## Title:

Gene Expression Signatures Associated With Survival Times of Pediatric Patients With Biliary Atresia Identify Potential Therapeutic Agents

## **Supplementary Methods**

### **RNA sequencing analyses**

Total RNA was isolated from liver biopsies using the miRNeasy Kit (QIAGEN), verified for integrity by the Agilent 2100 Bioanalyzer, and converted to cDNA for sequencing library preparation by TruSeq Stranded mRNA Library Prep Kit from Illumina (San Diego, CA). DNA fragments were end-repaired to generate blunt ends with 5' phosphatase and 3' hydroxyls and adapters were ligated for single-end or paired-end sequencing on Illumina HiSeq 2500. 10 million reads with 50bp in length for single-end RNAseq and 20 million mate-paired reads with 125-bp in length for paired-end RNAseq were generated. Single-end RNAseq was used in discovery cohort and normal controls, and paired-end RNAseq was used in the validation cohort.

RNAseq reads were aligned to the human genome (GRCh37/hg19) using TopHat (version 2.1.0),<sup>1</sup> with transcript quantifications performed by Cufflinks v2.2.1.<sup>2</sup> Annotated transcripts were obtained from the UCSC genome browser (http://genome.ucsc.edu) and the Ensembl database. Transcript abundances were normalized in reads per kilobase of exon per million mapped reads (RPKM) for single-end RNAseq and fragments per kilobase of exon per million mapped reads (FPKM) for paired-end RNAseq. Genes with RPKM or FPKM <0.5 in more than half of samples were

considered not expressed and filtered out. Differentially expressed genes were identified by Cuffdiff 2.<sup>3</sup> The selection of genes with a fold-change cutoff at 1.5 or higher included the Benjamini–Hochberg false discovery rate adjusted P < 0.05.

### Supervised principal components for Cox regression

Steps for Superpc Cox are summarized as follow: 1) Compute univariate Cox proportional hazard regression coefficients for each gene, 2) estimate coefficient threshold theta by 10 fold cross-validation, 3) generate a reduced gene expression matrix consisting of genes whose coefficients exceed the threshold theta, 4) compute the first principal component of the reduced matrix, 5) use the first principal component to predict the survival outcome, and 6) assign predicted scores to patients using the first principal component predictor and importance scores to genes. For the analysis, patients with higher predicted score have lower survival. The values of genes with positive importance scores means decrease in patient survival.

#### Gene signatures for liver diseases and animal models of hepatopathies

Gene signatures for liver diseases and their animal models are defined as differentially expressed genes between disease samples and normal control samples identified by GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/). We also curated signatures associated with inflammation or fibrosis in BA, and prognosis signatures in hepatocellular carcinoma. Genes with the fold-change cutoff at 2 or higher and Benjamini–Hochberg false discovery rate adjusted *P*<0.05 were considered differentially expressed. These signatures underwent pairwise overlapping comparisons between upregulated or downregulated genes in low survival group and gene signatures of human liver diseases using Fisher's exact test.

#### Pathway enrichment analysis and estimation of relative cell abundance

For estimation of the relative abundance of individual cell types, unique marker gene signatures were obtained for immune cell types from two different studies (Bindea et al<sup>4</sup> and Charoentong et al<sup>5</sup>); and for activated hepatic stellate cells, activated portal fibroblasts and cholangiocytes from Zhang et al<sup>6</sup>, Iwaisako et al<sup>7</sup> and Dianat et al<sup>8</sup>, respectively. Gene signature for glutathione metabolism was obtained from KEGG database (KEGG pathway: hsa00480). Levels of cell types or glutathione metabolism were quantified based on the normalized RNAseq expression values (RPKM or FPKM) of marker genes using the single sample Gene Set Enrichment Analysis (ssGSEA) implemented in GSVA-R package. ssGSEA is rank-based method that produces an enrichment score for each sample. The enrichment score was calculated by a sum of the difference between weighted Empirical Cumulative Distribution Functions of the marker genes and the other genes in an expression profile. The enrichment score represents the abundance of cells or enrichment of pathway. Differences between the low and high survival groups were tested by Wilcoxon rank sum test. To calculate the ratio of ssGSEA score for glutathione metabolism to ssGSEA score for aHSCs, aPFs or cholangiocytes, we first scaled the ssGSEA score to 0.1-1 range, then divided ssGSEA score for glutathione metabolism by ssGSEA score for aHSCs, aPFs or cholangiocytes.

