the mean

perturbation direction is adirectional. This corresponds to the center of the set of perturbation

directions (in the two-species case the disc center represented in Fig. 3), and is proportional
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to the identity matrix, that is, E = 1
S1. Therefore,

Vmean = TrL(A, 1
S1). (S19)
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S4 Perturbation types and variability

The perturbation type a↵ects how the perturbation intensity is distributed across species.

Therefore, it also a↵ects our measure of variability, as defined in Appendix S2. Here we

describe how the variability definition has to be modified.

We defined variability measure (S15) as the intensity of the system response relative to

the intensity of the applied perturbation. To quantify the perturbation intensity in the case

of abundance-dependent perturbations, we distinguish the intrinsic e↵ect of the perturbation

on a species, which does not depend on the species’ abundance, and the total e↵ect of the

perturbation on the species, which does depend on abundance. We propose to express the

perturbation intensity in terms of the intrinsic perturbation, while it is the total perturbation

that acts on the species dynamics.

Formally, for species i, we denote the intrinsic perturbation by ⇠intri (t) and the total per-

turbation by ⇠toti (t). Then, for a type-↵ perturbation, we have

⇠toti (t) = N
↵
2
i ⇠intri (t), (S20)

where Ni is the abundance of species i. Thus, the intrinsic perturbation ⇠intr(t) can be

interpreted as the per capita perturbation strength. Eq. (S20) can be written in vector

notation as

⇠tot(t) = D
↵
2 ⇠intr(t), (S21)

where D is the diagonal matrix whose entries are species equilibrium values (Dii = Ni).

Both the intrinsic and total perturbation are multi-pulse. If we denote the pulses of the

intrinsic perturbation by uk, then, by eq. (S21), those of the total perturbation are D
↵
2 uk.

Then, to quantify the perturbation intensity, we use the covariance matrix of the pulses in the

intrinsic perturbation. The derivation leading to eq. (S12) is still valid. However, to compute

the covariance matrix of the species displacements, we use the covariance matrix of the pulses

in the total perturbation. This corresponds to replacing Cu by D
↵
2 CuD

↵
2 in the derivation of
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eq. (S14), so that we get

�2
out =

1

S
TrL

�
A, fD

↵
2 CuD

↵
2
�
. (S22)

The variability measure for a type-↵ perturbation becomes

V↵ =
�2
out

�2
in

= TrL
�
A,

D
↵
2 CuD

↵
2

TrCu

�
,

or, in terms of the (intrinsic) perturbation direction E,

V↵(E) = TrL
�
A,D

↵
2 ED

↵
2
�
. (S23)

Applying the same arguments as in Appendix S3, we find that worst-case variability,

Vworst
↵ = max

E
V↵(E) = max

E
TrL

�
A,D

↵
2 ED

↵
2
�
,

is attained at a perfectly correlated perturbation. If we define the operator (an S2 ⇥ S2

matrix)

D↵ = D
↵
2 ⌦D

↵
2 ,

then the worst case-variability can be computed as

Vworst
↵ = || bA�1 �D↵||, (S24)

where || · || is the spectral norm for S2 ⇥ S2 matrices. On the other hand, the mean-case

variability,

Vmean
↵ = TrL

�
A, 1

SD
↵
�
, (S25)

is attained by the uniform, uncorrelated perturbation.
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S5 Perturbation directions in two dimensions

Variability spectra are built on the notion of perturbation directions. They are characterized

by a covariance matrix E with TrE = 1. To gain some intuition, we study the set of

perturbation directions in the case of two species.

Any perturbation direction E in two dimensions can be written as

E =

0

B@
1� x y

y x

1

CA . (S26)

with 0  x  1 and y2  x(1 � x). The first inequality guarantees that the elements on

the diagonal are variances, i.e., positive numbers. The second inequality guarantees that the

o↵-diagonal element is a proper covariance, in particular, that the correlation coe�cient is

contained between �1 and 1. Note that matrix (S26) has always TrE = 1.

It follows from eq. (S26) that the set of perturbation directions in two dimensions is

parameterized by two numbers x and y. Using these numbers as axes of a two-dimensional

plot, we see that the set of perturbation directions corresponds to a disc with radius 0.5 and

centered at (0.5, 0) (see Fig. 3).

