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Supplementary methods: 
 
Liver Magnetic Resonance Spectroscopy (MRS) 

 

A 20 x 20 x 20 mm voxel was placed in the right lobe of the liver, avoiding major vasculature, 

bile ducts, liver edges, and artifacts.  After shimming during free breathing, five single average 

STEAM spectra (mixing time 5 ms) were acquired consecutively at progressively longer echo 

times of 10, 15, 20, 25 and 30 ms in a single 21-second breathhold1. The echo time range and 

mixing time were chosen to minimize J coupling effects while allowing T2 correction2. A TR of 

3,500 ms was chosen to minimize T1 effects. No water or spatial saturation was applied. An 

anatomic image illustrating the placement of the MRS voxel was saved and spectra were 

transferred offline for analysis. 

  

The spectra from the individual channels were combined using a singular value decomposition3. 

A single blinded experienced observer analyzed the spectra using the Advanced Method for 

Accurate, Robust and Efficient Spectral (AMARES) algorithm, included in the MRUI software 

package4. As described previously1, the T2-corrected areas of the water (4-6 ppm) and the fat 

(0-3 ppm) were estimated. The contribution to the water peak from neighboring fat peaks (4.2 

and 5.2 ppm) was corrected using a previously derived fat spectrum post T2 correction, which 

reassigned these fat peaks from water to the fat signal and the PDFF was calculated from these 

corrected peak areas. 

 

Polymerase chain reaction (PCR) amplification of the 16S rRNA gene 
 

Primers used for PCR amplification the V1-V3 region of the 16S rRNA gene were 27F 
(5’-AATGATACGGCGACCACCGAGATCTACACNNNNNNNNACACTCTTTCCCTACACGA-3’) and 

534R (5’-
CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

ATTACCGCGGCTGCTGG-3’), where N’s represent a unique 8bp index for each sample. The 

PCR mixture contained 1 μM of each forward and reverse primer, 4 ng template DNA, 0.75 U 

AccuPrime Taq High Fidelity DNA Polymerase (Life Technologies), and 2 μl AccuPrime Buffer II 

(Life Technologies) in a final volume of 20 μl. Thermal cycling consisted of an initial denaturation 

step at 95°C for 2 min, followed by 30 cycles of denaturation at 95°C for 20s, annealing at 56°C 
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for 30 s and extension at 72 °C for 60s, with a final extension step at 72°C for 5 min. PCR 

product purification and sequencing were carried out as described in the main text. 
  

Bioinformatic processing of 16S rRNA gene sequence data 

 

Following sequencing, reads were trimmed to remove adapters and low quality 3’ sequence 

using Trimmomatic v0.3215, with the commands HEADCROP:20, TRAILING:10, MINLEN:100. 

Assembly of paired-end reads into single contiguous sequences (contigs) covering the V1-V3 

region was done using PEAR v0.9.1026. To remove spurious assemblies contigs containing 

ambiguous bases (N’s) were discarded, as were contigs shorter than 448bp or longer than 

529bp (these values approximated the 1st and 99th percentile of the contig length distribution 

observed across all samples). Any contig showing similarity to the PhiX genome using Blastn 

(e<1x10-5) was also removed7. 
  

Contigs passing filtering were pooled, and OTUs generated following the UPARSE pipeline8 

(usearch v8.0.1517). Clustering of a unique set of contigs was performed using the UPARSE-

OTU algorithm and an additional chimera removal step was carried out using UCHIME in 

conjunction with the ChimeraSlayer reference database. Contigs from all samples were then 

assigned to a single OTU using the USEARCH global algorithm at a 97% similarity threshold9. 

Any contig that did not match an OTU at this threshold was assumed to be a sequencing or 

assembly artifact and was discarded. 
  

Relative abundance estimates were calculated based on the number of contigs assigned to 

each OTU. Abundance estimates were adjusted to account for differences in sequencing effort 

by normalizing total counts for each sample to the median sequencing depth. Normalized data 

were filtered to remove any OTU that was detected in less than 5% of samples and whose 

maximum relative abundance constituted less than 5% of the counts detected in any one 

sample. Normalization and filtering were performed using the R package Phyloseq10. 
  

Taxonomic classification of OTUs was performed using the Ribosomal Database Project (RDP) 

classifier v2.211 in conjunction with the RDP reference database and using an 80% confidence 

threshold. 
  