# Standard and modified neonatal mouse model of biliary atresia and anti-oxidant treatment

Testing the effect of anti-oxidants in this model, N-Acetyl-Cysteine (NAC; Sigma, A9165) or Manganese (III) tetrakis-(4-benzoic acid)porphyrin (MnTBAP; EMD Millipore, Burlington, MA) were reconstituted in 1xPBS, and administered in daily doses of 150

mg/Kg (for NAC) or 5 mg/Kg (for MnTBAP) beginning 12 hours after RRV inoculation; equal volumes of 1xPBS were injected into RRV infected mice serving as controls. All groups of experimental mice were phenotyped daily as described previously<sup>9</sup>. In brief, Mice were sacrificed at 7 and 14 days for standard model and at 7, 14 and 19 days for modified model after RRV injections, and extrahepatic bile duct, liver and plasma samples were obtained for analyses. Mice treated with 0.9% saline were used as normal controls. All BALB/c mice were maintained with normal diet in pathogen-free vivarium rooms equipped with a 12-hour dark-light cycle. Animal studies and experimental protocols were performed in strict accordance with the guidelines recommended by the Institutional Animal Care and Use Committee (IACUC; Protocol IACUC2017-0007) of Cincinnati Children's Hospital Medical Center.

#### Histopathology and immunofluorescence staining

Mouse livers and EHBDs were micro-dissected using a stereomicroscope, and tissues were paraffin-embedded, sectioned, and stained with hematoxylin/eosin for both tissues and with Sirius red, α-SMA staining for livers only. Human liver biopsies were obtained at the time of HPE and snap-frozen in liquid nitrogen, formalin fixed/paraffin embedded and sectioned. Liver sections were blocked from nonspecific binding by using normal goat serum and incubated with the primary antibodies rabbit anti-α-smooth muscle actin (α-SMA; ab5694 from Abcam, Cambridge, MA, USA for mouse tissues and 1A4 from Roche, Indianapolis, IN, USA for human tissues) or rabbit anti-cytokeratin 7 antibody (KRT7; ab119697 from Abcam, Cambridge, MA, USA for mouse and human livers). Secondary anti-rabbit biotinylated antibodies were from Vectastain ABC-HRP Kit (PK-

4001 from Vector Lab, Burlingame, CA, USA). Images were captured using Olympus BX51 microscope (Olympus America Inc., Center Valley, Pennsylvania, USA) and cellSens Dimension digital imaging software (Olympus corporation, Version 1.8.1); the stained areas were quantified by ImageJ software as reported previously.<sup>10</sup>

Human liver biopsies were obtained at the time of HPE. N=7 and N=8 human BA liver sections from low and high survival groups, respectively, and 3 normal liver sections were used for KRT7 and  $\alpha$ -SMA staining.  $\alpha$ -SMA or KRT7 positive areas in human liver sections were quantified by ImageJ software. Quantification of aHSCs and aPFs are represented as  $\alpha$ -SMA positive areas in lobular and portal regions, respectively. Quantification of cholangiocytes are represented as KRT7 positive areas.  $\alpha$ -SMA positive areas manually excluded before quantification.

# Colorimetric assay for total bilirubin, alanine transaminase (ALT) and gammaglutamyl transferase (GGT)

Plasma total bilirubin, ALT and GGT concentrations were measured with Total Bilirubin Reagent Set (Pointe Scientific Inc., Canton, MI), Liquid GGT Reagent Set (Pointe Scientific Inc., Canton, MI) and DiscretPak ALT Reagent Kit (Catachem, Bridgeport, CT) according to the manufacturers' instructions. Photometric absorbance for assays was read on a Synergy H1 Hybrid Reader (BioTek, Winooski, VT) at 555 nm for total bilirubin and ALT, at 405nm for GGT.

## **Real-time PCR**

RNA was isolated from mouse liver tissues using the RNeasy Mini Kit (Qiagen, Valencia, CA) and subjected to real-time PCR with the Brilliant III SYBR Green QPCR

Master Mix Gene Expression Assay Kit and the Mx3005p system (Stratagene, La Jolla, CA), normalized with glyceraldehyde 3-phosphate dehydrogenase (*Gapdh*).