It is instructive to study the position of specific perturbation directions on the disc. The

point (0, 0) corresponds to a perturbation a↵ecting only the first species, whereas point (1, 0)

is a perturbation only a↵ecting the second species. More generally, any point on the boundary

of the disc correspond to a multi-pulse perturbation for which the individual pulses have a

fixed direction. For example, the point (0.5, 0.5) is a perturbation for which each pulse has

the same e↵ect on species 1 and species 2, whereas the perturbation corresponding to point

(0.5,�0.5) consists of pulses that a↵ect the two species equally strongly, but in an opposite

way. Perturbations on the boundary are perfectly correlated.

The perturbations towards the center of the disc are composed of pulses with more variable

directions. For example, a multi-pulse perturbation for which half of the pulses a↵ect only

the second species, and the other pulses a↵ect the two species equally strongly corresponds to
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the point 1
2(0, 1) +

1
2(0.5, 0.5) = (0.25, 0.75). The mixture of di↵erent pulse directions is the

strongest at the center of the disc (0.5, 0). Examples of ways to realize this perturbation are

1
2(0, 0) +

1
2(1, 0),

1
2(0.5, 0.5) +

1
2(0.5,�0.5) and 1

4(0, 0) +
1
4(0.5, 0.5) +

1
4(1, 0) +

1
4(0.5,�0.5). In

each of these example, the pulses have their intensities, averaged over time, evenly distributed

across species, and a↵ect them, again averaged over time, in an uncorrelated way. The

perturbation corresponding to the point (0.5, 0) is thus evenly distributed across species but

uncorrelated in time.
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S6 Random Lotka-Volterra model

The communities used in Figs. 4, 5 and 6 are constructed from the Lotka-Volterra model with

random parameters. We consider a pool of species governed by the dynamics

dNi(t)

dt
=

riNi(t)

Ki

 
Ki �Ni �

SpoolX

j=1
j 6=i

BijNj(t)

!
, (S27)

and we let the dynamics settle to an equilibrium community of S remaining species. By

drawing random values for the parameters – growth rates ri, carrying capacities Ki, and

competition coe�cients Bij – we generate communities of various diversity.

For the communities in Fig. 4, we set Spool = 50, and chose the parameter values as follows,

ri randomly drawn from N (1, 0.2), a normal distribution with mean 1 and

standard deviation 0.2 (independent draws for di↵erent species)

Ki drawn from N (1, 0.2)

Bij half of the competition coe�cients are set equal to 0; the other half are

drawn from N (0.1, 0.1).

This procedure resulted in a community of S = 40 persistent species. Note that some of

the competition coe�cients can be negative, so that there can be positive interactions (e.g.

facilitation).

For the communities in the top row of Fig. 5, we followed the same procedure, except

that we changed the way of generating the competition coe�cients Bij. In the case without

interactions, all Bij were set zero; in the case with weak interactions, the non-zero coe�cients

Bij were drawn from N (0.02, 0.02); and in the case with strong interactions, the non-zero Bij

were drawn from N (0.1, 0.1), as for the community of Fig. 4.

We applied a similar procedure to obtain the bottom row of Fig. 5, but for these commu-

nities the growth rates ri and carrying capacities Ki were not drawn independently. Instead,

we first drew auxiliary variables ai from N (1, 0.2), bi from N (1, 0.1) and ci from N (1, 0.1),

and then set ri = biai and Ki = ci/ai.
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For the communities of Fig. 6, we varied the size of the species pool Spool so that the

realized species richness covered the range from 1 to 20. Specifically, we drew Spool randomly

from 1 to 100, and generated the parameter values as in Fig. 4. We repeated this procedure

many times, until obtaining 1000 communities for each value of realized species richness S

from 1 to 20. Then, for each realized community, and for each of the three perturbation types

(↵ = 0, ↵ = 1 and ↵ = 2), we generated 1000 random perturbations leading to a variability

distribution of 1000 values. From the variability distributions we extracted median, 5th and

95th percentile, and minimum and maximum. For the realized communities we computed

asymptotic resilience, worst-case variability and the prediction for the median. Finally, we

computed the median of these statistics and predictions, all represented in Fig. 6.
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S7 Genericity in strongly interacting communities

We give some elements as to why the behaviour reported in Figs. 4 and 5 in the main text

can be expected to be a general trend in diverse communities of interacting species. Denote

by Vspec i
↵ the community variability induced by a type-↵ perturbation that is fully focused

on a single species i. We are interested in the relationship between this variability and the

equilibrium abundance Ni of the perturbed species i.