 3 

Classifying individuals into discrete groups based on Prevotella copri relative abundance 
 

Preliminary investigation of the abundance of the genus Prevotella across individuals indicated 

a bimodal log-normal distribution. Comparable distributions were not seen for any other taxon. 

The Prevotella genus has previously been identified as a major determinant of enterotypes12. 

However, this community-based approach to portioning microbiomes has recently come under 

criticism13. Multiple OTUs in this study were identified as belonging to the Prevotella genus, but 

those responsible for driving the bimodal trend observed in this study (Fig. 1C Supplementary 

Fig. 5) were identified as P. copri (see methods below). Therefore, in light of recent criticism of 

enterotypes, we chose to group individuals into discrete categories based on P. copri 

abundance alone. 
  

The RDP classifier only provides taxonomic classification to genus level. To infer species-level 

classification for OTUs belonging to the genera Bacteroides and Prevotella all 16S gene 

sequences for these two genera were downloaded from the NCBI collection of complete 

bacterial genomes. Downloaded sequences were randomly subsampled to select up to three 

representative, full-length, 16S gene sequences for all available Bacteroides and Prevotella 

species. Selected sequences were then aligned separately for each genus using MUSCLE14, 

and a phylogenetic tree constructed using FastTree1015. Representative sequences for each 

Bacteroides and Prevotella OTU (spanning the V1-V3 region of the 16S) were then positioned 

within their respective phylogeny using the Quantitative Insights Into Microbial Ecology 

(QIIME)16 command make_phylogeny.py, and the proximity of each OTU to full-length gene 

sequences of known taxonomic origin was used to infer species (Supplementary Figure 4). 
  

Multiple Prevotella OTUs appeared to be most closely related to two P. copri 16S gene 

reference sequences extracted from a single P. copri National Center for Biotechnology 

Information (NCBI) reference genome assembly (Supplementary Figure 4). Therefore, in order 

to estimate species-level taxonomic quantification, the abundance of all OTUs in this arm of the 

tree were summed and used to indicate P. copri relative abundance. 
  

A Gaussian finite mixture model was fitted for the natural log of P. copri abundance using the 

Expectation Maximization (EM) algorithm in the R package mclust17. Three components were 

identified by the model. Based on cutoff points, data were therefore categorized into low, 

medium, and high P. copri groups. Mean + 3 SD of component 1 was used to obtain the cutoff 
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point between low and medium while mean - 3 SD of component 3 for medium and high 

(Supplementary Figure 5). 
  

Bioinformatic processing of metagenomic whole genome shotgun (mWGS) sequence data 
 

Following sequencing, mWGS data were processed using the MOCAT18 pipeline to remove 

sequencing adapters and screen reads for host contamination (using the hg19 reference 

genome assembly) This resulted in an average of 16,195,254 read pairs per sample (minimum 

9,875,881, maximum 27,365,397). Cleaned sequences were mapped to the UniRef90 reference 

gene database provided by HUMAnN219 and normalized to counts per kilobase per million 

reads mapped (cpm) using the script humann2_renorm_table.py. 
  

The HUMAnN2 software package provides an internal reference for mapping UniRef9020 gene 

families to their respective KO groups, which is based on database cross- references provided 

by the Universal Protein Resource (UniProt). Preliminary data investigation identified 

deficiencies in UniProt database cross-reference annotations that were causing artifactual 

results during the analysis of KOs. For example, the Prevotella gene for S-adenosylmethionine 

synthase (R6XFI0_9BACT) was not annotated as mapping to its corresponding KO (K00789, 

see www.uniprot.org/uniprot/R6XFI0.txt), in spite of the fact that the sequence belongs within 

this orthologous group (https://www.ncbi.nlm.nih.gov/protein/EFB35257.1). To avoid such 

database artifacts influencing functional analysis results, UniRef90 centroid sequences were 

mapped directly to the KEGG21 protein database. 
  

Representative protein sequences for all detected UniRef90 gene families were extracted from 

the HUMAnN2 UniRef90 diamond22 indexed database (v0.11.0) and mapped to the KEGG 

protein sequence database (release 2015-08-31) using the USEARCH -ublast command with 

the parameters –evalue 1e-9 –accel 0.5 –maxhits 1. Of the UniRef90 gene families detected in 

this study 82% matched an entry in the KEGG gene database and 52% of detected KEGG 

genes could be assigned to a KO. The relative abundance of KOs was calculated by summing 

the normalized counts of each contributing UniRef gene family. 
  