## **Statistical analyses**

Kaplan-Meier curves were generated using Graphpad Prism 6. Receiver operating characteristic (ROC) curves were generated using survivalROC package (version 1.0.3). Gene expression heatmaps were generated using GENE-E software. Boxplots and barplots were generated using ggplot2 package (version 2.2.1), while correlation plots were generated using Corrplot package (version 0.84). Cox proportional hazards regression, log-rank test, Wilcoxon rank sum test, Fisher exact test, and Harrell's C-statistic were performed in R (version 3.3.0).

## **Supplementary Figure Legends**

**Supplementary Figure 1.** Kaplan-Meier survival curves for the discovery and validation cohorts. Log-rank test was used to compare the survival distributions of the two groups.

**Supplementary Figure 2. Pathway enrichment analysis of upregulated genes in the low and high survival groups in the validation cohort.** Dotplots depict pathways that are enriched in upregulated genes of the low (**A**) and high (**B**) survival groups in the validation cohort. Pathway terms were ranked according to their -log<sub>10</sub>(FDR) values and categorized into extracellular matrix (ECM), cell-cell interaction, inflammation and other for plot **A**, and oxidation, metabolism and other for plot **B**.

Supplementary Figure 3. Correlation between ssGSEA method and section staining, and levels of aHSCs, aPFs and cholangiocytes. Scatterplots represent linear correlation between quantification by ssGSEA method and quantification by section staining for activated hepatic stellate cells (aHSC; **A**), activated portal fibroblasts (aPF; **B**), and cholangiocytes (**C**). Pearson correlation coefficient *r* is shown, with the grey area representing 95% confidence limits. Representative human liver sections with anti- $\alpha$ -SMA (upper panel in **D**) and anti-KRT7 staining (bottom panel in **D**). Boxplots show percentage of positive area for aHSC ( $\alpha$ -SMA positive area in lobular region, panel **E**), aPFs ( $\alpha$ -SMA positive area in portal region, panel **F**) and cholangiocytes (KRT7 positive area, panel **G**). \**P* < 0.05, \*\**P* < 0.01, calculated by T test. Boxplots show the expression of *ACTA2* (encoding  $\alpha$ -SMA, marker of aHSCs and aPFs, panel **H**)

and *KRT7* and *KRT19* (markers for cholangiocytes, panel **I**). \*\*P < 0.01, \*\*\*P < 0.001, calculated by Wilcoxon rank sum test.

# Supplementary Figure 4. Enrichment of CD8 T and NK cells in the low survival group and their correlation with aHSCs, aPFs, and cholangiocytes.

Boxplots in **A** and **B** show enrichment of CD8 T and NK cells, respectively, using signature from Charoentong et al. Enrichments are shown as mean  $\pm$  SD of ssGSEA scores, with *P* values calculated by Wilcoxon rank sum test. Panels **C-E** show scatterplots of the correlations between NK cells and aHSCs (**C**), aPFs (**D**) and cholangiocytes (**E**) also using the method from Charoentong et al. The remaining Scatterplots **F-K** show the correlation between CD8 T cells and aHSCs, aPFs, and cholangiocytes using signatures from Bindea et al as well as Charoentong et al. Enrichments are represented as ssGSEA scores. Pearson correlation coefficient *r* is shown, with the grey area representing 95% confidence limits. \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001.

Supplementary Figure 5. Immune cells differences between the low and the high survival group. Boxplots in panel **A** show enrichments of immune cell types using the method published in Bindea et al. Enrichments are represented as ssGSEA scores; \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001. In panel **B**, boxplots show enrichments of immune cell types based on the method of Charoentong et al. Enrichments are represented as mean  $\pm$  SD of ssGSEA score; \**P* < 0.05, \*\**P* < 0.05, \*\**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.01, \*\*\**P* < 0.01, \*\*\**P* < 0.001; DC, dendritic cell; iDC, immature dendritic cell; aDC, activated dendritic cell; pDC, plasmacytoid dendritic cell;

Th1 cells, type 1 T helper cells; Th2 cells, type 2 T helper; Th17 cells, T helper 17 cells; Treg cells, regulatory T cells; Tcm cells, central memory T cells; Tem, effector memory T cells; Tfh cells, T follicular helper cells; Tgd cells, gamma delta T cells; MDSC, myeloid-derived suppressor cells; NKT, natural killer T cells; iB cells, immature B cells; aB cells, activated B cells; mB cells, memory B cells; and aT cells, activated T cells.