First, note that for single-species perturbations the variability metrics Vspec i
↵ for di↵erent

perturbation types ↵ are directly linked. From definition (S23) we get that

Vspec i
↵ = N↵

i Vspec i
↵=0 . (S28)

Hence, it su�ces to study the behaviour of Vspec i
↵=0 .

Next, consider again the Lotka-Volterra dynamics (S27) from the perspective of a focal

species i. If a stable equilibrium exists in which the focal species survives, small displacements

from equilibrium xi = Ni(t)�Ni are met with the dynamics

dxi

dt
=

riNi

Ki

✓
� xi �

X

j 6=i

Bijxj

◆
=

1

⌧i

✓
� xi �

X

j 6=i

Bijxj

◆
, (S29)

where ⌧i =
Ki
riNi

has units of time. We claim that ⌧i sets a characteristic time scale of the

focal species dynamics; it measures the typical time it takes for the species to recover from

a perturbation that displaces it from its equilibrium. This species response time is directly

related to the species’ variability Vspec i
↵=0 : the slower the species, the larger the impact of a

repeated perturbation acting on this species, and the larger the induced variability.

We illustrate the relationship between ⌧i and Vspec i
↵=0 in Fig. S1 (inset panels). For the six

communities of Fig. 5, we fit the power-law relationship

Vspec i
↵=0 / ⌧ ⌫i , (S30)
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where the index i runs over the set of persistent species. The estimates of the exponent ⌫

(using linear regression on the log-log plot) are all close to one. This result is obvious for

the communities without interactions, for which Vspec i
↵=0 = 1

2⌧i (left-hand panels). But the

same result remains valid in the presence of interactions. We find that interactions do not

substantially modify the time scale on which a species responds to perturbations a↵ecting

only that species.

Therefore, to study the relationship between Ni and Vspec i
↵ , we can restrict to the simpler

relationship between Ni and ⌧i =
Ki
riNi

, which is determined by the correlations between growth

rates ri, carrying capacities Ki and equilibrium abundances Ni. Fig. S1 (main panels) shows

this relationship for the six communities of Fig. 5. Fitting the power law

⌧i / N�
i , (S31)

we find various estimates for the exponent �. Without interactions, we have Ni = Ki, and

hence, ⌧i =
1
ri
. If growth rates and carrying capacities are drawn independently, abundance

and response time are unrelated, leading to � ⇡ 0 (Fig. S1, upper-left panel). Alternatively,

if growth rates and carrying capacities satisfy some trade-o↵, higher abundance (larger Ki) is

associated with longer response time (smaller ri), leading to � > 0 (Fig. S1, lower-left panel).

When increasing the interactions, the link between Ni and Ki becomes weaker. Indeed, from

the equilibrium condition for species i we have

Ni = Ki +
X

j 6=i

BijNj

= Ki +

✓X

j 6=i

BijKj +
X

k 6=j 6=i

BijBjkKk +
X

l 6=k 6=j 6=i

BijBjkBklKl + . . .

◆
,

where in the second line we have used the equilibrium condition for the other species. For

su�ciently strong interactions, the terms between brackets dominate the term Ki, so that Ni

and Ki become unrelated. In this case, we have ⌧i / 1
Ni
, leading to � ⇡ �1: more abundant

species have faster dynamics and smaller response time. This limiting case is observed both
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if ri and Ki are independent, and if they satisfy a trade-o↵ (Fig. S1, right-hand panels).