Effect of P. copri abundance on reference gene database mapping success: No significant 

differences were observed when comparing the proportion of reads that could be mapped by 

HUMAnN2 between cases and controls. However, significant differences in the proportion of 
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reads mapped by HUMAnN2 were observed when comparing individuals classified as belonging 

to the low, intermediate, or high P. copri groups (Supplementary Figure 11E). This difference in 

mapping success indicated the possibility that reference gene databases were biased, and 

contained fewer gene sequences representative of the high P. copri metagenome. 
  

In more detail – both UniRef90 gene families and KOs are clusters of orthologous sequences. 

Representational bias could therefore mean that a single orthologous sequence cluster contains 

more reference sequences representative of a low P. copri microbiome than a high P. copri 

microbiome. Differential abundance in the number of reads mapping to such an orthologous 

cluster would not then represent differential abundance in the gene function represented by the 

cluster, rather it would represent a failure of reads from high P. copri samples to map to gene 

sequences that are absent from the database. 
 

To avoid potential artefacts due to gene reference database bias, functional comparisons based 

on Gene Set Enrichment Analysis (GSEA were carried out separately for high and low P. copri 

groups when the conditions under analysis (for example, absent/mild vs. moderate/severe 

fibrosis) was conflated with differences in the distribution of high and low P. copri individuals. 
  

Gene set enrichment analysis: KOs are clusters of genes that share a similar function, while 

KEGG Pathways are lists of KOs that contribute to a single, well-studied metabolic pathway. To 

investigate alteration in microbial metabolic pathways with NAFLD, all KOs detected in the 

intestinal metagenome were ranked based on the significance of their change in abundance 

between conditions (cases vs. controls, NASH vs. NAFLD, absent/mild vs. moderate/severe 

fibrosis). KEGG pathways were downloaded as part of the KEGG database (release 2015-08-

31) and filtered to retain 148 pathways for which ≥5 contributing KOs were detected in our 

mWGS dataset. Gene set enrichment analysis was then performed as described in the main 

text23. 
 

Alcohol metabolism and other gene pathways of a priori interest: To explicitly address 

existing hypotheses relating to the gut microbiome and NAFLD, two online databases – KEGG 

and the Gene Ontology database24 (www.geneontology.org) – were manually searched. Gene 

pathways reflecting Iron(III) transport system (M00190), Secondary bile acid biosynthesis 

(map00121), ethanol metabolic processes (GO:0006067), choline biosynthetic processes 

(GO:0042425), and short-chain fatty acid metabolic processes (GO:0046459) were selected. 
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When read-coverage allowed, the relative abundance of the UniRef90 gene clusters/KOs within 

each pathway was assessed using principal coordinates analysis, and differences between 

cases vs. controls, NAFLD vs. NASH, and absent-to-mild vs. moderate-to-severe fibrosis tested 

using permutational multivariate analysis of variance. No signal metagenomic signal was 

detected for pathways reflecting choline biosynthetic processes and ethanol metabolic 

processes all other pathways were non-significant in pairwise contrasts (p>0.05).  

 

To further address the possibility that microbial alcohol metabolism contributes to NAFLD, 

serum ethanol levels were measured using an Ethanol Colorimetric Assay Kit (BioVision Inc., 

Milpitas, CA). 10µl duplicate aliquots of 1:10 diluted serum in PBS were assayed following kit 

directions. Results showed no significant variation in serum alcohol levels in comparisons of 

cases vs. controls, NASH vs. NAFLD, or moderate/severe vs absent/mild fibrosis.  

 
Contribution of bacterial genera to pro-inflammatory pathways: To identify the likely 

taxonomic origin of genes contributing to the lipopolysaccharide biosynthesis (ko00540) and 

flagellar assembly (ko02040) pathways, genus-level count information was extracted from 

HUMAnN2 output and gene abundance estimates for each genus collapsed. The percent 

contribution of different genera to the total read coverage for every UniRef90 gene family/KO 

was then calculated. The contribution of each genus to KOs in the lipopolysaccharide 

biosynthesis pathway is shown in Supplementary Figures 12-13. The contribution of each genus 

to KOs in the flagellar assembly pathway is shown in Supplementary Figures 14-15. 