Supplementary Figure 6. Neonatal mouse model of liver fibrosis. Panel A shows representative sections stained with hematoxylin and eosin at different time points after administration of 1.875x10<sup>6</sup> ffu of RRV in 25 µl volume at day 3 of life; an equal volume of 0.9% normal saline was injected to control mice. EHBDs and livers were harvested from both groups at days 7, 14 and 19 after injections. H&E staining of EHBDs show normal bile duct epithelium in control mice (top panel) while RRV challenge (bottom panel) induce inflammatory obstruction of the duct lumen at 7 days followed by restoration of duct epithelium and lumen at days 14 and 19. Arrows denote areas of periductal inflammation; asterisk denotes duct lumen. In panel B, liver sections show normal parenchyma and portal triads. Infection with RRV (bottom panel) induces significant portal inflammation, cholangitis and expansion of portal spaces. Arrows indicate inflammatory cell infiltrations. Panel **C** shows Sirius red stainings of normal livers (top panel) and after RRV infection (lower panel) resulting in progressive accumulation of the red staining localized to portal areas that is mild at day 7 and extensive by day 19 after RRV challenge. Arrrowheads denote Sirius red staining; N=8-28 mice per group/time-point from 3-6 independent experiments.

# Supplementary Figure 7. N-acetyl-cysteine (NAC) suppresses expression of

## fibrotic genes in modified mouse model of BA.

Graphs show the expression levels of fibrosis-related genes *Acta2, Col1a1, Timp1,* and *Tgfb1* in Standard RRV model (**A**) and modified model (**B**). Data are shown as mean  $\pm$  SD. N=6-12 mice per group from three independent experiments are shown. \**P* < 0.05, \*\**P* < 0.01, \*\*\**P* < 0.001.

## References

- Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 2009;25:1105-11.
- Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012;7:562-78.
- 3. Trapnell C, Hendrickson DG, Sauvageau M, et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013;31:46-53.
- Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013;39:782-95.
- Charoentong P, Finotello F, Angelova M, et al. Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade. Cell Rep 2017;18:248-262.
- Zhang DY, Goossens N, Guo J, et al. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut 2016;65:1754-64.
- Iwaisako K, Jiang C, Zhang M, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci U S A 2014;111:E3297-305.
- Dianat N, Dubois-Pot-Schneider H, Steichen C, et al. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 2014;60:700-14.

- Yang L, Mizuochi T, Shivakumar P, et al. Regulation of epithelial injury and bile duct obstruction by NLRP3, IL-1R1 in experimental biliary atresia. J Hepatol 2018.
- Koyama Y, Wang P, Liang S, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest 2017;127:1254-1270.