Finally, putting together eqs. (S28, S30, S31), we get

Vspec i
↵ / N↵

i ⌧ ⌫i / N↵+�⌫
i ⇡ N↵+�

i , (S32)

where in the last step we have used that ⌫ ⇡ 1. The relationship between abundance of

perturbed species and community variability is strongly determined by the exponent �, that

is, by the relationship between abundance Ni and response time ⌧i. In the case of weak

interactions, the latter relationship depends on the assumed link between growth rate ri

and carrying capacity Ki, so that no unambiguous relationship is to be expected between

abundance and variability. However, in the limit of strong interactions, we have � ⇡ �1 and

Vspec i
↵ / N↵�1

i . (S33)

Hence, for immigration-type perturbations (↵ = 0) variability is inversely proportional to the

abundance of the perturbed species. In contrast, for environmental perturbations (↵ = 2),

variability is directly proportional to the abundance of the perturbed species. These are the

relationships depicted in Figs. 4 and 5 of the main text.
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Figure S1: Clarifying the relationship between abundance of perturbed species and community variability.

In Appendix S7 we introduce the auxiliary variable ⌧i, the characteristic time scale of species i, to explain

the relationship between variability Vspec i
↵=0 and abundance Ni. For the six communities of Fig. 5 in the main

text, we plot ⌧i vs Ni in the main panels, and Vspec i
↵=0 vs ⌧i in the inset panels. We fit a power law to each of

these relationships, using linear regression on the log-log plot. The estimated exponents � (for the data ⌧i vs

Ni) and ⌫ (for the data Vspec i
↵=0 vs ⌧i) are reported in the panels.
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S8 Variability and abundance statistics

From the observed relationship between abundance and variability (Figs. 4 and 5), patterns

for worst- and mean-case variability can be deduced. This reveals a connection between

stability and diversity metrics.

Denote by Vspec i
↵ the community variability induced by a type-↵ perturbation fully focused

on species i. We start from the power-relationship (S33), linking this variability and the

equilibrium abundance of species i. As argued in Appendix S7, we expect this relationship to

hold for su�ciently strong interactions.

For immigration-type perturbations (↵ = 0), worst-case variability is approached by taking

the maximum over species which gives

Vworst
↵=0 ⇡ max

i
Vspec i
↵=0 / 1

mini Ni
. (S34)

so that the worst case is governed by the rarest species. Because the abundance of the rarest

species typically decreases with diversity, the corresponding diversity-stability relationship is

decreasing. For mean-case variability, averaging over species individual contributions, we get

Vmean
↵=0 =

1

S

X

i

Vspec i
↵=0 / 1

S

X

i

1

Ni
= hNi�1

harm, (S35)

where hNiharm stands for the harmonic mean of species abundances. Mean abundance typ-

ically decreases with diversity, so that the corresponding diversity-stability relationship is

decreasing.

When caused by environmental-type perturbations (↵ = 2), worst-case variability is ap-

proached by taking the maximum over species, giving

Vworst
↵=2 ⇡ max

i
Vspec i
↵=0 / max

i
Ni, (S36)

so that the worst case is governed by the most abundant species. For mean-case variability
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we get

Vmean
↵=2 / 1

S

X

i

Ni = hNiarith, (S37)

the arithmetic mean of species abundances. Mean abundance typically decreases with diver-

sity, so that the corresponding diversity-stability relationship is increasing.

Note that when caused by demographic-type perturbations (↵ = 1) the species-by-species

approach does not work: demographic variability probes a collective property of the commu-

nity. The di↵erent relationships between abundance and variability are illustrated in Fig. S2.
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Figure S2: Invariability and species abundance. Top row: mean-case, bottom row: worst-case. ⇥-marks:

analytical formula; +-marks: approximation in terms of abundance (see Appendix S8); thick line: simulation

results. For immigration-type perturbations (first column, in blue), mean-case invariability scales as the

harmonic mean abundance (see eq. (S35)), which decreases with diversity. Worst-case invariability scales as

the abundance of the rarest species. On the other hand, in response to environmental-type perturbations

(third column, in red), mean-case variability scales as the arithmetic mean abundance (see eq. (S37)) so that

invariability increases. Worst-case variability scales as the abundance of the most common species. In between

(second column, in green), for demographic-type perturbations, neither worst- nor mean-case invariability is

determined by statistics of species abundances.
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