  

Indicator values25 were calculated in order to summarize the extent to which each bacterial 

taxon contributed to either cases vs. controls, NAFLD vs. NASH, or absent/mild vs. 

moderate/severe fibrosis. Pathways were initially filtered to remove KOs found in <4 genera, 

and genera were filtered to remove any genus contributing <10 KOs in a pathway (the former 

threshold was based on preliminary exploration of data, which indicated a small subset of KOs 

in both pathways represented by only one or few taxa). Following filtering, the contribution of 

each genus to an entire pathway was summarized as the 75th percentile of its contribution to 

each of the remaining KOs. Indicator values were then calculated using the R package labdsv26, 

including 1000 permutations to estimate the probability of encountering a higher indicator value 

by chance. 
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Supplementary tables: 
 
Supplementary table 1: Results of statistical tests to compare microbial taxonomic abundance 

between NAFLD cases and obese controls.  

 
[Due to its size, this table is supplied as an external Microsoft Excel file.] 

 
Supplementary table 2: Patient demographic and clinical characteristics by P. copri group. 
aChi-Square or Fisher’s exact test; bKruskall-Wallis test; cCalculated basted on the 2000 Centers 

for Disease Control and revention (CDC) growth charts.  
 
  Low P. copri 

(n=73) 
Medium P. 
copri (n=16) 

High P. copri 
(n=35) P value 

Patients     
      Cases 49(67) 11(69) 27(77) 0.56 
Gender     
      Male 44(60) 11(69) 24(69) 0.64a 
Ethnic     
      Hispanic 57(78) 14(88) 34(97) 0.025a 
Race     
      White 33(45) 7(44) 12(34) 0.55a 
Age 12(11,14) 13(11,15) 12(10,14) 0.92b 
Height (cm) 159(147,166) 162(155,169) 160(154,165) 0.56b 
Weight (kg) 69(61,86) 83(60,93) 77(65,93) 0.30b 
BMI 28(25,31) 30(25,34) 31(26,34) 0.093b 
BMI 
percentilec 98(96,99) 98(97,99) 99(98,99) 0.048b 

BMI Z scorec 2(2,2) 2(2,2) 2(2,2) 0.048b 
     
ALT 35(19,69) 33(17,64) 42(22,88) 0.39b 
AST 27(21,43) 34(21,45) 33(24,52) 0.53b 
GGT 22(17,32) 30(16,34) 32(22,45) 0.075b 
     
Insulin 22(15,36) 31(19,41) 31(22,44) 0.058b 
Glucose 85(80,90) 86(79,90) 84(80,88) 0.29b 
MRS Liver 
Fat 10(4,21) 16(5,20) 14(5,23) 0.81b 

Body Fat 41(37,46) 41(36,47) 45(41,47) 0.10b 
     
Triglyceride 115(82,161) 110(80,154) 115(94,196) 0.73b 
Total 
cholesterol 160(139,183) 158(137,178) 161(138,180) 0.96b 

HDL 
cholesterol 44(40,50) 38(33,44) 40(36,48) 0.027b 

LDL 
cholesterol 89(72,109) 99(72,119) 88(78,105) 0.70b 

*Data are presented as median (interquartile range) or n (%). 
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Supplementary figures: 
 

 
Supplementary figure 1: Descriptive statistics of the study population  
Boxplots showing the distribution of demographic and clinical features in NAFLD cases and controls. 
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Supplementary Figure 2: Summary of gut microbiome compo-
sition at different taxonomic levels
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Supplementary figure 3: OTUs whose relative abundance differs between NAFLD cases and controls 
Differential abundance of OTUs was determined using zero-inflated negative binomial/poisson tests (FDR-adjusted p<0.2). Each dot 

reflects the log2-fold change for a single OTU. OTUs are grouped by genus and coloured by their respective phylum.
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Supplementary figure 4: Taxonomy of OTUs belonging to the genera Bacteroides and 

Prevotella 

Maximum-likelihood trees showing the phylogenetic position of representative OTU sequences 

belonging to the genera (A) Prevotella and (B) Bacteroides. Trees also contain complete 

representative 16S gene sequences extracted from genome assemblies downloaded from the 

NCBI RefSeq database. Inset boxplots reflect the distribution in the relative abundance of each 

OTU across all samples following 16S data normalization. Arrow indicates the node after which 

all OTUs were assumed to be P. copri. 