Author names in bold designate shared co-first authorship

| Nome in figure 2                | Disease or model                                  | Control      | Specie | GEO       | Reference PMID |
|---------------------------------|---------------------------------------------------|--------------|--------|-----------|----------------|
| Name in ligure 5                | Disease of model                                  |              | S      | accession |                |
| Up in cirrhosis                 | Cirrhotic liver                                   | Normal liver | Human  | GSE6764   | 17393520       |
| Down in cirrhosis               | Cirrhotic liver                                   | Normal liver | Human  | GSE6764   | 17393520       |
| Poor prognosis in HCC           | Hepatocellular carcinoma                          | NA           | Human  | GSE10140  | 18923165       |
| Good prognosis in HCC           | Hepatocellular carcinoma                          | NA           | Human  | GSE10140  | 18923165       |
| Up in NASH                      | Nonalcoholic steatohepatitis                      | Normal liver | Human  | NA        | 25581263       |
| Down in NASH                    | Nonalcoholic steatohepatitis                      | Normal liver | Human  | NA        | 25581263       |
| Inflammation signature in BA    | Biliary atresia                                   | NA           | Human  | GSE15235  | 20465800       |
| Fibrosis signature in BA        | Biliary atresia                                   | NA           | Human  | GSE15235  | 20465800       |
| Up in PBC                       | Primary biliary cholangitis                       | Normal liver | Human  | NA        | 11559656       |
| Down in PBC                     | Primary biliary cholangitis                       | Normal liver | Human  | NA        | 11559656       |
| Up in PSC                       | Primary sclerosing cholangitis                    | Normal liver | Human  | NA        | 11559656       |
| Down in PSC                     | Primary sclerosing cholangitis                    | Normal liver | Human  | NA        | 11559656       |
| Up in BDL rat                   | Bile duct ligation for two weeks                  | Normal liver | Rat    | GSE13747  | 20077562       |
| Down in BDL rat                 | Bile duct ligation for two weeks                  | Normal liver | Rat    | GSE13747  | 20077562       |
| Up in DEN rat                   | 100 mg/kg diethylnitrosamine for 18 weeks         | Normal liver | Rat    | GSE27641  | 24677197       |
| Down in DEN rat                 | 100 mg/kg diethylnitrosamine for 18 weeks         | Normal liver | Rat    | GSE27641  | 24677197       |
| Up in CCl4 rat                  | Carbon tetrachloride                              | Normal liver | Rat    | GSE73499  | 27659347       |
| Down in CCl4 rat                | Carbon tetrachloride                              | Normal liver | Rat    | GSE73499  | 27659347       |
| Up in CCI4 mouse                | 0.1cc of a 40% CCL4 for 18 weeks                  | Normal liver | Mouse  | GSE27641  | 24677197       |
| Down in CCl4 mouse              | 0.1cc of a 40% CCL4 for 18 weeks                  | Normal liver | Mouse  | GSE27641  | 24677197       |
| Up in EHBD: BA RRV D3           | EHBD and gallbladder with RRV infection at day 3  | Normal EHBD  | Mouse  | GSE46995  | 24493287       |
| Down in EHBD: BA RRV D3         | EHBD and gallbladder with RRV infection at day 3  | Normal EHBD  | Mouse  | GSE46995  | 24493287       |
| Up in EHBD: BA RRV D7           | EHBD and gallbladder with RRV infection at day 7  | Normal EHBD  | Mouse  | GSE46995  | 24493287       |
| Down in EHBD: BA RRV D7         | EHBD and gallbladder with RRV infection at day 7  | Normal EHBD  | Mouse  | GSE46995  | 24493287       |
| Up in EHBD: BA RRV D14          | EHBD and gallbladder with RRV infection at day 14 | Normal EHBD  | Mouse  | GSE46995  | 24493287       |
| Down in EHBD: BA RRV D14        | EHBD and gallbladder with RRV infection at day 14 | Normal EHBD  | Mouse  | GSE46995  | 24493287       |
| Hepatic stellate cell signature | NA                                                | NA           | Mouse  | NA        | 26045137       |
| Portal fibroblast signature     | NA                                                | NA           | Mouse  | NA        | 25074909       |

# Supplementary Table 1 Information of studies for liver diseases and their animal models

Supplementary Table 2. Forward and reverse oligonucleotide primer sequences to quantify the expression of fibrotic markers.

| Name   | Sequence 5' to 3'                 |  |
|--------|-----------------------------------|--|
| Col1a1 | Forward: TGGTGCTAAGGGTGAAGCTG     |  |
|        | Reverse: TCCATCAGCACCAGGGTTTC     |  |
| Acta2  | Forward: GGCATCCACGAAACCACCTA     |  |
|        | Reverse: AATGCCTGGGTACATGGTGG     |  |
| Timp1  | Forward: TTCTTGGTTCCCTGGCGTAC     |  |
|        | Reverse: ACTCTCCAGTTTGCAAGGGA     |  |
| Tgfb1  | Forward: CCGCAACAACGCCATCTATG     |  |
|        | Reverse: TGCCGTACAACTCCAGTGAC     |  |
| Gapdh  | Forward: TGGTTTGACAATGAATACGGCTAC |  |
|        | Reverse: GGTGGGTGGTCCAAGGTTTC     |  |

| Patient characteristic           | Discovery cohort | Validation cohort | P value* |
|----------------------------------|------------------|-------------------|----------|
|                                  | (n=121)          | (n=50)            |          |
| Sex, N (%)                       |                  |                   |          |
| Female                           | 65 (54)          | 27 (54)           | 1        |
| Male                             | 56 (46)          | 23 (46)           |          |
| Age (days), median (25%-75%)     | 63 (46-76)       | 63 (46-77)        | 0.7859   |
| TB (Mean±SD, mg/dL)              | 7.4±2.8          | 7.9±3.2           | 0.8894   |
| AST (Mean±SD, IU)                | 172±137.1        | 206.8±160.3       | 0.4621   |
| ALT (Mean±SD, IU)                | 128±124.4        | 133.0±103.3       | 0.3169   |
| GGT (Mean±SD, IU)                | 605±530.6        | 718.6±514.8       | 0.8264   |
| Platelets                        | 490.0±215.4      | 481.8±175.3       | 0.4275   |
| BASM, N (%)                      | 12 (10)          | 7 (14)            | 0.4336   |
| Histological inflammation, N (%) |                  |                   |          |
| 0                                | 18 (15)          | 2 (4)             | 0.0544   |
| 1                                | 31 (26)          | 18 (36)           |          |
| 2                                | 64 (53)          | 23 (46)           |          |
| 3                                | 8 (7)            | 7 (14)            |          |
| Histological fibrosis, N (%)     |                  |                   |          |
| 0                                | 3 (2)            | 0 (0)             | 0.1471   |
| 1                                | 33 (27)          | 6 (12)            |          |
| 2                                | 62 (51)          | 31 (62)           |          |
| 3                                | 18 (14)          | 11 (22)           |          |
| 4                                | 5 (4)            | 2 (4)             |          |
|                                  |                  |                   |          |

## Supplementary Table 3 Characteristics of patients at the time of diagnosis

\* P value for Sex, BASM (biliary atresia splenic malformation syndrome), histological inflammation and fibrosis were calculated by Fisher exact test, P values for others were calculated by Wilcoxon rank sum test.

| Gene    | Cono Nomo                                            | Entro- ID | Importance |
|---------|------------------------------------------------------|-----------|------------|
| Symbol  | Gene Name                                            | Entrez ID | score      |
| LOXL1   | Lysyl oxidase like 1                                 | 4016      | 68.95      |
| C1QTNF5 | C1q and TNF related 5                                | 114902    | 67.246     |
| 3H4P    | Prolyl 3-hydroxylase family member 4 (non-enzymatic) | 10609     | 66.785     |
| HSDL1   | Hydroxysteroid dehydrogenase like 1                  | 83693     | 58.281     |
| SFRP4   | Secreted frizzled related protein 4                  | 6424      | 57.239     |
| SLC44A3 | Solute carrier family 44 member 3                    | 126969    | 55.351     |
| GLMN    | Glomulin, FKBP associated protein                    | 11146     | 53.919     |
| DPY30   | Dpy-30, histone methyltransferase complex regulatory | 84661     | 47.122     |
|         | subunit                                              |           |            |
| ABHD4   | Abhydrolase domain containing 4                      | 63874     | 46.62      |
| KIF7    | Kinesin family member 7                              | 374654    | 45.807     |
| EDIL3   | EGF like repeats and discoidin domains 3             | 10085     | 44.443     |
| PLOD1   | Procollagen-lysine,2-oxoglutarate 5-dioxygenase 1    | 5351      | 41.664     |
| LGALS4  | Galectin 4                                           | 3960      | 35.479     |
| HSF2    | Heat shock transcription factor 2                    | 3298      | 30.262     |

# Supplementary Table 4 Information of 14 prognostic genes.

|                                  | Discove      | ery cohort (n=12 <sup>-</sup> | 1)       | Valida       | Validation cohort (n=50) |          |  |
|----------------------------------|--------------|-------------------------------|----------|--------------|--------------------------|----------|--|
| Patient characteristic           | Low survival | High survival                 | P value* | Low survival | High survival            | P value* |  |
|                                  | (n=60)       | (n=61)                        |          | (n=25)       | (n=25)                   |          |  |
| Sex, N (%)                       |              |                               |          |              |                          |          |  |
| Female                           | 34 (57)      | 31 (51)                       | 0.5859   | 15 (60)      | 12 (48)                  | 0.571    |  |
| Male                             | 26 (43)      | 30 (49)                       |          | 10 (40)      | 13 (52)                  |          |  |
| Age (days), median (25%-75%)     | 68 (55-78)   | 52 (40-73)                    | 0.0001   | 59 (55-82)   | 50 (37-71)               | 0.034    |  |
| TB (Mean±SD, mg/dL)              | 8.2±2.9      | 7.2±2.7                       | 0.0849   | 8.1±2.7      | 7.7±3.6                  | 0.187    |  |
| AST (Mean±SD, IU)                | 210.7±123.8  | 208.8±149.9                   | 0.5053   | 252.9±201.9  | 163.0±90.8               | 0.274    |  |
| ALT (Mean±SD, IU)                | 156.3±124.3  | 150.6±125.4                   | 0.6822   | 167.4±123.6  | 101.4±68.8               | 0.068    |  |
| GGT (Mean±SD,IU)                 | 825.3±593.1  | 629.4±448.3                   | 0.0535   | 881.2±592.7  | 548.9±357.7              | 0.077    |  |
| Platelets                        | 477.3±203.0  | 467.5±198.6                   | 0.6793   | 445.8±127.8  | 515.0±206.9              | 0.187    |  |
| BASM, N (%)                      | 4 (7)        | 8 (13)                        | 0.3626   | 3 (25)       | 4 (25)                   | 1.000    |  |
| Histological inflammation, N (%) |              |                               |          |              |                          |          |  |
| 0                                | 10 (17)      | 8 (13)                        | 0.4857   | 0 (0)        | 2 (8)                    | 0.237    |  |
| 1                                | 12 (20)      | 19 (31)                       |          | 11 (44)      | 7 (28)                   |          |  |
| 2                                | 34 (56)      | 30 (49)                       |          | 10 (40)      | 13 (52)                  |          |  |
| 3                                | 3 (5)        | 5 (8)                         |          | 2 (8)        | 5 (20)                   |          |  |
| Histological fibrosis, N (%)     |              |                               |          |              |                          |          |  |
| 0                                | 1 (2)        | 2 (3)                         | 0.0039   | 0 (0)        | 0 (0)                    | 0.016    |  |
| 1                                | 13 (22)      | 20 (33)                       |          | 1 (4)        | 5 (20)                   |          |  |
| 2                                | 26 (43)      | 36 (59)                       |          | 13 (52)      | 18 (72)                  |          |  |
| 3                                | 14 (23)      | 4 (7)                         |          | 9 (36)       | 2 (8)                    |          |  |
| 4                                | 5 (8)        | 0 (0)                         |          | 2 (8)        | 0 (0)                    |          |  |