B 
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Supplementary figure 5: Classification of individuals based on relative abundance of P. 
copri in their gut microbiome 

As an alternative to the use of enterotypes, individuals were assigned to discrete categories 

(high, indeterminate, low) based on the relative abundance of P. copri in their gut microbiome.  

(A) Histogram showing the distribution of the log-transformed relative abundance of P. copri 

across individuals. Dotted lines denote thresholds at which individuals were classified as either 

low, intermediate, or high P. copri. (B) Histogram showing the distribution of the log-transformed 

relative abundance of Bacteroides vulgatus across individuals. (C) Dendrogram showing 

hierarchical clustering of individuals based on composition of their gut microbiome. Clustering 

was based on the Bray-Curtis dissimilarity matrix used in Fig. 1C. Below dendrogram individuals 

are classified as either controls, or on the basis of severity of fibrosis. The colour scheme 

denoting severity of fibrosis is the same as that used in Fig. 2B. The relative abundance of B. 

vulgatus and P. copri in each individual is also shown. 
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Supplementary figure 6: The relationship between B. vulgatus and P. copri relative 

abundance and diversity 

(A) Principal coordinates analysis plot showing inter-individual variation in composition of the gut 

microbiome (beta diversity), as calculated as in Fig. 1C. Individuals are coloured by P. copri 

group (high, indeterminate, low).  For the identity of OTUs in overlaid vectors, see 

Supplementary Fig. 4. (B) The relationship between P. copri relative abundance and alpha 

diversity, shown for individuals classified as high P. copri. The linear regression is significant at 

p<0.0001. (C) The relationship between B. vulgatus relative abundance and alpha diversity, 

shown for individuals classified as low P. copri. Linear regression is significant (p<0.0001), and 

remains significant even if samples with >10000 B. vulgatus counts are removed. Grey regions 

indicate 95% confidence intervals. 
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Supplementary figure 7: OTUs whose relative abundance differs between cases with 

NAFLD not NASH and cases with definite NASH 

Differential abundance of OTUs was determined using zero-inflated negative binomial/poisson 

tests (FDR-adjusted p<0.2). Each dot reflects the log2-fold change for a single OTU. OTUs are 

grouped by genus and coloured by their respective phylum. 
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Supplementary figure 8: OTUs whose relative abundance differs between cases with 

absent-to-mild vs. moderate-to-severe fibrosis 

Differential abundance of OTUs was determined using zero-inflated negative binomial/poisson 

tests (FDR-adjusted p<0.2). Each dot reflects the log2-fold change for a single OTU. OTUs are 

grouped by genus and coloured by their respective phylum. 
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Supplementary Figure 9: CART predicting severity of fibrosis based on P. copri, B. 
vulgatus and alpha diversity 

Classification and Regression Tree (CART) analysis results showing optimal partitioning of 

cases with absent/mild fibrosis from cases with moderate/severe fibrosis. Predictor variables 

included in this analysis were P. copri relative abundance, B. vulgatus relative abundance, 

Shannon diversity, age in months, sex, BMI, and ethnicity.
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Shannon
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Supplementary Figure 10: Classification and Regression Tree (CART) analysis results showing optimal partitioning of cases with 
non-severe (fibrosis score <2) or severe (fibrosis score 2+) fibrosis. A) Predictor variables included in this analysis were P. copri rela-
tive abundance and shannon diversity. B) Predictor variables included in this analysis were P. copri relative abundance, shannon 
diversity, age in months, sex, ethnicity and BMI percentile. 

A B
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Supplementary Figure 10: Metagenomic signature of the case vs. control gut microbiome 
(A) PCO plot showing inter-individual variation in the composition of the gut metagenome. PCO is generated from a Bray-Curtis 

dissimilarity matrix based on normalized UniRef90 gene cluster abundance. Dotted lines show the outer boundaries for distribution of 

cases and controls across the first two PC axes. (B) Histogram showing the distribution in the total number of UniRef90 gene clusters 

detected in cases vs. controls. No significant difference was observed in the number of clusters detected in cases vs. controls (t=-

0.30, df=83.2, p=0.76). (C) Violin plot showing distribution in the percentage of mWGS reads that could be successfully mapped to 

the UniRef90 gene set. No significant difference was observed in the proportion of reads that could be successfully mapped for 

cases vs. controls (t=-0.83, df=28.7, p=0.41). 