## Supplementary Table 5 Characteristics of patients at the time of diagnosis

\* P values for Sex, BASM (biliary atresia splenic malformation syndrome), histological inflammation and fibrosis were calculated by Fisher exact test, P values for others were calculated by Wilcoxon rank sum test.

| Variable                    | Univariable analysis  |         | Multivariable ana     | lysis   |
|-----------------------------|-----------------------|---------|-----------------------|---------|
| ( anabio                    | Hazard Ratio (95% CI) | P value | Hazard Ratio (95% CI) | P value |
| 14-gene signature           | 2.463 (1.754-3.459)   | <0.0001 | 2.200 (1.3500-3.587)  | 0.002   |
| Age at diagnosis (days)     | 1.009 (0.998-1.019)   | 0.109   |                       |         |
| Sex                         | 1.608 (0.922-2.804)   | 0.094   |                       |         |
| Platelets at diagnosis      | 1.000 (0.999-1.002)   | 0.602   |                       |         |
| APRI at diagnosis           | 1.272 (0.8432-1.92)   | 0.251   |                       |         |
| Histological inflammation   | 0.959 (0.699-1.316)   | 0.797   |                       |         |
| Histological fibrosis stage | 0.909 (0.5943-1.391)  | 0.660   |                       |         |
| TB at diagnosis             | 1.000 (0.909-1.100)   | 0.999   |                       |         |
| AST at diagnosis            | 1.000 (0.998-1.002)   | 0.930   |                       |         |
| ALT at diagnosis            | 1.001 (0.999-1.003)   | 0.522   |                       |         |
| GGT at diagnosis            | 1.000 (0.999-1.001)   | 0.435   |                       |         |
| TB at 1 month               | 1.271 (1.175-1.376)   | <0.0001 | 0.953 (0.8143-1.114)  | 0.543   |
| AST at 1 month              | 1.007 (1.003-1.010)   | 0.0002  | 1.000 (0.993-1.008)   | 0.940   |
| ALT at 1 month              | 1.001 (0.998-1.003)   | 0.717   |                       |         |
| GGT at 1 month              | 1.000 (0.999-1.000)   | 0.473   |                       |         |
| TB at 3 months              | 1.229 (1.173-1.289)   | <0.0001 | 1.205 (1.130-1.284)   | <0.0001 |
| AST at 3 months             | 1.004 (1.003-1.005)   | <0.0001 | 1.003 (0.997-1.009)   | 0.309   |
| ALT at 3 months             | 1.003 (1.001-1.005)   | 0.0009  | 0.999 (0.993-1.005)   | 0.633   |
| GGT at 3 months             | 1.000 (0.999-1.000)   | 0.717   |                       |         |

# Supplementary Table 6. Association of 14-gene signature and clinical variables at diagnosis and at 1 and 3 months after HPE with survival in the discovery cohort

Supplementary Table 7 Association of 14-gene signature and clinical variables at diagnosis and at 1 and 3 months after HPE with survival in the validation cohort

| Variable                  | Univariable analys    | sis     | Multivariable analysis |         |  |
|---------------------------|-----------------------|---------|------------------------|---------|--|
| Valiable                  | Hazard Ratio (95% CI) | P value | Hazard Ratio (95% CI)  | P value |  |
| 14-gene signature         | 1.873 (1.079- 3.25)   | 0.003   | 1.795 (1.329-1.921)    | 0.006   |  |
| Age at diagnosis (days)   | 1.006 (0.992-1.020)   | 0.431   |                        |         |  |
| Sex                       | 1.397 (0.617-3.165)   | 0.423   |                        |         |  |
| Platelets at diagnosis    | 1.000 (0.998-1.003)   | 0.798   |                        |         |  |
| APRI at diagnosis         | 0.912 (0.573-1.45)    | 0.697   |                        |         |  |
| Histological inflammation | 1.153 (0.688-1.934)   | 0.589   |                        |         |  |
| Histological fibrosis     | 1.078 (1.053-1.781)   | 0.390   |                        |         |  |
| TB at diagnosis           | 1.068 (0.954-1.195)   | 0.253   |                        |         |  |
| AST at diagnosis          | 1.002 (0.999-1.005)   | 0.205   |                        |         |  |
| ALT at diagnosis          | 1.002 (0.998-1.006)   | 0.407   |                        |         |  |
| GGT at diagnosis          | 1.000 (0.999-1.001)   | 0.582   |                        |         |  |
| TB at 1 month             | 1.255 (1.093-1.441)   | 0.001   | 0.953 (0.801- 1.375)   | 0.727   |  |
| AST at 1 month            | 1.005 (1.002-1.009)   | 0.002   | 1.005 (0.999-1.011)    | 0.135   |  |
| ALT at 1 month            | 1.005 (0.998-1.011)   | 0.162   |                        |         |  |
| GGT at 1 month            | 1.000 (0.999-1.000)   | 0.883   |                        |         |  |
| TB at 3 months            | 1.148 (1.067-1.234)   | 0.0002  | 1.301 (1.039-1.631)    | 0.002   |  |
| AST at 3 months           | 1.002 (1.000-1.004)   | 0.010   | 0.993 (0.984-1.003)    | 0.164   |  |
| ALT at 3 months           | 1.002 (0.999-1.005)   | 0.033   | 1.006 (0.995-1.018)    | 0.292   |  |
| GGT at 3 months           | 1.000 (0.999-1.000)   | 0.896   |                        |         |  |

| Parameter    | Discovery |           |        |        |       |       |       | Valida    | ation  |        |       |       |
|--------------|-----------|-----------|--------|--------|-------|-------|-------|-----------|--------|--------|-------|-------|
|              | AUC       | C-        | Sensi- | Speci- | PPV   | NPV   | AUC   | C-        | Sensi- | Speci- | PPV   | NPV   |
|              |           | statistic | tivity | ficity |       |       |       | statistic | tivity | ficity |       |       |
| 14-gene      | 0.734     | 0.711     | 0.748  | 0.792  | 0.791 | 0.758 | 0.732 | 0.704     | 0.733  | 0.755  | 0.741 | 0.821 |
| signature    |           |           |        |        |       |       |       |           |        |        |       |       |
| Total        | 0.920     | 0.844     | 0.771  | 0.844  | 0.771 | 0.814 | 0.780 | 0.746     | 0.801  | 0.762  | 0.746 | 0.813 |
| bilirubin at |           |           |        |        |       |       |       |           |        |        |       |       |
| 3 months     |           |           |        |        |       |       |       |           |        |        |       |       |
| (3M TB)      |           |           |        |        |       |       |       |           |        |        |       |       |
| Index        | 0.948     | 0.862     | 0.886  | 0.867  | 0.822 | 0.907 | 0.813 | 0.763     | 0.825  | 0.821  | 0.801 | 0.811 |
| (14-gene     |           |           |        |        |       |       |       |           |        |        |       |       |
| signature    |           |           |        |        |       |       |       |           |        |        |       |       |
| + 3M TB)     |           |           |        |        |       |       |       |           |        |        |       |       |

# Supplementary Table 8 Predictive accuracy of prognostic models







Other

3

6 -Log<sub>10</sub>(FDR) 9

В

## Supplementary Figure 3



### **Supplementary Figure 4**





Supplementary Figure 7