 



 21 

 
 
Supplementary Figure 11: Metagenomic signature of NASH and fibrosis.  
(A) Histogram showing the distribution in the total number of UniRef90 gene clusters detected in patients with NAFLD vs NASH. No 

significant difference was observed between categories (t=0.32, df=19, p=0.75). (B) Violin plot showing distribution in the percentage 
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of mWGS reads that could not be successfully mapped to the UniRef90 gene set. No significant difference was observed between 

categories (t=-0.06, df=17, p=0.96). (C) Histogram showing the distribution in the total number of UniRef90 gene clusters detected in 

patients with absent-to-mild vs moderate-to-severe fibrosis. No significant difference was observed between categories (t=-0.21, 

df=27, p=0.84). (D) Violin plot showing distribution in the percentage of mWGS reads that could not be successfully mapped to the 

UniRef90 gene set. No significant difference was observed between categories (t=-0.83, df=29, p=0.41). (E) Violin plot showing 

distribution of the percentage of mWGS reads that could not be successfully mapped for individuals in different P. copri categories. 

Significant differences were observed between categories (F=26.86, df=2, p<0.001).
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Supplementary Figure 12: Contribution of bacterial genera to lipopolysaccharide 
biosynthesis gene pathway in individual cases and controls  
The proportion of reads mapping to KOs in the lipopolysaccharide biosynthesis pathway that 

originate from different bacterial genera, shown for individual NAFLD cases and obese controls. 

X-axis represents the percentage of mWGS reads mapping to a KO that originate from the 

genus in question. Y-axis represents KOs in the LPS pathway ranked as shown in Fig. 4A. Each 

data point corresponds to a single patient. Patients for which a bacterial taxon makes a 

substantial contribution to multiple KOs in the pathway are colored individually (colors are 

not consistent between panels). 
  



 25 
  



 26 

 

Supplementary Figure 13: Contribution of bacterial genera to lipopolysaccharide 
biosynthesis gene pathway in individual cases with NAFLD but not NASH and definite 
NASH 
The proportion of reads mapping to KOs in the flagellar assembly pathway that originate from 

different bacterial genera, shown for individual NAFLD cases and obese controls. X-axis 

represents the percentage of mWGS reads mapping to a KO that originate from the genus in 

question. Y-axis represents KOs in the flagellar assembly pathway ranked as shown in Fig. 5A. 

Each data point corresponds to a single patient. Patients for which a bacterial taxon makes a 

substantial contribution to multiple KOs in the pathway are colored individually (colors are not 

consistent between panels). 

 
  



 27 

 



 28 

Supplementary Figure 14: Contribution of bacterial genera to flagellar assembly gene 
pathway in individual cases and controls  
The proportion of reads mapping to KOs in the flagellar assembly pathway that originate from 

different bacterial genera, shown for individual NAFLD cases and controls. X-axis represents 

the percentage of mWGS reads mapping to a KO that originate from the genus in question. Y-

axis represents KOs in the flagellar assembly pathway ranked as shown in Fig. 5A. Each data 

point corresponds to a single patient. Patients for which a bacterial taxon makes a substantial 

contribution to multiple KOs in the pathway are colored individually (colors are not consistent 

between panels). 
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Supplementary Figure 15: Contribution of bacterial genera to flagellar assembly gene 
pathway in individual cases with absent-to-mild and moderate-to-severe fibrosis  
The proportion of reads mapping to KOs in the flagellar assembly pathway that originate from 

different bacterial genera, shown for individual cases with either absent-to-mild, or moderate-to-

severe fibrosis. X-axis represents the percentage of mWGS reads mapping to a KO that 

originate from the genus in question. Y-axis represents KOs in the flagellar assembly pathway 

ranked as shown in Fig. 5E. Each data point corresponds to a single patient. Patients for which 

a bacterial taxon makes a substantial contribution to multiple KOs in the pathway are colored 

individually (colors are not consistent between panels). 

 

 

 

 


